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Introduction



Introduction

e Deep neural nets have become the preferred model in several
practical problems, such as computer vision, language
processing, games, self-driving cars, and other engineering
applications.

e The way neural nets are defined and optimized, and the sheer
size and complexity of state-of-the-art deep nets, make them
very hard to understand in explanatory terms.

e Understanding deep nets has become urgent due to their
widespread deployment in sensitive fields such as finance,
medical field, or autonomous driving.

e Need explanations that are not limited to researchers but also
the end-users.
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Types of Explanations



Types of explanations

e Inspecting the structure of neural network.
® What information parameters of the network encode ?

e |ocal, instance-level explanations.

® Explain the network prediction for a given input. These
explanations are restricted to only a given input.

¢ Global explanation.
® Explanation that is applicable to any instance.
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Types of explanations

® What information parameters of the network encode ?

e |ocal, instance-level explanations.

® Explain the network prediction for a given input. These
explanations are restricted to only a given input.

® Explanation that is applicable to any instance.
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Sampling the “Inverse Set” of a Neuron



Explaining behavior of an individual neuron

e What concept does a neuron in a deep neural network
represents?
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Explaining behavior of an individual neuron

e What concept does a neuron in a deep neural network
represents?

e Generate an input that maximally activates the neuron of
interest: Activation maximization.
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Explaining behavior of an individual neuron

e What concept does a neuron in a deep neural network
represents?

e Generate an input that maximally activates the neuron of
interest: Activation maximization.

Dataset Examples show
us what neurons
respond to in practice

Optimization isolates
the causes of behavior
from mere correlations.
A neuron may not be
detecting what you
initially thought.

Baseball—or stripes? Animal faces—or snouts?  Clouds—or fluffiness? Buildings—or sky?
mixedda, Unit 6 mixedda, Unit 240 mixedda, Unit 453 mixedda, Unit 492

Olah et. al. 2017
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Explaining behavior of an individual neuron

e What concept does a neuron in a deep neural network
represents?

e We solve this by characterizing the region of input space that
excites a given neuron to a certain level; we call this the inverse
set.

e This inverse set is a complicated high dimensional object that
we explore using an optimization-based sampling approach.
Inspection of samples of this set by a human can reveal
regularities that help to understand the neuron.

Hada and Carreira-Perpifan, 2018; Hada and Carreira-Perpifian, 2021

11/ 68



Activation function of a neuron
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Inverse set of neuron
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Inverse set definition

e \We say an input x is in the inverse set of a given neuron having
a real-valued activation function f if it satisfies the following
two properties:

2 < f(x) < 29 x is a valid input (1)
where z1, 2o € R are activation values of the neuron.

e For example, consider a linear model with weight vector (w),
bias (b), logistic activation function o(w’'x + b) and all valid
inputs to have pixel values between [0, 1]. For z = 1 (maximum
activation value) and 0 < z; < z,, the inverse set will be the
intersection of the half space w'x +b > 071(21) and the [0, 1]
hypercube.
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Sampling the “Inverse Set” of a Neuron
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Inverse set for a neuron in a deep neural network

e For deep neural networks, we approximate the inverse set with
a sample that covers it in a representative way.

e Asimple way to do this is to select all the images in the training
set that satisfy eq. (1), but this may rule out all images.

e Therefore, we need an efficient algorithm to sample the inverse
set.
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Sampling the inverse set: an optimization approach

e To create a sample x4, ...,x, that covers the inverse set, we
transform eq. (1) into a constrained optimization problem:

X1, %0 (5
e The objective function ensures that the samples are different
from each other and satisfy eq. (1).

e |t has two issues.

® The generated images are noisy and unrealistic.
® The generated images are very sensitive to small changes in their
pixels.
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Sampling the inverse set: an optimization approach

e We solve the issues in following way:

® To counter the noisy image issue, we use generator network G to
generate images from a feature vector c.

® A generative network G generates realistic images when a feature
vector c is passed as an input.

® For the second issue, we compute distances on a low-dimensional
encoding E(G(c)) of the generated images constructed by an
encoder E.

® An encoder E maps a given image x to a low dimensional feature
vector c.

e Our final formulation for generating n samples.

argmax Y [E(G(e:)) — B(G(ey)]:

C1,C2,+,C . .
1,€2 77,7’]:1

st. 21 < f(G(cr)),..., [(G(cn)) < 2o.

18/68



Computation constraints

e Because of the quadratic complexity of the objective function
over the number of samples n, it is computationally expensive
to generate many samples.

e It involves optimizing all code vectors (c) together; for larger n,
it is not possible to fit all in the GPU memory.

e Two approximation:

® Stop the optimization algorithm once the samples enter the
feasible set, as, by that time, the samples are already separated.
e Create the samples incrementally, K samples at a time (with
K < n).
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Faster sampling approach

e Optimize the objective function for the first K samples,
initializing the code vectors ¢ with random values. We stop the
optimization once the samples are in the feasible set. These
samples are then fixed (called seeds Cy).

e The next K samples are generated by the following equation:
K

argmax Y |[E(G(c)) — E(G(c))) |3+
CMCL”WCKij7]
K |Col

SN IEG(e) - B(G(ey)3

i=1 y=1

st. 1 < f(G(Cl)) ey f(G(CA)) < z9 and Cy € Cy.
e We initialize them with the previous K samples and take a

single gradient step in the feasible region. The resultant
samples are the new K samples.
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Experiments
e neuron # 981 volcano class.
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Experiments
e neuron # 981 volcano class.

e Higher the amount of lava and smoke more the activation.
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Inverse set intersection
)

neuron #664 (monastery), [50,60]
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Interpreting deep neural networks
using sparse oblique decision trees



Interpreting deep neural networks
using sparse oblique decision trees
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Interpreting deep neural networks
using sparse oblique decision trees

e Consider a trained deep net classifier:
y =f(x)

e We can write f as: f(x) = g(F(x)), where
® F represents the features-extraction part (z = F(x) € RF).
® g represents the classifier part (y = g(z)).

e The last layer of F is interesting, as it is associated with the
features extracted by F that goes into g .

e We want to understand the relationship between neurons in
the last layer of F and the classes.
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What we found

e QOut of thousands of neurons, there is a small subset of neurons
associated with a given class.

e We explore this by introducing a new feature-level adversarial
attack via masking a specific set of neurons.

e These attacks include making net to predict or not predict a
given class.

Hada et. al. 20213; Hada et. al. 2021b
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Our approach
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Tree mimick with CART

e Deep net test error: 6.79% Tree test error: 21.24%
/D<D<D\/D\D
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Our approach

e We study the relationship between neurons at the last layer of
F and the classes using sparse oblique trees.

e QOverall approach:

® Train a sparse oblique tree y = T'(z) on the training set
{(F(xn),yn)}h—1 C RF x {1,..., K}. Choose the sparsity
hyperparameter X € [0, c0) such that, T mimicks g very well and
is as sparse as possible.

® Inspect the tree T to create masks.
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Tree mimick with a sparse oblique tree

® We train these trees using Tree alternating optimization (TAO)
algorithm.

e Deep net test error: 6.79% Tree test error: 7.9%

1(-0.040886)

2(b=-0.080825) /

4(b=0.13669) 5(b=0) 6(b=-0.52553) 7(b=0)

|

3(b=0)

8(b=0) 9(0) 10(b=0) 116)

12(b=0) 13(7) 14(b=0) 035122)

Carreira-Perpinan and Tavallali 2018
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Tree alternating optimization (TAO)

e Tree alternating optimization (TAO) is a recently proposed
algorithm that can train highly accurate oblique or axis-aligned

trees.
e To train the sparse oblique it optimize following objective
function:
N
E(©) = L(yn, T(x,;0)) + A > _[6il,
n=1 €L

® O represents parameters of the tree.

® [(.,.)is0/1loss function.

® )\ is /¢, penalty on the parameters of the each decision node.

e TAO relies on two theorems to train the tree:

® Objective function separates over any subset of non-descendant
nodes.

® Optimizing over the parameters of a single node i simplifies to a
binary classification problem that decides if incoming instance
goes to left child or the right child.

Carreira-Perpinan and Tavallali 2018
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Tree mimick with a sparse oblique tree

® We train these trees using Tree alternating optimization (TAO)
algorithm.

e Deep net test error: 6.79% Tree test error: 7.9%
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Carreira-Perpinan and Tavallali 2018
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Masking of deep net features

xo [ F o || g 1oy

Zk+1

ZF—1
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Masking of deep net features

e Mask u is created using the tree mimic of g.

Z 2 Z

—— AN
[ 21 ] 17 [ 21
zZ2 1 22
z3 0 0

xo LF |sell=" [ 8 by

Zk+1 0 0
ZF—1 0 0
L 2F L1] ZF
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Masking of deep net features

e Objective is to control the behavior of network prediction by
manipulating deep net features (z = F(x) € RY), without
modifying the F and g.

e Original net: y = f(x) = g(F(x)).

e Original features: z = F(x).

e Masked net: y = F(x) = g(u(F(x)))

e Masked features: z = u(F(x)) = pu(z).

*zZ=p(z)=p Oz+pt.

* p={np"}
e where, u* € {0, 1}* is the multiplicative mask.
e ut > 0isthe additive mask.
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Types of masks

® ALL TO CLASS k.

® letk € {l1,...,K}. Classify all instances x as class k. Location of
1'sin ™ is the location of neurons associated with class k.

® ALL CLASS k1 TO CLASS ko
® letks # ko € {1,..., K}. For any instance originally classified as
k1, classify it as k2. For any other instance, do not alter its
classification.

® NONE TO CLASS k

® Letk € {1,...,K}. Forany instance originally classified as k,
classify it as any other class. For any other instance, do not alter
its classification
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ALL TO CLASS k£ mask

The main idea is to create mask by following the path from root
to the target leaf. If it works in the tree, it should work in the
same way in the network.

Consider a decision node 7 in T with decision rule:
o “if wI'z + b; > 0 then go to right child, else go to left child”

® w; € R¥ is the weight vector
® ), € Risthe bias.

e Writewas:w=(wow_w,)
® wo=0.
* w_ <0
® wy >0.

Call Sy, S_ and S, the corresponding sets of indices in w.
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ALL TO CLASS k mask
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ALL CLASS k; TO CLASS ks mask

number.
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NONE TO CLASS k£ mask

C ) Ev) () [F]
=) )=

o pX =iV ;.
e = e, where e is a small positive number.
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Experiments

) ; ---------------- petfied. _ 3 e We use VGG16 network,
5o 3 < eetwain trained over a subset of 16
e nataa A S classes from ImageNet.
T B e e ® Training error: 0.2%
so s ® Test error: 6.79%
& 2o g j ° 7 ¢ R8192
= 3 : e We use the tree with A = 1.
oLTdoPN ] M maa ® Training error: 0%
® Test error: 7.9%
g = g ® #nodes: 39
§§ é e features used: 1366 out of
s & 3 8192 (only 17%)
5 - N—
logio A
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Twith A =1
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Mask on a single image
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Mask on a single image
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Mask on a single image
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Mask on a single image
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Mask on a single image
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Mask results on the test set

e The masks created in the tree translate almost perfectly to the

deep net.
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Mask results on the test set
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Hierarchy of classes

e An intuitive hierarchy of classes that is primarily related to the
background or surroundings of the main object in the image.

e Training error: 1.79%

® Test error: 9.56%
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Interpreting image datasets
using sparse oblique decision trees



Interpreting image datasets

e Interpreting the image datasets is a difficult task, as each image
contains a lot of irrelevant data. This makes it hard to
understand what part of the image is important or what
common concept defines a particular category of the class.

e We do not know how the classes are distributed in the input
space; is one class closer to another class, or how two classes
or group of classes differentiate with each other; or if there is
any sub-groups exist in a given class, if yes what is the
difference them; or the selected features are optimal for a
class, or sub-group of a class, or even a single instance?

e We address these issues by using sparse oblique trees as a tool
to understand the given image dataset.
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Extracting features using weights of decision nodes

e Consider a decision node i in 7" with decision rule:
o “if wI'x + b; > 0then go to right child, else go to left child”
® w; € RP is the weight vector.
® b; € Ris the bias.
® x € R isthe input.
e Writewas:w = (wg w_ w,)
° Wo = 0.
® w_ <0.
® wy >0.

e Call Sy, S_ and S, the corresponding sets of indices
inw.
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Extracting features using weights of decision nodes

e Consider input x € R”:
* |f x goes right, we represent the feature selected as a binary
vector p; € {0,1}?, containing ones only at S
* |f x goes left, we represent the feature selected as a binary vector
p— € {0,1}%, containing ones only at S_.

e We call x™ and i~ the Node-Features, where location
of one represents features selected by w.
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Interpret dataset using Node-Features

e For each decision node Node-Features represents the features
related to left and right subtree. By using Node-Features, we
can understand what set of features separate a group of
classes.

e Features associated with a class k: for each node in the path
from the root to leaf for class k collect Node-Features, and at
the end take logical OR of all Node-Features. If there is more
than one leaf for class k, take the union of all the features
selected.

e For features specific to a given an input x, repeat the process as
above, but only for the leaf containing the input x. Next, keep
only those features that are active in the x.

Since the data is greyscaled images, we can plot these features to
visualize what concept is captured by these features.

Hada and Carreira-Perpinan, 2022
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Interpret dataset using Node-Features

e For each decision node Node-Features represents the features
related to left and right subtree. By using Node-Features, we
can understand what set of features separate a group of
classes.

e Features associated with a class k: for each node in the path
from the root to leaf for class k collect Node-Features, and at
the end take logical OR of all Node-Features. If there is more
than one leaf for class k, take the union of all the features
selected.

e For features specific to a given an input x, repeat the process as
above, but only for the leaf containing the input x. Next, keep
only those features that are active in the x.

Hada and Carreira-Perpinan, 2022
57/ 68



Fashion-MNIST dataset
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e Sub classes within the sneaker class in node # 20 and # 24.
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Difference between pair of classes

Decision dress class coat class
node # 8 leaf # 16 leaf # 17

Figure: Magenta color represents negative weights (left child) and green
color represents positive weights (right child).
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Difference among group of classes

left subtree right subtree
Decision sneaker class sandal class pullover trouser
node # 6 leaf # 24 leaf # 25 leaf # 26 leaf # 27
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Feature selection for a given instance
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Feature selection for a given instance

Decision node

weights along
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Feature selection for a given instance

Decision node weights along image part
weight path selected
node # 5, right child
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Conclusion



Conclusion

e Deep neural nets are accurate but black-box models. In this
talk we present two novel approaches to interpret deep nets.

e Sampling the “Inverse Set” of a Neuron
® By characterizing a neuron'’s preference by a diverse set of
examples, we can explain this preference in a more detailed
manner.

® Interpreting deep neural networks using sparse oblique
decision trees

® Sparse oblique decision trees can be used as a powerful
“microscope” to investigate the behavior of deep nets, by
learning interpretable yet accurate trees that mimic the classifier
part of a deep net.

® The tree mimick not only allows us to find a group of neurons
associated with a class but also provides an overview of how the
deep net differentiates between classes.

® Sparse oblique decision trees can also be used to interpret image
datasets.
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Future work

¢ Interpreting NLP datasets

® Convert raw text data into TF-IDF features.

® Train sparse oblique trees to find the interesting features similar
to image dataset case.

® Map selected features to corresponding words.

e Extracting class-specific concepts

® Find the class-specific neurons.

® Apply “inverse-set” approach to project the neurons into the
input space

® Fine-tune results by setting different activation ranges for
different neurons.

® Generate multiple inverse sets with varying activation ranges to

visualize what concepts in the input change the class probability.
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Thank you !!
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