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Abstract

We propose a new model for dimensionality reduction, the PCA tree, which works
like a regular autoencoder, having explicit projection and reconstruction mappings.
The projection is effected by a sparse oblique tree, having hard, hyperplane splits
using few features and linear leaves. The reconstruction mapping is a set of lo-
cal linear mappings. Thus, rather than producing a global map as in t-SNE and
other methods, which often leads to distortions, it produces a hierarchical set of
local PCAs. The use of a sparse oblique tree and of PCA in its leaves makes
the overall model interpretable and very fast to project or reconstruct new points.
Joint optimization of all the parameters in the tree is a nonconvex nondifferen-
tiable problem. We propose an algorithm that is guaranteed to decrease the error
monotonically and which scales to large datasets without any approximation. In
experiments, we show PCA trees are able to identify a wealth of low-dimensional
and cluster structure in image and document datasets.

1 Introduction

As a form of exploratory data analysis, dimensionality reduction (DR) for visualization seeks to pro-
vide a representation of a dataset in dimension at most 3 (we will focus on 2D) that, combined with
the human visual ability to pick patterns, is able to find structure of interest in a high-dimensional
dataset. Many DR methods have been proposed over the years. Currently, t-SNE [40] and PCA are
the most popular choices and have seen widespread application in many areas.

Here we advocate for a different approach, that of hierarchical local linear projections, which we
call the PCA tree. Hierarchical DR is not new, but what is new is our definition of the model as
a certain type of tree autoencoder and our algorithm to learn it by minimizing the reconstruction
error in a self-supervised way, which brings considerable advantages in interpretability and training
and inference time. From the outset, we acknowledge that DR is a hard, ill-defined problem that
no single technique can solve satisfactorily. In reducing a dataset to 2D we necessarily have to lose
information and produce artifacts. Indeed, the distortions of t-SNE and their impact on applications
have been well documented [6, 22]. However, the PCA tree provides significant, complementary
advantages over previous methods.

Firstly, PCA trees are practical and intuitive to use. They optimize the reconstruction error, which
has a clear meaning. They do not require a neighborhood graph (and perplexity parameter, etc.),
which is tricky to estimate so it captures manifold structure, and computationally very costly. The
model, a tree autoencoder (see later), directly defines nonlinear out-of-sample mappings (encoder
and decoder). Its hyperparameters are natural: the depth ∆ of the tree, which directly controls the
resolution (number of scatterplots and reconstruction error), and the sparsity λ, which helps to inter-
pret the tree decision nodes. Inference on a tree (encoding or decoding) is extremely fast. Training
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(to find a local optimum, a hard problem because the tree is nondifferentiable) is linear on the sample
size and parallelizable, hence scalable to large datasets without the need for approximations.

Second, PCA trees are highly interpretable and, as demonstrated in our experiments, they extract
a wealth of information from complex datasets. This comes from the fact that both trees and PCA
are techniques with well understood interpretability. Specifically: 1) the use of trees to construct
a nested hierarchy of maps where an input instance follows a single root-leaf path; 2) the use of
sparse oblique trees, with hyperplanes using few features at the decision nodes; 3) the use of linear
projections in the leaves, each a PCA scatterplot; and 4) the ability to see the data at multiple scales.

Third, a PCA tree uses multiple local latent projections (an “album”) hierarchically organized
rather than a single global one (“atlas”). The latter is more likely to introduce distortions in trying
to arrange many dimensions into a 2D map, and is hard to use with large datasets, requiring a lot of
pan and zoom. This is less of a problem if one focuses on a local part of the data, particularly if there
are clusters. Also, a linear projection is easy to understand and, while it does introduce distortions,
it is well understood how this happens: distances can only shrink. If a PCA map shows clusters,
these are real—in contrast with t-SNE’s tendency to create false clusters [6, 22], for example. Also,
PC directions often correspond to some real degree of freedom, and the mean is obviously a useful
summary of the data. Thus, while global PCA generally collapses different parts of a manifold, local
PCAs can succeed—if properly learned. Multiple local maps are like an album of a house, where
each picture shows a different room, but with an hierarchical structure.

A final advantage is that the loss function is really a self-supervised regression problem. This makes
it possible to use cross-validation to determine the hyperparameters (although, in an exploratory
data analysis, we probably want to explore such hyperparameters manually).

The PCA tree does have its limitations, as follows. It needs access to the explicit feature vectors,
unlike graph-based methods, which need instead pairwise affinities. The optimization converges to a
local optimum, which depends on the initialization. And, as with any DR method, PCA trees reveal
only some structure, so practitioners should try multiple, complementary methods.

2 Related work

The literature on DR is vast. We note connections to the most relevant methods.

Non-hierarchical DR Of the many existing DR methods, we mention two large groups that are
particularly important in this paper. One are autoencoders, which learn an encoder or projection
mapping and a decoder or reconstruction mapping so as to minimize the reconstruction error of each
training point. The classic examples are PCA and neural network autoencoders [34, 17], where the
encoder and decoder are linear and nonlinear, respectively. Our tree autoencoders are another ex-
ample. The other are nonlinear embedding methods, which learn the 2D projection of each training
point so that Euclidean distances in latent space best match distances or similarities in the high-di-
mensional space. These include multidimensional scaling [5], SNE [16], t-SNE [40], the elastic
embedding [6] and UMAP [28], among others. Although often proposed as matching distributions
of neighbors in the high- and low-dimensional spaces, these methods can be equivalently seen as
optimizing a tradeoff of attraction between true neighbors and repulsion between points [6, 41, 22].

Hierarchical DR A multiscale view of DR is an attractive idea that has been explored before,
often justified by the fact that a single 2D map may miss much of the structure in a complex dataset.
We consider two ways of defining the hierarchical structure: soft and hard. In soft hierarchies, one
defines a soft, probabilistic tree [20] so that an input instance traverses every tree path with a positive
probability. Thus, the model really is a probabilistic mixture of the leaves (“experts”) with mixing
proportions given by the tree structure. This has the advantage that the model is differentiable, so
optimization is straightforward with gradient- or EM-based approaches. Unfortunately, we lose the
interpretability and fast training and inference, since an instance reaches all nodes, and the leaves
may not localize in input space and overlap with each other. Examples of this are [4, 30, 38, 19]. A
more detailed comparison of soft and hard oblique decision trees appears in [12].

Making the tree decisions hard makes the hierarchy nested, but the optimization is much more dif-
ficult (indeed, this is an important contribution in our paper). One can construct a hard hierarchy
in a greedy sequential way by recursively partitioning the dataset, or by using some other tree con-
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struction (such as kd-trees [11] or cover trees [2]); and then applying some form of DR at each node.
However, this is suboptimal (since the node parameters are fixed as they are added, or independently
from the leaf parameters) and produces overly large trees. Conversely, one can grow the tree bottom-
up by a form of hierarchical clustering, but this is also suboptimal. These approaches include work
such as [1, 24, 26, 29] and others such as hierarchical self-organizing maps [32], sequential NMF
[9] and hierarchical SNE [31].

Flat, local DR This seeks to estimate a collection of local latent maps but without any hierarchy.
Again, this can be done in a soft way via probabilistic mixtures (of factor analyzers [13], PCAs [37],
etc.) or in a hard way as a form of k-PCAs [21]. A few works have also sought to align a collection
of local DR models into a single global map [33, 36, 44, 23].

Other related models Some works have tried to combine graph-based methods, such as t-SNE,
with hierarchical DR. For any DR method that does not define an out-of-sample mapping, such as t-
SNE and other nonlinear embedding methods, it is possible to learn a tree-based projection mapping
[45]. Also, some fast approximations for graph-based embedding methods are based on tree data
structures, such as Barnes-Hut trees [43, 39, 42, 35]. However, this is intended to accelerate the
N-body computations, not to define a hierarchical DR.

In view of this, the main novelty of our work is in defining an autoencoder consisting of a hard
tree encoder and a local linear decoder, and in giving an algorithm to learn it by optimizing the
reconstruction error. We believe this is the first algorithm to guarantee a monotonic decrease of the
error jointly over the tree parameters and local PCAs. We describe both the tree autoencoder model
and the optimization algorithm next.

3 Definition of the PCA tree as an autoencoder

Like any autoencoder, the PCA tree defines an encoder F and decoder f , but in a peculiar way,
as follows. Firstly, consider a fixed rooted directed tree structure with decision nodes and leaves
indexed by sets D and L, respectively, and N = D ∪ L. Both the encoder and autoencoder use
this tree structure. Each decision node i ∈ D has a decision function hi(x;wi, wi0): R

D → Ci,
where Ci = {lefti, righti} ⊂ N , sending instance x to the corresponding child of i. Rather than
axis-aligned trees, which are a poor model for high-dimensional data, we use oblique trees, having
hyperplane decision functions “go to right if wT

i x + wi0 ≥ 0”, with wi ∈ R
D and wi0 ∈ R. The

tree’s prediction for an instance x is obtained by routing x from the root to exactly one leaf and
applying this leaf’s predictor (defined below). We define the reduced set (RS) Ri ⊂ {1, . . . , N} of
a node i ∈ N as the training instances that reach i given the current tree parameters.

Encoder or projection mapping F This is given by a tree mapping Te(x;Θ): RD → L × R
L

where the predictor for leaf j has the form of a linear mapping Fj(x;Uj ,µj) = UT
j (x − µj),

where Uj ∈ R
D×L is an orthogonal matrix and µj ∈ R

D. The encoder parameters are Θ =
{wi, wi0}i∈D ∪ {Uj ,µj}j∈L. Thus, the encoder maps an input instance x ∈ R

D to a leaf index
j ∈ L and an L-dimensional real vector z = UT

j (x − µj), which at an optimum (see later) will be
the PCA projection in that leaf. This means that the PCA tree does not have a common latent space
of dimension L where all instances are projected. Instead, it has one separate L-dimensional PCA
space per leaf. Thus, the latent space L × R

L is mixed discrete-continuous1.

Decoder or reconstruction mapping f This maps a leaf index j and L-dimensional vector z (in
L × R

L) to a vector in R
D . It consists of a set of linear mappings of the form fj(z;Uj ,µj) =

Ujz+ µj for j ∈ L.

Tree autoencoder We can now define the autoencoder as the composition of the decoder and
encoder, T = f ◦ F. Conveniently, we can absorb the leaf index implicitly into each leaf. Thus,
T(x;Θ) is simply a regression tree identical to the tree encoder Te(x;Θ) but where the predictor

1We could define the autoencoder so it uses a single, global latent space. However, this complicates the
optimization (although it could be done with the method of auxiliary coordinates (MAC) of [8] by considering
the problem as a nested function). Also, the per-leaf space arises naturally from the fact that the encoder
partitions the space into leaf regions.
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Figure 1: Illustration of the tree autoencoder model with a data space R
3 for a tree of depth ∆ = 2

with leaves L = {1, 2, 3, 4}, defining a latent space (album) of four 2D spaces.

∆ = 0 (PCA), E = 1.10 ∆ = 1 tree ∆ = 1 initial, E = 0.84 ∆ = 1 final, E = 0.08

w1, w0

µ1,U1 µ2,U2

Figure 2: PCA tree on a 2D toy data set. Left plot: regular PCA (PCA tree with ∆ = 0). Rest of
plots: PCA tree with ∆ = 1. Mean µj : diamond; principal component direction Uj and variance:
dashed line and arrows; decision boundary w1, w10 at the root: solid line.

mapping of leaf j has the form gj(x;Uj ,µj) = UjU
T
j (x−µj)+µj . Note this is a linear mapping

of rank L < D, and it is the composition fj ◦ F of leaf j’s decoder with the encoder.

Fig. 1 illustrates the tree autoencoder idea. Fig. 2 shows a PCA tree on a 2D toy example using a
latent dimension L = 1.

4 Optimization algorithm

Our objective function is now the regular reconstruction error of an autoencoderT: RD → R
D with

an ℓ1 regularization term of hyperparameter λ ≥ 0 on a training set {xn}Nn=1 ⊂ R
D:

E(Θ) =

N
∑

n=1

‖xn −T(xn;Θ)‖2
2
+ λ

∑

i∈D

‖wi‖1 s.t. UT
j Uj = I, ∀j ∈ L. (1)

Thus, the PCA tree is trained like a regression tree which maps real vectors to real vectors. It consists
of a fixed tree structure (which we will take as complete of depth ∆); sparse oblique decision nodes,
consisting of a hyperplane split using few features (as encouraged by the ℓ1 sparsity penalty); and
linear low-rank leaves. The following theorem explains why we call it “PCA tree” (in fact, we
designed the form of the loss function and tree so that this would happen).

Theorem 4.1 (optimality condition over the leaves). The optimal {U∗
j ,µ

∗
j}i∈L given the remaining

parameters are fixed, i.e.:

min
{Uj ,µj}i∈L

E(Θ) s.t. UT
j Uj = I, ∀j ∈ L (2)

corresponds to setting each {U∗
j ,µ

∗
j} to the L principal components ofRj , the RS of leaf j.

Proof. Because of the separability condition (theorem 4.2) and the fact that {wi, wi0}i∈D are fixed,
problem (2) is equivalent to

min
{Uj ,µj}i∈L

∑

n∈Rj

∥

∥xn − gj(xn;Uj ,µj)
∥

∥

2

2
s.t. UT

j Uj = I, ∀j ∈ L (3)
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which (since the objective and constraints separate) is also equivalent to solving this for each leaf
j ∈ L separately:

min
Uj ,µj

∑

n∈Rj

∥

∥xn − (UjU
T
j (x− µj) + µj)

∥

∥

2

2
s.t. UT

j Uj = I. (4)

The solution of the latter problem is well known to be given by PCA, i.e., µ∗
j = 1

|Rj |

∑

n∈Rj
xn

is the mean of the training instances in Rj and U∗
j consists of the L eigenvectors of the covariance

matrix Σj =
1

|Rj |

∑

n∈Rj
(xn − µ∗

j )(xn − µ∗
j )

T associated with its largest L eigenvalues.

We borrow the idea of alternating optimization over the tree nodes from [7] (Tree Alternating Op-
timization (TAO)), which is fundamental to be able to update the parameters so as to reduce the
objective function. Firstly, at any decision tree making hard decisions, each input instance follows
exactly one root-leaf path. This results in the following separability condition.

Theorem 4.2 (Separability condition). Let T(x;Θ) be the autoencoder tree and S ⊂ N a nonempty
set of nodes that are not descendant from each other. Call θi the parameters in node i. Then, as a
function of the parameters {θi: i ∈ S} (i.e., fixing all other parameters Θrest = Θ \ {θi: i ∈ S}),
the function E(Θ) of eq. (1) can be equivalently written as

E(Θ) =
∑

i∈S

Ei(θi,Θrest) + Erest(Θrest) (5)

where {Ei: i ∈ S} and Erest are certain functions.

Proof. Analogous to that in [7]. It follows from the fact that the reduced sets of all nodes in S are
disjoint, because the tree makes hard decisions.

That is, optimizing over the parameters of any set of nodes which are not descendants of each other
separates: we can equivalently optimize each node on its own over its parameters and using only
its RS. This simplifies the problem considerably and introduces significant parallelism: for example,
all nodes at the same depth can be optimized in parallel. Indeed, our overall algorithm will process
nodes from the leaves towards the root, optimizing all nodes at the same depth at each step.

Second, we still have to solve the problem of optimizing (1) over the parameters of one given node.
This simplifies into a reduced problem (RP). If the node is a leaf j, theorem 4.1 gives us the answer:
we set the leaf’s Uj ,µj to the PCA on Rj . This is the exact solution to the optimization over the
leaves, so the overall objective function value will either decrease or stay constant. If the node is a
decision node i, optimizing (1) over wi, wi0 is equivalent to a RP as given by the following theorem.

Theorem 4.3 (Reduced problem over a decision node). Consider the objective function E(Θ) of
eq. (1) and a decision node i ∈ D. Assume the parameter values of all the nodes except i are fixed.
Then, the optimization problem minwi,wi0

E(Θ) is equivalent to the following problem:

min
wi,wi0

Ei(wi, wi0) =
∑

n∈Ri

Lin(yin, hi(xn;wi, wi0)) + λ‖wi‖1 (6)

where: Ri is the reduced set of node i; we define the weighted 0/1 loss Lin(yin, ·): Ci → R
+ ∪ {0}

for instance n ∈ Ri as Lin(yin, y) = lin(y) − lin(yin) ∀y ∈ Ci; we define the pseudolabel
yin = argminy∈Ci

lin(y) as the “best” child of i for n (or any yin ∈ argminy∈Ci
lin(y) in case

of ties); and we define the function lin: Ci → R as lin(z) = ‖xn −Tz(xn;Θz)‖
2
2 for any z ∈ Ci

(child of i), where Tz(·;Θz) is the predictive function for the subtree rooted at node z.

Proof. Analogous to that for the decision node RP in [7]. A difference is that there the tree was a
classification tree with the 0/1 loss, which resulted in an unweighted problem; while here we use the
reconstruction error, which results in a weighted problem in (6). This follows from the fact that all
a decision node can do with an instance is send it down its left or right child, and the ideal choice is
the one that results in the lowest reconstruction error downstream from that node.

The reduced problem of eq. (6) is an ℓ1-regularized weighted 0/1 loss binary classification problem
over a linear classifier hi with binary pseudolabels {yin}, defined as the child of i that gives the
best reconstruction for xn under the current tree. This problem is NP-hard, but we can typically
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get a good approximate solution by solving an ℓ1-regularized surrogate loss instead. We use the
logistic loss with instances weighted as in theorem 6. We can guarantee that the overall objective
function value decreases or stays constant by accepting the surrogate solution only if it improves
over the previous parameters2, which empirically is usually the case. This means each node update,
hence each overall iteration over all nodes, monotonically decreases (1). We stop when there is little
change in the parameters or objective, or when we reach a set number of iterations.

This concludes the algorithm, whose pseudocode is in fig. 6. Essentially, it repeatedly updates the
nodes in turn: at a leaf it solves a PCA, and at a decision node it solves an ℓ1-regularized, instance-
weighted logistic regression problem (we use LIBLINEAR [10]). The tree is initialized as a random
median tree, i.e., at the root we pick a random direction for the weight vector and a bias so that half
of the instances go to either child; and we repeat this recursively down the tree.

5 Computational complexity for training and inference

Throughout, assume a complete tree of depth ∆; sparse decision weight vectors having sD nonzero
values on average, with s ∈ [0, 1] (so s = 1 means dense vectors); and a latent dimension 1 ≤ L ≤
D at each leaf (L ≤ 3 for visualization). As cost we use the number of scalar multiplications.

5.1 Inference

By inference we mean the time to map an input instance x ∈ R
D to its leaf j ∈ L and latent

vector z ∈ R
L. This requires traversing a single root-leaf path of depth ∆, at a cost Θ(sD∆), and

computing the leaf PCA projection, at a cost Θ(LD), total Θ((L + s∆)D) (which, for ∆ = 0,
i.e., regular PCA, corresponds to Θ(LD)). This is very fast, since both L and ∆ are very small.
Reconstructing a latent vector z ∈ R

L at a leaf j ∈ L costs Θ(LD).

5.2 Training

The cost of one iteration, i.e., updating each node in the tree once, is as follows. For the decision
nodes, this equals to setting up the RP (i.e., computing the pseudolabel losses) and solving it with one
logistic regression in each node’s RS. To work this out we note that the RSs of all nodes at the same
depth total N instances, and we assume logistic regression to be linear in the dimensionality and
sample size. Then, the total cost of all decision nodes has two terms. The first is the pseudolabel cost
over all decision nodes, which is Θ(1

2
sND∆(∆− 1)). This is due to the fact that, at each decision

node, we have to send each training instance down the left and right children to compute their losses
(actually, we need only send it down one child if we precompute the losses), and the decision nodes
span depths from 0 to ∆ − 1. The second is the RP solution, whose cost is proportional to that
of running ∆ logistic regressions on the whole dataset (at depths 0, 1, . . . ,∆ − 1), or Θ(c1ND∆),
where c1 > 0 is a constant factor (which includes the average number of iterations of the logistic
regression solver). This cost is as in the sparse oblique classification trees of [7].

For the leaves, we have a peculiar situation. Say a leaf has a RS with M instances. The cost of
PCA3 on that RS is Θ(MD2 + c2D

3) if D ≤ M and Θ(DM2 + c2M
3) if D ≥ M , depending on

whether we compute the eigenvectors of the D×D covariance matrix or of the N×N Gram matrix,
respectively, where c2 > 0 is a constant factor. Assume for simplicity that each RS has M = N2−∆

instances (balanced partition) and define the critical depth ∆∗ = log2
(

N
D

)

. Then:

cost, all
leaves =

{

∆ ≤ ∆∗, shallow tree regime: Θ(ND2 + c2D
32∆)

∆ ≥ ∆∗, deep tree regime: Θ(N2D2−∆ + c2N
32−2∆)

≤ Θ((1 + c2)ND2).

For a given dataset of fixed N and D, the cost depends on the tree depth ∆ and has a turning point
when ∆ = ∆∗. For datasets having4 N < D, we are always in the deep regime, but if N > D then
we can be in the shallow or deep regime for small or large ∆, respectively. Interestingly, this leads

2In fact, in practice we find that always accepting the update (even if it increases the objective) works as
well and is simpler. This makes the iterates slightly noisy, but over iterations the objective decreases steadily.

3It is possible to accelerate this via approximate SVD algorithms or matrix sketches to compute just the top
eigenvectors, as well as using a good initialization, but here we consider the cost of a full eigendecomposition.

4If N < D we can always run PCA first and reduce the data to D < N without error.
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to a non-monotonic cost as a function of ∆, as shown in fig. 3, because the shallow regime cost
increases with ∆ but the deep regime one decreases with ∆. This is surprising because the deeper
the tree the more leaves it has, yet the faster they train. The reason is that the PCA cost is superlinear
on the sample size, but the sample size per leaf decreases proportionally to the number of leaves.

We emphasize that, as noted above, in both regimes the leaves’ cost is strictly upper bounded by
(1 + c2)ND2 (with equality if ∆ = ∆∗), hence this cost is at most linear in N and quadratic in D,
just like in regular PCA. For fixed N and D, the leaves cost first dominates the decision nodes cost
(shallow tree regime) because the former includes a term ND2 that dominates the decision nodes’
term c1ND∆, since c1∆ < D in practical cases. But as ∆ grows (deep tree regime) the leaves cost
decreases and reachesN(D+c2) for∆ = log2 N (when each leaf constains a single instance), so the
overall cost is eventually dominated by the decision nodes, Θ(c1ND∆). As a useful summary, the
rough cost is Θ(ND2) for shallow trees andO(ND) for deep trees—which is asymptotically faster
than PCA! (although very deep trees having few instances per leaf are likely not practical). This
makes the algorithm highly scalable to large sample sizes without the need for any approximation.
This is a significant advantage over neighbor embedding algorithms such as t-SNE, which have a
quadratic cost on N and require some approximation to reduce this [39, 42, 43].

Parallel training From the separability condition, all nodes at the same depth can be updated in
parallel, which accelerates the training considerably. Assume for simplicity we have 2∆ processors
(which is perfectly feasible for trees having depth 4, as in our experiments). Then the costs are as
follows. For decision nodes, we have the cost of running a logistic regression on ∆ datasets of sizes
N, N

2
, . . . , N2−∆ (from the root to the leaf parents), a geometric series which is upper bounded by

2N , hence a total cost of Θ(2c1ND), i.e., ∆

2
times faster than the sequential computation. For the

leaves, we have the cost of running PCA in a single leaf, i.e., 2∆ times faster than the sequential
computation. Again, this is a significant advantage over t-SNE, which cannot be easily parallelized.

6 Experiments

In summary, we show the following: we confirm our theoretical predictions about monotonic de-
crease of the objective function and training time; compare the reconstruction error with PCA; and
demonstrate how PCA trees are highly interpretable and extract significant structure from complex
datasets. We use several datasets of different types (images, documents), some of which appear in
the appendix.

6.1 Training time and scalability to large datasets

Fig. 3 (right 2 plots) shows learning curves for different datasets and tree depths. As can be seen, the
objective function decreases monotonically over iterations, and converges to a near-optimal solution
in usually less than 10 iterations.

Fig. 3 (left 2 plots) shows the training time per iteration in seconds (theoretical and actually mea-
sured for the MNIST dataset), as a function of the tree depth ∆ in one processor (sequential
computation, without parallelism). For the theoretical estimate we used constant factors c1 = 1,
c2 = 4 (see section 5) and s = 1 (dense decision node weight vectors). To vary the dimensionality
D ∈ {64, 784, 1600, 2500}, we subsampled or oversampled the MNIST images to 8 × 8, 28 × 28
(original size), 40 × 40 and 50 × 50 pixels, respectively. The plots confirm what we described in
our complexity analysis: the computation at the leaves first increases until ∆ = ∆∗ = log2

(

N
D

)

,
then decreases, resulting in a non-monotonic total training time. The critical depth ∆∗ at which the
change happens decreases with D, from around 10 to 5; note the actual depth at which the total time
peaks is different, because the latter also considers the decision nodes’ cost, which is linear on ∆.

Fig. 3 (plot 3) shows scalability to larger sample sizes using the Infinite MNIST dataset [27] (images
of 28 × 28, so D = 784). We ran the PCA tree for 10 iterations, when it approximately converged.
The linear cost of the PCA tree is clear as a slope 1 in the log-log plot. Training on 1M samples
with depth 4 takes less than an hour. In contrast, t-SNE [39] and UMAP [28] are slower and have a
superlinear cost, even though the implementations we used are not exact (they use approximations,
such as Barnes-Hut trees or neighbor subsampling, to accelerate the computations, besides finding
approximate rather than nearest neighbors).
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parameters). Plots 4, 5: learning curves for PCA trees of different depths on several datasets.
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6.2 Reconstruction error

Fig. 4 shows the reconstruction error for PCA and PCA tree. Although the PCA tree uses L = 2
in each leaf, it is able to achieve a much lower error than PCA, which would need a much larger
number of components to match it. This is the result of the PCA tree ability to learn a partition of
the data and local PCAs that are jointly optimal.

6.3 Interpreting and exploring PCA tree visualizations

Fig. 5 (see also figs. 8–10 in the appendix) shows results for the Fashion MNIST dataset5. This
consists of N = 60 000 grayscale images of 28× 28 pixels (so D = 784), each showing a clothing
or shoe item, labeled into 10 balanced classes. The features are the pixel intensities in [0,1]. The
class labels were not used during training, they were only used for visualization purposes. We show
a PCA tree of depth 4 (using λ = 100), thus having 15 decision nodes (with weight vectors shown
as 28× 28 images) and 16 leaves (showing a 2D PCA scatterplot and the mean and PCs as images).
The appendix contains results for other datasets (images: MNIST, documents: Amazon Reviews).
Even at a glance we can see lots of structure in the tree: many classes organize hierarchically in a
meaningful way; decision weight vectors are sparse and highly meaningful, often separating groups
of classes by focusing on the discriminant regions of the image; the PCs in the leaves usually are
highly meaningful, indicating the change of some relevant degree of freedom; and the leaf scatter-
plots show clusters or class structure; among other things. We comment on some of these in detail.
For reference, fig. 9 (appendix) shows the 2D global plot by PCA, t-SNE and other algorithms.

Global tree structure Although our algorithm is unsupervised, it has the ability to separate differ-
ent types of classes. For example, leaves L1 and L2 contain different types of shoes, while leaf L14
contains only bags. Some classes (e.g. Pullover and Shirt in L8) differ in tiny details and can only
be separated if using the labels (remember that minimizing the reconstruction error seeks maximum-
variance directions, which are not necessarily aligned with class variation). The coordinate axes in
the leaves show the most variance in the data within the leaf’s region. Since the RSs are nested
along the tree hierarchy, we can also show a scatterplot at each decision node (appendix fig. 9),
which shows how classes and other patterns are progressively separated as one descends deeper into
the tree. However, note the optimal parameters if the tree was shallower would differ from those.

Local tree structure The decision nodes’ weight vectors select features sparsely, often focusing
on parts of the image that can differentiate groups of images and send them selectively to the left or

5It is instructive to compare these results with those of training a sparse oblique classification tree on the
Fashion MNIST dataset [14], as there are interesting similarities and differences.
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right subtree. The figure is annotated in some places to make this clear. For example, decision node
D2 separates clothes “with” and “without” sleeves. In some cases, this results in the tree separating
actual classes. For instance, node D14 separates “outerwear” type of clothes from “bags”, which
is explainable by simply looking at the decision node weights and the part of the image where they
focus: blue values indicate “if the image has a neckline and shoulders” (like outwear clothes) and
red values indicate “if it has wide frames” (like bags).

PCA at the leaves Since each leaf applies 2D PCA on its corresponding reduced set, its linear
projection scatterplot shows the most variance directions in the leaf region. As expected with PCA,
amplified by the fact that it focuses on a region of the whole data, this often shows insights about
the intrinsic local structure of the data. In particular, we can usually identify the coordinate axes
(PCs) with meaningful quantities or degrees of freedom (labeled in the scatterplot below each leaf
in fig. 5). For example, leaves L1, L2, L4, L7, L14, L15 and L16 contain objects of a specific type,
such as L1 containing high-heel and high-ankle boots and sandals, or even isolating a class, such as
L14 isolating bags. Interestingly, we find all these leaves often detect similar degrees of freedom:
usually, PC1 is (overall) pixel intensity in the image and PC2 is object size (either height or width).
Again, this is the result of minimizing reconstruction error, which projects along maximum-variance
directions. Also, since overall intensity and object size are correlated, this is seen in the PCA plots
as triangular shapes whose vertex corresponds to low-intensity images (caused by either overall low
intensity or by a very small object). This can be clearly seen in leaf L4 (consisting of T-shirts and
tops), as well as in other leaves: L7/L15 intensity-width; L1/L2/L16 intensity-height; L14 intensity-
size of bags. The density of the projections in the 2D embedding is also informative. For example,
in leaf L4, narrow tops are much more frequent than thin tops.

Some leaves find degrees of freedom not aligned with a PC direction, but visible in the scatter-
plot, such as elongated clusters. These often correspond to different classes, where the direction
of elongation is some meaningful degree of freedom within the cluster. For example, as shown in
the bottom of fig. 5, leaf L3 contains two types of clothes: “shirts” and “shoes”. PC1 represents
the class discrimination direction, while PC2 represents intensity. Local inspection of each cluster
separately demonstrates that both clusters have maximum variation indicating pixel intensity. The
shoe cluster also has variations in “weight” (lightweight shoes below and chunky shoes above). The
“shirts” cluster has variation in T-shirt width. Leaves L4, L15, and L16 have almost a single class:
shirts, dresses, and slim sneakers, respectively, and all of them have similar variations, i.e., intensity
as PC1 and width or thickness as PC2. Finally, note that the appearance of clusters or complex
structure within a leaf scatterplot suggests it would be worth either further expanding that leaf or
using a deeper tree, which could be done in an interactive way.

This dataset provides evidence of what patterns are real and whether they are detected by a given
DR method. If clusters appear in a PCA plot, they are real (unlike in a t-SNE or UMAP embedding).
This is because, in an orthogonal linear projection, distances either decrease or do not change, but
cannot increase. Another example is the fact that the image overall intensity arises throughout the
PCA tree leaves as a principal component. This is not surprising: intensity changes in this dataset
are large, and thus carry considerable variance, which the local PCAs pick. Even the global PCA
is able to pick that too and locate low-intensity images in the lower-left area of the 2D embedding
(see appendix fig. 10). However, both t-SNE and UMAP do not; we have verified that low-intensity
images are mapped all over the embedding in a haphazard way. A similar effect happens with the
Amazon reviews document dataset (appendix section E): individual document classes appear in PCA
plots as “streaks”, caused by the document length (which changes the norm of the TF-IDF feature
vector), and converging on the area occupied by short documents. Again, such an important pattern
is lost in the t-SNE and UMAP embeddings.

7 Conclusion

We have defined a new model for data visualization, the PCA tree, as a tree autoencoder that pro-
duces a set of hierarchical low-dimensional maps, and have given an algorithm to learn it by mini-
mizing the reconstruction error, based on Tree Alternating Optimization (TAO). PCA trees are fast
for training and out-of-sample inference, and highly interpretable. We hope they will provide a use-
ful tool for data visualization. Beyond this, tree autoencoders have application in dimensionality
reduction in general, as well as in clustering, subspace clustering, data compression, fast search and
other problems that we are exploring.
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Figure 5: PCA tree trained on the Fashion MNIST dataset (∆ = 4, λ = 100, RMSE per pixel
and image of 0.158). The decision nodes’ weight vectors (and the leaves’ PCs Uj ) are shown as
28 × 28 images, with negative/zero/positive values colored blue/white/red, respectively. Each leaf
shows a 2D PCA scatterplot of its RS (instances reaching it), and below it the mean µj as a grayscale
image and the 2 PCs Uj as color images. To the right of the scatterplot, a bar chart displays class
proportions and class means. The legend (top left) shows, for each class, its mean (grayscale image),
color (for the scatterplots) and description. For visualization purposes, the tree is split into its left
and right root subtrees (fig. 8 shows the whole tree). The bottom panel zooms into two regions of
the tree, for decision nodes 8 and 14. You may want to zoom into the figure to see more details.
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A Appendix / supplemental material

A.1 Algorithm pseudocode

input training set {xn}
N
n=1;

sparsity hyperparameter λ ≥ 0;
initial tree T(·;Θ) of depth ∆ with parameters Θ = {wi, wi0}i∈D ∪ {Uj ,µj}j∈L

N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively
for each i ∈ N : generateRi (instances that reach node i) on tree T
repeat

for d = ∆ down to 0
parfor i ∈ Nd

if i ∈ L then
{Ui,µi} ← PCA with L components onRi

else
generate pseudolabels yn and weights wn for each instance xn ∈ Ri

{wi, wi0} ← fit ℓ1-regularized weighted binary classifier on {(xn, wn, yn)}n∈Ri

with penalty λ
end if

end for
end for
for each i ∈ N : updateRi on tree T

until stop
return T

Figure 6: Pseudocode for the PCA tree optimization algorithm.
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B Experimental Details on Datasets and Algorithms

MNIST and Fashion MNIST We use only the training set of size (N = 60000) and scale pixel
values to [0, 1] by dividing by 255.

20newsgroups We use only the training set (N = 11314) without headers, footers, and quotes.
The text is converted to lowercase, and all URLs, email addresses, punctuation, and numbers are
removed. Stopwords are removed using NLTK [3], and the dataset is lemmatized using SpaCy [18].
We then apply scikit-learn’s TfIdfVectorizer with default parameters, resulting in a dimension
of D = 72764.

Letter Recognition task for classifying 26 capital letters in the English alphabet [25]. We use only
the training set (N = 16000). Standardization is applied to all features.

Amazon Reviews We subsample text reviews from the large collection in [15] (version from 2014).
Reviews are selected from the following categories:

• Toys and Games: [Learning & Education: (Mathematics & Counting, Reading & Writing),
Games: (Board Games, Card Games)]

• Beauty: [Skin Care: (Hands & Nails, Face), Hair Care: (Hair Color, Shampoo)]

We use scikit-learn’s CountVectorizer to extract unigrams from the raw texts. We
set stop_words=’english’, min_df=0.0002 and max_df=0.2. Then, we apply the
TfidfTransformer. The resulting dataset size is N = 20000 and D = 9430.

The summary of the datasets is the following:

MNIST FMNIST Letter 20newsgroups Amazon reviews

N 60000 60000 16000 11314 20000
D 784 784 16 72764 9430
K 10 10 26 20 8

Implementation We implement PCA tree using a combination of C++ and Python. Decision node
optimization is implemented in C++ using LIBLINEAR [10], and leaf optimization is implemented
in Python using PCA from the scikit-learn library with svd_solver=arpackand n_components=2.
We use the following hyperparameters: λ = 10 for MNIST and Fashion MNIST, λ = 1 for Letter,
and λ = 0.01 for 20newsgroups and Amazon Reviews. The algorithm includes an early stopping
criterion that terminates training if there is no decrease in the training error for 3 iterations with a
change of less than 10−3.

For t-SNE, we use the scikit-learn implementation (the default number of iterations is 1 000). For
UMAP, we use the implementation from https://umap-learn.readthedocs.io/en/latest/
(the default number of iterations is 500 if the dataset size has fewer than 10 000 points and 200
otherwise).

Hardware All experiments are conudcted on a Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz,
256GB RAM.
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C Additional experimental results

MNIST FMNIST Letter 20newsgroups Amazon reviews
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Figure 7: Objective function across training iterations for different datasets.
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D Interpretation and comparison of PCA tree visualizations

D.1 Fashion MNIST
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Figure 8: The same tree as in Figure 5 in unsplitted view.

The tree structure allows visualization of PCA scatterplots not only for the leaves but also for the
decision nodes, as shown in Fig. 9. Note how PCA projections of each class or group of classes
separate distinctly from each other.
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Figure 9: The same tree as in fig. 5, but with decision nodes representing PCA projections on their
respective reduced sets.

PCA t-SNE UMAP

Figure 10: Scatterplots of different dimensionality reduction methods for the same dataset as in fig. 5
(Fashion MNIST) (N = 60000, D = 784). Class colors match the labels from fig. 5

17



D.2 MNIST dataset

We evaluate our algorithm on the MNIST dataset. It is noticeable that almost half of the PCA tree
leaves are nearly pure, containing mostly samples from a single class, while the other half contain
classes that can be linearly transformed into each other. For example, leaf L16 contains three classes:
4, 9, and 7. By adding the top bar and removing the middle bar, we can achieve the following linear
transformation: 4 → 9 → 7, as shown by the first principal component. The second component
represents pixel intensity, so digits go from thin to thick from bottom to top. Now, consider the pure
leaf L12. The digit 1 changes its inclination from “to the right” to “to the left” on the x-axis and its
intensity from bottom to top.

PCA overlaps nearly all data points except for those representing the digit “1”.

t-SNE distorts the global structure of the data. It forms clusters such that each cluster represents
a separate class, which can be misleading in terms of distances. For example, the cluster for the
digit “2” appears close to the cluster for “1” and far from “3”, but in the high-dimensional space, the
relationship is the opposite. A similar issue occurs with the digits “0” and “5”.

UMAP also distorts the positions of data points. It may show that the digit “3” is closer to “6” than
to “4”, while in the original high-dimensional space, the relationship is the opposite.

Such distortions can result in wrong interpretations of the data’s structure and cluster relationships.
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Figure 11: Trained PCA tree structure on the MNIST dataset with a reconstruction loss of 0.29

PCA t-SNE UMAP

Figure 12: Scatterplots of different dimensionality reduction methods for the same dataset as in fig
11 (N = 60000, D = 784). The class colors correspond to the labels in fig. 11
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E Amazon Reviews Dataset

Consider now the dataset from a different domain, specifically text data. We use the Amazon Re-
views dataset, represented as TF-IDF features, containing 20,000 samples and 9,430 features. The
decision tree structure, illustrated in fig. 13) allows us to visualize the top words corresponding to the
highest and lowest weight values, indicating important words at each decision node. Furthermore,
using highest and lowest entries for both principal components, can be demonstrated variation across
reviews, see table 1

By visually inspecting the leaves, we can identify similar reviews from different classes. For exam-
ple, the first leaf contains many samples from different classes, but most of these samples are short
reviews about “returns” and “refunds”. Elongated clusters within the leaf reveal reviews about dif-
ferent topics, such as games (left cluster) and cosmetics (right cluster). Additionally, reviews from
different classes may pertain to items with similar purposes. In leaf L3, there are four classes, but
all are related to games: the top cluster is about “funny learning”, the left cluster is about “teaching
children to count using cards”, and the right cluster is about “card games”.

Similar to previous examples, this tree has principal components that represent semantic or class
separation. For instance, in leaf L5, the first principal component separates children’s games from
adult games, while in leaf L11, the first principal component distinguishes one class from the rest.
Note that some leaves are pure, such as leaf L7 or L10, and within these leaves, clusters correspond
to topics. Leaf L7, for example, is split into three topics: “cuticles” (left), “polishing” (top), and
“nail growing” (right), although all samples are from the same class.

t-SNE and UMAP significantly overlap most of the classes. While PCA projections present some
cluster elongations, they also show overlapping classes and do not reveal the inner local structure.
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Figure 13: Trained PCA tree structure on the Amazon reviews dataset with a reconstruction loss of
0.9004

PCA t-SNE UMAP

Figure 14: Scatterplots of different dimensionality reduction methods for the same dataset as in
fig. 13 (N = 20000, D = 9430). The class colors correspond to the labels in fig. 13.
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Leaf 1st principal component 2nd principal component

L1 cream, hand, skin,
hands, bb

cards, deck, card,
playing, box

cards, cream, hand,
skin, hands

item, expected,
book, dies, mag-
netic

L2 hands, hand, dry, lo-
tion, greasy

color, blonde,
brown, natural,
coloring

blonde, light, ash,
highlights, toner

color, hands, lasts,
lotion, hand

L3 conditioner, sham-
poo, using, clean,
soft

gray, scent, color,
cover, coverage

gray, conditioner,
color, cover, cover-
age

scent, clean, strong,
suave, nice

L4 cards, game, card,
play, players

numbers, letters,
learn, learning,
loves

learn, easy, fun,
children, help

numbers, cards,
card, number,
letters

L5 apples, game,
friends, adult,
version

year, old, toy, loves,
bought

toy, learning, child,
toys, educational

year, old, game, ap-
ples, play

L6 diary, lock, key,
journal, daughter

fun, game, family,
playing, play

set, chess, pieces,
board, nice

fun, diary, lock,
game, key

L7 nails, grow,
stronger, coat,
weak

cuticles, cuticle, oil,
nail, dry

nail, polish, coat,
base, art

cuticles, nails, cuti-
cle, oil, dry

L8 blocks, nice, qual-
ity, wood, usa

brown, color, dark,
medium, black

nice, board, pieces,
price, smells

blocks, brown,
color, dark,
medium

L9 soap, hand, hands,
soaps, scent

loves, son, played,
game, daughter

loves, soap, son,
daughter, abso-
lutely

played, game, fun,
family, blast

L10 skin, face, sensitive,
dry, acne

price, buy, bought,
good, amazon

face, wash, clean,
cleanser, acne

skin, price, work,
sensitive, dry

L11 kids, game, love,
playing, fun

shampoo, dandruff,
scalp, shampoos,
clean

dandruff, scalp,
clear, anti, shoul-
ders

shampoo, kids,
love, suave, volume

L12 good, smell, smells,
works, really

red, color, dye,
brown, dark

dye, purple, bleach,
black, did

red, good, smell,
smells, brown

L13 game, play, family,
fun, playing

math, love, stu-
dents, facts, learn-
ing

love, students, per-
fect, price, abso-
lutely

math, game, fun,
skills, kids

L14 serum, skin,
vitamin, acid,
hyaluronic

game, play, friends,
fun, family

friends, played,
playing, family,
game

play, kids, easy, old,
time

L15 expansion, game,
packs, cards, pack

letters, magnets,
fridge, magnet,
magnetic

magnets, fridge,
hold, strong, fall

letters, expansion,
game, case, lower

L16 34, shampoo, color,
does, doesn

loved, games, game,
family, board

loved, gift, birthday,
niece, journal

games, game,
board, fun, family

Table 1: Two principal components of each leaf in PCA tree 13, showing the words corresponding
to the top 5 positive and negative entries of the Uj columns (principal components’ coefficients).
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: End of introduction and throughout paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Algorithm section.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Main paper and supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We plan to make available code in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment section and supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: Too much computation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiment section and supplementary material

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Generic algorithm for dimensionality reduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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