
Supplementary materials for:
Semi-Supervised Learning with Decision Trees:

Graph Laplacian Tree Alternating Optimization

Arman Zharmagambetov
Dept. of Computer Science and Engineering

University of California, Merced
azharmagambetov�umered.edu

Miguel Á. Carreira-Perpiñán
Dept. of Computer Science and Engineering

University of California, Merced
marreira-perpinan�umered.edu

Abstract

In this supplementary material, we provide the following: 1) Pseudocodes for
LapTAO and TAO (section 1); 2) Derivation of the solution for the label-step (sec-
tion 2); 3) How to accelerate the “label–step” in LapTAO (section 3); 4) Descrip-
tion of the experimental setup: datasets, comparison methods, hyperparameters,
etc. (section 4); 5) Additional experimental results (section 5): comparison with
SSCT [6] and EBBS, decision tree visualizations, etc.

1 Pseudocodes

input labeled set Dl = {xn, yn}ln=1 and unlabeled set Du = {xn}Nn=l+1;
penalty parameters: α, γ; µ schedule: µ0, . . . , µmax;
graph Laplacian L = D−W;

λ← 0 (initialize Lagrange multipliers);
z0 ← solve the linear system with µ = 0;

t(·;Θ)← fit a tree to ({xn}
N
n=1, z0) (algorithm 2);

for µ = µ0 < µ1 < µ2 < · · · < µmax;
repeat

label-step: z← solve the linear system given fixed t(·;Θ);
tree-step: t(·;Θ)← fit a tree to ({xn}Nn=1, z−

1

2µ
λ) given fixed z

using algorithm 2;
Lagrange multipliers step: λ← λ− µ(z− t(·;Θ));

until stop
end for
Post-processing (see section 3.3 in the main paper)
return t(·;Θ)

Figure 1: Pseudocode for LapTAO. “Stop” for inner loop occurs when (z,t(·;Θ)) converge (ideally).
However, in practice, we use a fixed number of iterations (e.g. 1 in most experiments).

2 Derivation of the solution for the label-step

Recall that the augmented Lagrangian [8] formulation in eq. (5) in the main paper defines a new,
unconstrained optimization problem:

min
z

L(z) = (z− y)T J(z− y) + γ zTLz− λ
T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖2. (1)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

input training set {(xn,yn)}
N
n=1; penalty α;

initial tree t(·;Θ) of depth ∆ with parameters Θ = {θi}nodes;
N0, . . . ,N∆ ← nodes of a tree t(·;Θ) at depth 0, . . . ,∆, respectively;

generate a reduced set for each node i: Ri (points that reach node i);
repeat

for d = ∆ down to 0
for i ∈ Nd (parallelize, optionally)

if i is a leaf then
θi ← take the mean of {yn}n∈Ri

else
generate a pseudolabel yn and weight wn = |eleft

n − e
right
n | for each instance xn ∈ Ri

θi ← fit ℓ1 regularized weighted binary classifier on {(xn, yn)} ∈ Ri with penalty α
end for

end for
updateRi for each node

until max number of iterations
return t(·;Θ)

Figure 2: Tree Alternating Optimization (TAO) algorithm. Here, we limit this pseudocode for deci-
sion trees with constant leaves, but it can be trivially extended to any other type. Note: Algorithm 1
for LapTAO uses z as a ground truth vector (instead of y).

Here, we optimize the problem over z only and omit the term involving α since we fix the tree
t(X;Θ) during the label-step. One can see that this is a quadratic function. Next, taking the first
and second order derivative w.r.t. z and multiplying all terms by 0.5 yields:

∂L

∂z
= J(z− y) + γLz−

1

2
λ+ µ(z− t(X;Θ)) and

∂2L

∂z∂zT
= A = J+ µI+ γL. (2)

It is easy to see that the matrix A (Hessian) is positive definite, because: µ, γ > 0, L is positive
semidefinite [2], I is identity and J is the diagonal matrix with first l entries equal 1 and the rest
are 0. Therefore, xTAx = xTJx + µxT I x + γxTLx > 0 for all x ∈ R

N . This means that our
problem is strictly convex with a unique solution given by the linear system below:

Az = Jy + µt(X;Θ) +
1

2
λ. (3)

Moreover, it is easy to see that A will be a sparse matrix if graph Laplacian L is sparse. And this is
the case since in practice we construct W by using the nearest neighbors graph. This allows us to
solve the large scale linear system in an efficient way (e.g. via Conjugate Gradient method).

3 Accelerating the label-step in LapTAO

Although Conjugate Gradients (CG) method is a reasonable choice to solve the linear system for
large scale problems, there is a way to accelerate the label-step for small-medium sized problems.
The crucial observation is that the coefficient matrix A ∈ R

N×N is changed by adding µI at each
iteration of the Algorithm 1 and the remaining part is static (J + γL). This naturally leads to
the question: can we improve the computation of A−1 from O(N3) to O(N2) to solve the linear
system (3)? Denote the static part of the matrix as B = J + γL. Moreover, B is a symmetric
matrix since L is symmetric and J is diagonal. Therefore, we can calculate its eigendecomposition
B = QΛQT , where Q is an orthogonal matrix. One can derive the inverse via Sherman-Morrison-
Woodbury formula. However, a more direct and easier derivation is:

A−1 = (µI+B)−1 = (µI+QΛQT)−1 = (Q(µI+Λ)QT)−1 = Q(µI+Λ)−1QT (4)

where µI+QΛQT = Q(µI+Λ)QT comes from the orthogonality of Q: QQT = I. Notice that
µI + Λ is a diagonal matrix and computing its inverse takes O(N). Therefore, calculating eq. (4)
costs O(N2). The only costly part is computing the eigendecomposition (for B) which still requires
O(N3) time (and destroys the sparsity) but we do it only once before starting our algorithm. In
practice, we found this method to be useful only when N is a few thousands at most.

2

4 Experimental setup

4.1 Datasets

For all datasets described below, we scale features to have values between 0 and 1, and shift them
to be centered around 0. Moreover, we select 1% of training data as cross validation to set the
hyperparameters for each method: a tree depth (∆), confidence threshold for self-training, σ and C
values for LapSVM, etc. All reported errors are in test sets.

• mnist Handwritten digits recognition task [5]. The features are pixel grayscale values in
[0,1] of each 28 × 28 digit image which belong to one of ten classes. We use the same
training/test partition as in [5].

• susy Detection of particle collision events (binary classification), available in the UCI Ma-
chine Learning Repository [7]. The dataset contains 4.5M points with 18 attributes. We
use the first 1M instances and randomly select 90% out of it for training and the rest for
test.

• cpuact Predict the portion of time that CPUs run in user mode given different system
measures. We obtained it from the DELVE data collection1. It contains 8192 instances
with 21 features. We select 60% of data as training. Since this is a regression task, we
provide the output range: [−0.5, 99.47].

• year_pred A subset of the Million Song Dataset [3]. The task is to predict the age of
a song from several song statistics given as metadata (timbre average, timbre covariance,
etc.). The dataset is obtained from the UCI Machine Learning Repository [7]. It has 464k
training and 52k test points. The total number of features are 90. Since this is a regression
task, we provide the output range: [1922, 2011].

• fashion_mnist [9] is another benchmark dataset used for object recognition. It has similar
characteristics as mnist (70k grayscale images of 28 × 28, 10 classes of different clothing
items). We use this dataset primarily to compare LapTAO with LapSVM and to visualize
the trained trees. Since the LapSVM has scalability issues for large number of points, we
pick the subset of fashion_mnist (3 classes: “shirt”, “bag” and “ankle boot”) resulting in
18k training points.

4.2 Methods

We use TAO to train oblique trees and CART [4] (scikit-learn implementation) to train axis-aligned
trees. For all methods that use TAO, we set the total number of TAO iterations to 15. For oblique
trees, we tune the following hyperparameters: penalty α and a tree depth ∆. All oblique trees are
initialized from a complete tree of depth ∆ with random parameters at each node. As for the axis-
aligned trees, these are the hyperparameters to tune: max_depth, min samples at each leaf and min
samples to split.

• LapTAO we implement our algorithm in Python 3.7.6 and do not use any parallel process-
ing. We tune the following hyperparameters: penalty α, tree depth ∆, k-nearest neighbors
and perplexity parameterK for the Gaussian affinities. We set the γ = 0.1 and fix the num-
ber of iterations (in Algorithm 1) to 20 starting from small value for µ0 = 0.001 multiplied
by 1.5 after each iteration. The linear system in the label-step is solved either using direct
methods (less than 20k dimensions) or Conjugate Gradient method for large scale problems.
All trees are initialized from a complete tree of depth ∆ with random parameters at each
node.

• Oblique–all fits an oblique tree with full supervision (i.e., using all available labeled data),
this shows the theoretical maximum performance we can achieve.

• Oblique–lbl is the oblique trees trained on labeled portion of data Dl (this completely
discards large portion of unlabeled data).

• Self-training (axis–self, oblique–self) is an iterative procedure that uses the model pre-
dictions to enlarge the portion of labeled data. We closely follow the implementation by

1
http://www.s.toronto.edu/~delve/data/omp-ativ/des.html

3

http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html

Yarowsky [10]. Here, “axis” means traditional axis-aligned trees (trained by CART [4]).
We tune the confidence score for classification problems and use all predicted points for
regression problems. We set the maximum number of self-training iterations to 10.

• LapSVM (Laplacian SVM) is a seminal work by Belkin et al. [2] which has similar prob-
lem formulation as LapTAO but for SVM. We tune σ and SVM parameter C. We use their
MATLAB implementation.

• SSCT semi-supervised classification trees by Levatić et al. [6]. This method incorporates
unlabeled data into greedy tree growing procedure by modifying a splitting criterion to
take into account unlabeled data. That is, a splitting score for each [feature, threshold] pair
consists of two parts: traditional impurity score (e.g. gini index) for labeled data and a
“clustering” score for all available data which pushes each child to have instances of the
same cluster. For this method, apart from CART related settings (e.g. max_depth), we tune
the weight parameter w. We use the R implementation provided in Alabarce et al. [1].

5 Additional experimental results

5.1 Comparison with SSCT

cpu_act (8k,21,1) mnist(70k,784,10)

1 3 5 8 10 20

10
1

10
2

% of labeled data

LapTAO(ours)

oblique–all

oblique–lbl

KNN–lbl

axis–self

oblique–self

SSCT

E
te

st
(M

S
E

)

1 3 5 8 10 20

5

10

15

20

25

30

35

% of labeled data

E
te

st
(%

)

Figure 3: Similar to fig. 2 in the main paper but with SSCT [6] results added (cyan lines). Numbers
in brackets report the training size, number of features and output dimension (or number of classes).
x–axis shows the percentage of labeled data provided to the algorithm and y–axis shows the test
error.

Fig. 3 reports the results of SSCT on the same benchmarks that we used in the main paper. Here,
we limit the comparison for cpu_act (regression) and mnist (classification) since other benchmarks
took extremely long time (> 7 days) and still failed to complete. Although the original paper [6]
considers only classification task, implementation by Alabarce et al. [1] extend it to regression. We
did not include this baseline in the main paper to simply avoid cluttering. On top of that, overall
results are similar to the “axis–self” and therefore, it does not change our conclusions. Nevertheless,
in the left plot (mnist), one can see that SSCT consistently improves over “axis–self” and indeed
beneficially leverages information from unlabeled data. However, the performance w.r.t. LapTAO is
still noticeably worse. Moreover, “axis–self” shows better error in the regression task (cpu_act).

5.2 Comparison with EBBS

We also compare with EBBS (see Table 1), the method which comes from Graph Neural Network
(GNN) literature. EBBS is specifically designed for gradient boosted decision trees (GBDT). But by
carefully inspecting the work, we do realize that if we limit EBBS to a single tree, then their problem
reduces to fitting a tree to the smoothed labels. This is similar to the beginning of the penalty path
in LapTAO (initialization step), where we do fit an oblique tree to smoothed labels. However, we

4

Table 1: Comparing the performance of LapTAO vs EBBS (single tree) on cpu_act (top) and mnist
(bottom).

Method \ % of lbl data 1% 3% 5% 8% 10% 20%

cpu_act

LapTAO 255.13 65.75 12.03 10.36 9.19 8.32
EBBS (1 tree) 261.05 92.76 16.52 12.78 12.41 9.87

mnist

LapTAO 9.61 6.93 6.27 6.12 5.97 5.45
EBBS (1 tree) 10.57 7.49 7.05 6.39 6.15 5.91

Table 2: Experimenting with different tree learning algorithms in tree-step of our algorithm: CART
vs TAO. For reference, we also report the performances of CART_SELF (CART+self-training) base-
line. The results are for cpu_act and the metric used is MSE.

Method \ % of lbl data 1% 3% 5% 8% 10% 20%

LapTAO 255.13 65.75 12.03 10.36 9.19 8.32
LapCART 263.50 83.79 18.14 13.93 13.04 11.69
CART_SELF 293.45 228.63 21.89 21.04 20.45 14.92

would like to point out that the idea of first smoothing the labels throughout the unlabeled points
(“label propagation”) and then fitting a model (“induction”) is well known since the seminal graph-
Laplacian SSL approaches, such as references [11–13]. Results in the table above are for cpu_act
and mnist, which are clearly better for LapTAO.

5.3 Replacing TAO with CART in the tree-step

Table 2 reports the results of using alternative tree fitting algorithms within our framework. Here,
LapCART indicates our proposed algorithm but the tree-step was replaced by CART. For reference,
we also report the performances of our originally proposed LapTAO and CART_SELF (CART+self-
training) baselines. Results clearly indicate superiority of LapTAO over other baselines. They also
show that, if we do insist in using CART, our algorithm improves over the CART self-training
baseline (CART_SELF). So, it is still beneficial to apply our algorithm with CART.

We would like to emphasize that CART does not support warm-start since it grows a tree from
scratch rather than updating the current parameters. This is problematic because CART (and related
greedy recursive partitioning algorithms such as C4.5) are known to be very sensitive to the training
set: a little change in the data typically leads to completely different tree structures and parameters.
Indeed, we observed a significant instability and noisy behavior across iterations with CART. This
does not happen with TAO because it takes the tree from the previous iteration as initialization.

5.4 Decision tree visualizations

Fig. 4-5 illustrate decision trees obtained from various settings of α. The results clearly indicate that
this hyperparameter has a direct effect on tree sizes and helps to trade-off between interpretability
and model performance. Smaller values for α typically lead to a small error but generates larger
trees which may be hard to interpret.

References

[1] F. J. P. Alabarce, I. Triguero, C. Bergmeir, and M. González. Semi-supervised classification,
regression and clustering methods. R package version 0.9.3.3, July 22 2021. Available online
at https://diits.ugr.es/software/SSLR.

[2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. J. Machine Learning Research, 7:2399–2434,
Nov. 2006.

5

https://dicits.ugr.es/software/SSLR

1

-1 0 12

4

8

bag (628) shirt (5227)

boot (6008)

bag (67)

3

6

bag (5291) shirt (155)

7

shirt (594) shirt (30)

1

-1 0 12

4

bag (50) shirt (5868)

5

10

shirt (134) bag (5935)

shirt (6)

boot (6007)

Figure 4: Some of the oblique trees obtained from LapTAO on fashion_mnist. Both figures use 10%
of labeled data and the same graph Laplacian obtained in section 4.3, but they differ in regularization
penalty (α) on the tree parameters: (top) α = 2 with Etest = 2.9% and (bottom) α = 10 with
Etest = 3.9%. At each decision node, we illustrate the weight vector of dimension 784 reshaped into
28×28 square where each value is colored according to their sign and magnitude (positive, negative
and zero values are blue, red, and white, respectively). This can be interpreted as: which features
are responsible for sending an instance to the left (blue) or right (red) child? At each leaf, we show
the class label, the total number of training points in that leaf (in brackets), and the average of input
images in that leaf (as a greyscale image).

[3] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere. The Million Song Dataset.
In Proc. 12th Int. Society for Music Information Retrieval Conference (ISMIR 2011), pages
591–596, Miami, FL, Oct. 24–28 2011.

[4] L. J. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, Calif., 1984.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proc. IEEE, 86(11):2278–2324, Nov. 1998.

6

1

-1 0 12

4

shirt (5276) bag (26)

5

10

shirt (564) bag (1666)

boot (2)

3

6

boot (5998) shirt (39)

7

14

shirt (122) bag (2501)

15

bag (1133) bag (673)

1

-1 0 12

4

bag (135) 9

shirt (4355) bag (4677)

5

10

bag (323) shirt (959)

bag (819)

3

6

shirt (169) bag (13)

7

shirt (525) 15

boot (5999) bag (26)

Figure 5: Same as in fig. 4 but of α = 0.2 with Etest = 2.0% (top) and α = 1 with Etest = 2.1%
(bottom). Reducing the value for α enforces less sparsity and the final tree has more nodes which
might be harder to interpret. However, it has a positive effect on accuracy.

[6] J. Levatić, M. Ceci, D. Kocev, and S. Džeroski. Semi-supervised classification trees. J. Intelli-
gent Information Systems, 49:461–486, 2017.

[7] M. Lichman. UCI machine learning repository. http://arhive.is.ui.edu/ml, 2013.

[8] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer-Verlag, New York, second edition, 2006.

[9] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747, Sept. 15 2017.

[10] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In Proc.
33rd Annual Meeting of the Association for Computational Linguistics (ACL 1995), pages 189–
196, 1995.

7

http://archive.ics.uci.edu/ml

[11] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and
global consistency. In S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in Neural
Information Processing Systems (NIPS), volume 16, pages 321–328. MIT Press, Cambridge,
MA, 2004.

[12] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. Technical Report CMU–CALD–02–107, School of Computer Science, Carnegie-Mellon
University, June 2002.

[13] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. In T. Fawcett and N. Mishra, editors, Proc. of the 20th Int. Conf. Machine
Learning (ICML’03), pages 912–919, Washington, DC, Aug. 21–24 2003.

8

	Pseudocodes
	Derivation of the solution for the label-step
	Accelerating the label-step in LapTAO
	Experimental setup
	Datasets
	Methods

	Additional experimental results
	Comparison with SSCT
	Comparison with EBBS
	Replacing TAO with CART in the tree-step
	Decision tree visualizations

