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m Introduction and Motivation E LapTAO: semi-supervised learning for decision trees . Experiments
How to apply SSL for Decision Trees? The most widespread approaches use a graph cpu act (8k 21 1) mnist (70k,784,10) fashion-mnist (70k,/784,3)
- ML use Is rapialy growing — as Is the need for data labeling; prior. Consider dataset D = D, U Dy: D; = {Xn, Yn}y,_q labeled data, D, = {xn}} . B I — . o
. but manually labeling data is expensive! unlabeled data, and / << N. T: R®? — R — tree predictive mapping with parameters R SJSTCA?)(OWS) o LapTAO
. Unlabeled data are usually cheap and easy to get: © = {0;}nodes- Th/en, our goal is to minimize the foIIowmg regularized loss: Obl-ique_lfself | N *LapSVM
- Unlabeled data contain useful information that can improve a model; E©) =S (T(Xn ©) — yn)? +a 6(8) + 1 Z W ( CT(xm ©)2 (1) cbliquedbl
- Semi-supervised learning (SSL) seeks to train a machine learn- n=1 n,m=1 < KNN-Ibl 2
iIng model by leveraging a small percentage of labeled data and . W,m are the elements of the similarity matrix W (affinity matrix) which encourages D —
much larger sample of unlabeled data. similar instances to have similar predictions; \ 1
Why Decision Trees? . ¢(-) is a penalty on © such as ||-||;; | e
Wid d el . tandal dict » How to solve? The loss is non-differentiable and non-convex due to 7(-)! | . . . . | l l l l (())6 08 1 3 E 8 10 20 100
idespread usage — successiully Used as d standalone prediclor ,y.qqyce a new variable z for each data point and consider the constrained problem: 1 °/i of Igbele%l da1t(; 20 1 °Z of Igbele%l daj[g 20 o o4 of labeled data

or as a building block for popular ML frameworks: XGBoost, Ran- /

dom Forest,_ e_tc. | | 21,T,ier,@ Z (Zn — Vn)? + a &(O) + Z Wom(Z Results on regression (cpu act) and classification (mnist, 3 classes of fashion-mnist) datasets:
- Interpretability — input follows a unigue root-to-leaf path

P 1 - We use an oblique tree (makes hyperplane-based split) as an underlying model for LapTAO.
DT 4+ SSL I bl o 5 st. z,=T(x;;0) n=1,... N - Left and Middle: comparison against (mostly) tree-based methods. “Oracle” is an oblique tree trained
. + — Interpretable semi-supervised learning:

by providing 100% of labeled data, “*—self” is self-training baseline, “*—Ibl” uses only given % of

Let’s rewrite this in matrix form: . . | | = |
labeled data (see x—axis), “obligue/axis” means an oblique or axis-aligned tree, respectively.

Motivational example: Binary classitication on 2D using oblique trees. Tg] (z - y)TJ (Z=Y)+ao®)+y z'L z « LapTAO consistently improves over all other SSL methods, and quickly approaches the fully
The leftmost plot shows the original data and corresponding class la- s.t. z=1(X;0), supervised baseline.
bels. Crossed markers (six in total) indicate the labeled points that we  where L = D—W is the graph Laplacian and J = diag(1,...,1,0,...,0) € RVN*N s diago- + Right: comparison against Laplacian SVM with RBF kernel. It uses the same formulation as in eq. (1)
provide to any given SSL algorithm. nal matrix with first / entries equal to 1 and the rest are 0. Next, we apply the augmented but for SVMs. The error gap between LapTAO and LapSVM narrows as we introduce more label
’ , . . - - Lagrangian. This defines a new, unconstrained optimization problem parametrized by 1 scarcity and eventually we start to outperform when % of labeled data < 3%.
Ora,flf)l (Fl)lc;[ ?)atgetde.(:ISIofn I?Oundary. Ob(;a]med .by using al and A: - Below is the visualization of an example tree obtained by LapTAO on fashion-mnist (3 classes):
davdliaDie |1dbele dld, |.e., TUlly Ssupervised iearning, .
+ “tree on labeled data” (plot 3): )’:he aodel uses onlygsix labeled min (2 = V)'d (2 -y) +ad(®) +72'Lz= A2 t(X;)) +ullz —tX; )| absence of pixels 1
oints 1o train a tree: | Finally, we apply alternating optimization to minimize the above objective over: z a.k.a ihis 1 1ot grﬁimnage\’ o> 707 MAges coman ot oTpels here
E) o . | “label-step” and t(X; ©) a.k.a “tree-step”
‘ .LapTAO (r'ghtmOSt): our prOPOSed SSL framework. which clearly . Label-step. The objective is a quadratic function and a minimizer is obtained by shirts with collar 2 .
Improves over the naive baseline (plot 3) by leveraging both solving the sparse linear system: §”S‘ﬂr§i§ﬁebr29$ﬁ§yves_,.,l
labeled and unlabeled data. min (z - V)V J(z—y)+~vz'Lz—AT(z—t(X:0)) + ulz — t(X;0)||* = Jotothe leftsublree. |
1
ground truth oracle tree on labeled data LapTAO (ours) Az = Jy + pt(X; ©) + SA / \ op ot e covered
error = 0.0% error = 4.5% error = 23.46% error = 8.78% where A = J + ul + ~L is a positive definite and sparse matrix. Intuitively, this step shirts without sleeves / N most shirts
' \ ' ' can be interpreted as “approximating” the labels (for D,) using the graph Laplacian . follow left subtree
T g | 1 and predictions obtained from the current tree (i.e., label smoothing). - —
.. x xx » Tree-step. The proplem reduces to 2 regression fltTof a tree: e o / &m - o / \Shm o
: i ToE e min ullz —tX;0)||"+a (@) —A'(z—1X;0)) < '
o o[ (2 x) — o) + o) . .
T x m é n > , . .
Rt o Although any tree learning algorithm can be used, we solve this step using Iree . mZ) ac) (5935
Alternating Optimization (TAQ) algorithm. Intuitively, this step can be understood as SCAN ME
1 N 1 fitting a tree with the current estimates of labels. j .
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