NEUROSYMBOLIC MODELS BASED ON
HYBRIDS OF CONVOLUTIONAL NEURAL NETWORKS AND DECISION TREES
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Abstract Learning algorithm Experiments Results

Building on previous work, we propose a specific form of neurosymbolic  Given a oblique tree T(x, ©) of a fixed structure (e.g. a complete tree of ot
model consisting of the composition of convolutional neural network lay-  depth A) and initial parameters (e.g. random), we use Tree Alternating .

ers with a sparse oblique classification tree (having hyperplane splits  Optimization (TAO) to minimize the following objective:
using few features). This can be seen as a neural feature extraction that
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show how to control the sparsity across the different decision nodes of (1 t=0 o y: .
the tree and its effect on the explanations produced. We demonstrate ho(t) =< .
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atively small subsets of neurons are entirely responsible for the classifi-  where L(-,-) is the loss, © = {(w;, W) }iep U {Cj}jcc are the set of all TR | . L TR ' ]
cation into specific classes, and that the neurons’ receptive fields focus learnable model parameters, /1 is penalty over the weight vectors to pro- -’ - R f
on areas of the image that provide best discrimination. mote sparsity via hyperparameters A > 0, R; is the reduced set of node B 2 | i ' o §
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The neural net / tree hyb”d model No, ..., Na < nodes at depth 0, ..., A, respectively . St = : ;
- Each decision node i € D has a decision function gi(x; ;): generate R4 <+ {1,..., N} using initial tree 0165 2022 e ; ' / . S
‘it w/X+ wjy > 0 then gj(X) = right;, otherwise g;(X) = 1eft;” repeat o o _ . |
- Each leaf j € £ contains a constant label classifier that outputs a for d = A down to 0 5 . o
singleclass ¢; € {1,...,K} parfor i ¢ Ny o - l
- T(x; ©) is a routing function that guides an instance x to exactly one if / is a leaf then 4530 6147 5916 6080 359 1658
leaf through a root-leaf path 0; < fit a leaf predictor Tree trained on LeNet embeddings on Fashion MNIST dataset A = 0.001, a = 1. Eiain = 5.4%, Eiest = 11.7% and # non-zero params is 1298
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o newranetieatres "by tree » We can rewrite RP objective as "avg-loss + \ reg”, with \' = AN*~T, o
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avg-loss is the loss per instance in node /; reg = |w;|1 (an effective
sparsity hyperparameter)

- a < 1: large RS penalized less — the root is denser

- a = 1: all nodes penalized equally

- a > 1: large RS penalized more — the root is sparser

Can produce trees that are sparser and more accurate than regular
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- CNN of the form y = M(F(x)), where x is the pixel image, y the
predicted label (or label distribution), F the convolutional layers and
M the fully-connected layers (i.e., an MLP)

- We replace M with a sparse obligue classification tree T trained to
replicate the behavior of M. That is, T is trained to map each neural
net feature vector F(x,) to the NN output M(F(x,)). For each data _
point (X, Y¥n) we use (z,,Y,), where z, = F(x,) and y, = M(z,). If a TAO (i.e., a = 0)
tree T fits y,, well, then T (and T o F) is approximately functionally
equivalent to M (and M o F). Our neural net / tree hybrid is then
T(F(x)). We can interpret T.
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°® Tree trained on LeNet embeddings on Fashion MNIST dataset A = 0.001, « = 1. Similar to fig. 2 each decision node contains "density” map of
06 the receptive fields. Each leaf node contains contour produced by the parent decision node weights and density map.
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Where is decision node looking in the image? Col. 1 shows sparse weights of decision 9 2 ©
i ©
node J for each CNN feature map in the last layer of Lenet (16 x 5 x 5). Col. 2-3 ‘T 2 15 3 < o 40
show receptive field produced of neurons with non-zero decision node weights on the o 0 A 10. N
mean image from left and right leaf. Receptive field follow the order of CNN outputs N, : B s 20
left to right and top to bottom. Color and thickness of receptive fields correspond to
. . . , . L. | 1 0
Sample of class 8 misclassified as 7 (Left). Receptive field of neurons from the last ~ Weights of decision node. Col. 4 is heatmap of the "density” of the receptive fields. 10 G 00 0s 0 O e 00 o 0 10 e ¥ 0 o
convolutional layer of Lenet with largest positive (red) and negative (blue) weights in ~ Tree hyperparameters are A = 0.001, o = 1. o o o

oblique decision node J (Middle). Small changes in the intersection of two regions

. . L . Regularization path over o for A = 100.
fixed the misclassification error (Right).



