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Abstract

Univariate decision trees, commonly used since the 1950s, predict
by asking questions about a single feature in each decision node.
While they are interpretable, they often lack competitive predictive
accuracy due to their inability to model feature correlations. Mul-
tivariate (oblique) trees use multiple features in each node, captur-
ing high-dimensional correlations better, but sometimes they can
be difficult to interpret. We advocate for a model that strikes a use-
ful middle ground: bivariate decision trees, which use two features
in each node. This typically produces trees that not only are more
accurate than univariate trees, but much smaller, which offsets the
small increase in node complexity and keeps them interpretable.
They also help data mining by constructing new features that are
useful for discrimination, and by providing a form of supervised,
hierarchical 2D visualization that reveals patterns such as clusters
or linear structure. We give two new algorithms to learn bivari-
ate trees: a fast one based on CART; and a slower one based on
alternating optimization with a feature regularization term, which
produces the best trees while still scaling to large datasets.
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1 Introduction

In many ways, decision trees stand alone in the statistical machine
learning literature. They use conditional computation by design:
an input instance follows a single root-leaf path, without using
the rest of the tree parameters. Hence, inference time is extremely
fast (logarithmic on the number of paths if the tree was complete).
They handle the multiclass case directly, without the need for one-
vs-all or one-vs-one approaches, as each leaf can be labeled with a
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particular class. And, although outside our scope in this paper, en-
sembles of trees are among the most powerful classifiers, at least
for tabular data, while being far simpler to train and tune com-
pared to neural networks. Finally, decision trees are perhaps most
valued because of their interpretability, together with a handful
of models (such as logistic regression, generalized additive models
and scorecards). The way they achieve a prediction follows a se-
quence of simple questions about the input features which is quite
close to human reasoning. A decision tree can be explained and au-
dited at a global level by simple inspection. For a particular input
instance, one can explain the tree prediction by following the cor-
responding root-leaf path, or solve a counterfactual explanation
to find the minimal change to the input features that results in a
desired prediction [7, 17]. Indeed, some applications of automated
models are required to provide an explanation of their decision.
A well-known example in the US are adverse actions by financial
institutions (such as denial of a loan application), where “each ap-
plicant against whom adverse action is taken shall be entitled to
a statement of reasons for such action from the creditor” (Equal
Credit OpportunityAct, 1974). In cases like these, explainable mod-
els such as decision trees are essential.

The one serious disadvantage of decision trees is that they usu-
ally result in low predictive accuracy. There are two reasons for
that. The first one is a poor data model. A typical decision tree is
of the axis-aligned or univariate type, which means that each deci-
sion node or split operates on a single input feature (e.g. “if G7 > 10
go right, otherwise go left”). When features are correlated, which
is the usual situation in practice, this requires many zigzagging
splits in order to construct an oblique decision boundary (i.e., a lin-
ear combination of features; see fig. 1). Thus, the resulting tree is
big, which makes it harder to interpret, and will generalize poorly
anyway. Another model shortcoming is that having each node ex-
amine only one feature limits the total number of features that can
be examined along a path or on the whole tree. And the number
of nodes in the tree is itself much smaller than the sample size, be-
cause a leaf cannot be empty of training instances. This can force
the tree to ignore important features.

Univ.: Δ=8, 19 leaves, 4% error Biv.: Δ=3, 5 leaves, 2% error
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Figure 1: Partitioning by a univariate (left) and bivariate

tree (right). By allowing some feature correlations, bivariate

trees achieve better performance with much smaller trees.
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The second reason is a poor optimization. The hard decisions
that enable conditional computation in the tree alsomake it a piece-
wise constant function whose gradient with respect to its param-
eters is either zero or undefined. Optimizing a loss function over
the tree is thus a very nonconvex problem. The most widespread
way to train trees is the greedy recursive partitioning approach.
Starting at the root, a node’s split (feature and threshold) is fixed
based on a local “purity” criterion, and the process is repeated re-
cursively until a stopping criterion holds, possibly followed by a
pruning procedure intended to reduce overfitting. CART [5] and
C4.5 [31] are the foremost representative algorithms, differing on
minor details (such as the choice of purity criterion). This approach
does not optimize a global objective function over the tree (such
as the 0/1 loss, cross-entropy or hinge loss), and indeed it results
in quite suboptimal trees [19]. It does two things well, though: it is
able to search for tree structures to some extent (itself a very diffi-
cult problem), and it is able to solve the local split problem exactly
by enumerating all possible features and thresholds (the latter are
the midpoints between scalar feature values). Indeed, CART and
C4.5 remain in widespread practical use.

However, CART-like procedures were never successful for obli-
que (multivariate) trees, because the oblique split cannot be easily
optimized by enumeration (indeed, it is NP-hard). While some ap-
proximations have been proposed (such as a local search [5, 25]), a
suboptimal split has a cascade effect downstream that results in a
big tree [19]. Since now each split uses all features, the tree is un-
wieldy and far from interpretable, which makes it not worth using
even if some (often small) improvement occurs in the accuracy.

A recent algorithm, Tree Alternating Optimization (TAO) [8],
has made it possible to train univariate and (sparse) oblique trees
effectively. Unlike recursive partitioning, TAO operates on a well-
defined parametric tree model and objective function. At each iter-
ation, it updates each node’s parameters so the objective decreases.
It has been shown to produce univariate trees of higher accuracy
than CART, C4.5 and other algorithms [38], and oblique trees that
significantly exceed univariate trees in accuracy (as is to be ex-
pected, since they can directly model many-feature correlations)
[8]. However, a univariate tree (even trained by TAO) is still a poor
data model in many cases, while a (sparse) oblique tree can some-
times be hard to interpret if it uses many features in each node.

Our goal here is to design decision trees that are more accurate
than univariate trees while remaining highly interpretable and effi-
cient to train. We propose bivariate trees, where each decision node
has zero, one or two features at most. Allowing for two features
rather than one significantly increases the predictive accuracy and
decreases the tree size even more significantly, improving inter-
pretability, as shown in our experiments. This is made possible by
our new algorithms to learn bivariate trees, of which we propose
two: a very fast one, bivariate CART, based on greedy recursive
partitioning, which can be conveniently implemented via a prepro-
cessing step for univariate CART; and a slower but better one, bi-
variate TAO, based on alternating optimization. In the latter, we in-
troduce a new regularization term that penalizes differentially the
use of zero features (which makes the node redundant and results
in automatically pruning the tree), one feature (univariate split) or
two features (bivariate split); and we give a good, approximate but
efficient solution to the bivariate split step that arises within TAO.

We believe bivariate trees strike a good tradeoff that can make
them very practical. We explain their relation with pairwise-inte-
ractionmodels and other work in sections 2 and 3, and our training
algorithms in section 4. Our experiments in section 5 compare uni-
variate, bivariate and oblique trees in terms of accuracy, model size
and interpretability.

2 Other pairwise-interaction models

Interpretable models based on pairwise interactions have a long
history in machine learning, data mining and statistics. In fact, the
idea of bivariate trees is not new (see relatedwork), but it has never
succeeded in practice, due to the lack of an effective optimization
algorithm. We provide such algorithms in this paper and demon-
strate how bivariate trees are indeed useful models.

Two widely used pairwise-interaction models are Generalized
Additive Models with pairwise interactions (GA2M) and Factoriza-
tionMachines (FM). AGA2M[18, sec. 9.5], [23] consists of a sum of
univariate and bivariate component functions. A FM [32] is a low-
rank bilinear model (the sum of linear and quadratic terms, where
the latter’s matrix is low-rank). These models are interpretable in
that one can inspect the individual terms (e.g. with a 2D heatmap
for each GA2M pairwise term). The FM is especially useful with
one-hot encoded categorical data, where each pairwise weight cor-
responds to the co-ocurrence of two categories.

In both cases, the total number of pairwise interactions with
� features is O(�2), so it is critical to restrict the actual num-
ber of pairwise interactions. This is for interpretability but also
to keep the number of parameters small, so the model can learn
from limited sample sizes, often a problem in practice. In FMs this
is achieved by using a matrix of rank < � for the quadratic term;
in GA2M, by greedily selecting a small subset of interactions. In bi-
variate trees, we control this by globally optimizing the loss plus a
regularization term that penalizes the number of nodes, whose hy-
perparameter can be cross-validated or selected by hand to achieve
a desired tree size. Note that, unlike FMs and GA2Ms, bivariate
trees are able to model more complex interactions due to the hier-
archical structure of the tree (at the cost of making the tree deeper).

How interpretable are bivariate trees? On the one hand, each split
involves now two features, so it is more complex. On the other
hand, the ability to learn oblique splits (even with just two fea-
tures) greatly reduces the number of nodes and depth of the tree
compared to a univariate one, and hence the number of rules ex-
tracted from the tree. This can often make a bivariate tree more

interpretable than a univariate one—a large univariate tree is not
only complex, but examining it requires constant pan and zoom.
A bivariate tree is also more accurate, particularly when the label
depends on feature correlations. It can also happen that the bivari-
ate split can be understood as a new, meaningful feature on its own
right. Finally, bivariate trees bring another advantage over univari-
ate trees: we can show a 2D scatterplot at each decision node on
its two selected features, which behaves like a hierarchical 2D lin-

ear discriminant analysis. This shows information between-class
(how specific classes are separated from each other), as well as
within-class (such as clustering or linear structure). We convinc-
ingly demonstrate this our experiments by comparing bivariate
and univariate trees in terms of accuracy and tree size, and by ex-
ploring in detail two case studies.
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3 Related work

Learning trees has long been dominated by greedy recursive par-
titioning, of which countless versions exist [5, 22, 31, 33]. This
has been more successful with univariate trees than oblique ones
[5, 26], which are rarely used. Indeed, popular types of decision
forests use univariate trees, such as random forests [4] or gradi-
ent boosting forests [10, 20]. Many implementations of univariate
trees exist, from scikit-learn to commercial packages such as
SAS, SPSS, Matlab or even Excel. Most univariate trees have a con-
stant prediction at the leaves (class label or regression output), but
there also exist more complex leaf models, such as linear [31], al-
though, again, these are rarely used.

We have found only three papers exploring the idea of bivariate
trees, all of them in the context of greedy recursive partitioning,
differing in how they adapt the univariate split search to a bivariate
one. Two early approaches [2, 24] used a variation of CART’s local
search for oblique splits. A recent one [3] used an exhaustive and
expensive search for the bivariate split using branch-and-bound.
Because of the underlying greedy recursive partitioning, this still
results in large, suboptimal trees.

A parallel line of work on tree learning has focused on non-
greedy approaches using exact, brute-force search. This has taken
different forms: mixed-integer optimization [1, 34], dynamic pro-
gramming in various forms [11] and other forms of combinato-
rial optimization [27, 28]. While cleverly designed, all these ap-
proaches have the fundamental disadvantage that their worst-case
complexity is exponential on the problem size, so that they become
infeasible for a nontrivial tree depth and number of nodes, or a
nontrivial sample size or dimensionality. None of these approaches
have considered bivariate splits.

A final line of work is the use of alternating optimization over
the tree nodes, the TAO algorithm [8]. This has made it possible
to optimize a given objective function over all the parameters of
a fixed-structure tree, for tasks such as clustering [12], dimension-
ality reduction [36], semi-supervised learning [37] or imbalanced
classification [15]. The resulting trees are smaller but more accu-
rate than traditional ones [38], and similar advantages carry over
to the forest setting [6, 9, 13, 14, 35]. Optimally updating a deci-
sion node given all other nodes (the reduced problem) takes the
form of a certain 0/1 loss binary classification problem. This is NP-
hard for oblique splits, but can be approximated by a surrogate loss,
although this can often produce inadequate results. Here, we cap-
italize on the possibility to use partial enumeration in a 2D space
of line orientations to find a good bivariate split efficiently.

Finally, it is possible to construct a bivariate tree by first apply-
ing feature selection to the problem to select two features globally
and then fitting a tree. This gives a bivariate tree that uses the same

two features in each node, which will result in a poor accuracy. We
seek bivariate trees where each node can use any two features.

4 Learning bivariate trees

We consider classification (the extension to regression is straight-
forward and given later). Consider a  -class problem with dataset
of size # with�-dimensional input features {(x=, ~=)}#==1 ⊂ R

� ×

{1, . . . ,  }. Consider a binary decision tree (each decision node has
exactly 2 children) with a set of decision nodesNdec , a set of leaves

Nleaf, and N = Ndec ∪Nleaf. We define a routing function in each
decision node 8 ∈ Ndec as 58 (x;) 8): R

� → {left8 , right8 } ⊂ N

which sends a sample x to either its left or right child. We use
bivariate decision nodes where routing function makes hard de-
cisions 58 (x; ) 8 ) = left8 if F8 9G 9 + F8:G: + 18 < 0, otherwise
right8 , and the learnable parameters are ) 8 = {w8 , 18 }, where
‖w8 ‖0 ≤ 2 ensures splits of no more than 2 features. Each leaf
8 ∈ Nleaf contains a constant label classifier that outputs a single
class 28 ∈ {1, . . . ,  }. We collectively define the parameters of all
nodes as � = {(w8 , 18)}8∈Ndec

∪ {2 9 } 9∈Nleaf
. The predictive func-

tion of the entire tree ) (x;�) guides a sample x along a single
path from the root through a sequence of bivariate decision nodes
to exactly one leaf, which provides the classification output.

We consider the following objective function over all the param-
eters of a tree of given structure, where !(·, ·) is the 0/1 loss:

� (�) =

#∑

==1

!(~=,) (x=;�))+_
∑

8 ∈ Ndec

q (w8 ) s.t.

{
‖w8 ‖0 ≤ 2,

8 ∈ Ndec
(1)

and we introduce the following, new type of regularization:

q (w8 ) =

{
�, if ‖w8 ‖0 = 2

‖w8 ‖0, if ‖w8 ‖0 < 2.
(2)

Both the ℓ0 constraint and the penalty q are different from the
sparse oblique tree formulationof [8],which only had an ℓ1 penalty;
this does encourage oblique nodes with few features, but does not
achieve bivariate nodes, as shown in our experiments. The feature
cost regularization term (2) is critical in allowing not just bivariate

splits but also univariate ones and pruning nodes. It imposes a cost
of 0, 1 or� for each zero-, uni- or bivariate node (using 0, 1 or 2 fea-
tures) in the tree, respectively. Using a cost � > 1 means bivariate
splits are preferable to univariate ones only if they reduce the loss
sufficiently. If a node uses no features (‖w8 ‖0 = 0) then it sends all
points either right or left (depending on 18 ), so it is redundant and
can be pruned at the end of the algorithm. Since using no features
has cost zero, the regularization term in (1) counts the effective
number of nodes in the tree (with a weight of 1 or � if using 1 or
2 features, resp.). Hence, the user can control the number of nodes
in the tree via _, and how uni- or bivariate the tree is via � .

4.1 The better algorithm: bivariate TAO

In equation (1), the loss function is additively separable over the
training samples, and the regularization term is additively separa-
ble over the nodes. This renders it suitable for alternating optimiza-
tion over the tree nodes (on a tree of given structure), which results
in monotonic descent and convergence in a finite number of iter-
ations. We follow an argument as in [8]. The idea is based on two
theorems: separability condition and reduced problem (RP) over
a node. First, define the reduced set R8 ⊂ {1, . . . , # } as the train-
ing instances that reach the node 8 ∈ N . Separability condition

implies that equation (1) can be separated and optimized over pa-
rameters of any non-descendant nodes (located on the same depth)
independently and in parallel. This is a result of tree making hard
decisions (R8 ∩R 9 = ∅ for any non-descendant nodes 8 and 9). Re-
duced problem over a node states that optimizing equation (1)
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over parameters of the given node 8 ∈ N reduces to simpler, well-
defined problem involving its reduced set R8 . RP is different for
decision nodes and leaves:

Leaf Equivalent to optimizing the top-level objective (1) over pa-
rameter 28 on R8 . Exact solution: the majority class of the
samples in R8 : 28 = argmax:∈{1,..., }

∑
=∈R8 !(~=, :).

Decision node The objective (1) can be equivalently reduced to
the following 0/1 loss binary classification problem:

�8 (w8 , 18) =
∑

=∈R8

!(~̄=, 58 (x= ;w8 , 18 )) + _ q (w8 ) s.t. ‖w8 ‖0 ≤ 2 (3)

where ! is the 0/1 loss and ~̄= ∈ {left, right} is a pseudola-
bel assigned to training instance G= to indicate the child that
yields a lower loss value. The loss is computed by propagat-
ing x= down the corresponding child.

4.1.1 Solving the reduced problemover a decision node. Problem (3)
arises with sparse oblique trees [8] and is NP-hard with arbitrary
linear decision nodes, so there it is approximated via a surrogate
loss. However, with the constraint ‖w8 ‖0 ≤ 2, the problem can
be solved exactly in O(# 3�2) by enumerating every possible split
(= linear dichotomy on the # instances) over all

(�
2

)
feature com-

binations. Unfortunately, this is very costly. We propose a faster,
approximate solution which shows good results on practice.

Solution 1: !biv (bivariate solution) of eq. (3) s.t. ‖w8 ‖0 = 2,
18 ∈ R is achieved at )biv8 = {wbiv

8 , 1biv8 }. Define a small, fixed sub-
set of line orientations W ∈ R

2×� sampled uniformly in two di-
mensions by rotating it around the origin (� times) within a range
of 0 to 180 degrees. For points in the reduced set R8 we select a
pair of features and project them onto each orientation w; ∈W. It
can be vectorized X

biv
8 = X8SW where X8 ∈ R

| R8 |×� is a matrix
containing all instances in the reduced set R8 , and S ∈ R

�×2 is a
matrix with each column consisting of a 1 in the row correspond-
ing to the selected feature and zeros everywhere else. Vectoriza-
tion allows a GPU utilization for faster computation. The solution
can be computed using thresholding over features of Xbiv

8 . The re-
sulting bias can be interpreted as an optimal split of the points
projected onto selected orientationw; to minimize number of mis-
classified instances in R8 . We repeat this process for each pair of
features and find best solution w

biv
8 , 1biv8 , where w

biv
8 is a sparse

vector. Pseudocode is in Fig. 3 and an illustration in Fig. 2.
Solution 2: !univ (univariate solution) of eq. (3) s.t. ‖w8 ‖0 = 1,

18 ∈ R is achieved at )univ8 = {(0,Funiv
8 )) , 1univ8 }. It is computed

simply by thresholding over original features. For the decision node
8 ∈ Ndec algorithm selects one feature to split points in R8 in order
to minimize eq. (3).

Solution 3: !0 (zero-variate solution) of eq. (3) s.t. ‖w8 ‖0 = 0,
18 ∈ {−1,+1} is achieved at ) 08 = {0, 108 }. This indicates that all
samples in R8 are sent to the left (108 = −1) or the right (108 = 1).

The solution of the RP can be summarized as follows:

)
∗
8 =





)
biv
8 , if !biv + _� < min(!univ + _, !0)

)
univ
8 , if !univ + _ < min(!biv + _�, !0)

)
0
8 , if !0 ≤ min(!biv + _�, !univ + _)

We break the ties always in favor of a model with lower number of
parameters. The separability condition allows us to optimize � in
parallel for the parameters of any group of nodes that do not have

G8

G 9
4 possible
directions

glo
bal

opt
imu

m

ap
pr
ox
. o
pt
im
um

Figure 2: Illustration of our approximate solution of the re-

ducedproblem at a decisionnode assuming a selectedpair of

features (G8 , G 9 ). The instances in the reduced set of the node

are labeled according to their pseudolabels (preferred child,

left ◦ or right×). The optimum (in 0/1 loss) linear classifier is

the thick blue line (one misclassification). The approximate

optimum found using the � = 4 possible directions (inset) is

the thick red line (twomisclassifications). The thin red lines

are all the possible thresholds (passing through midpoints

between projected instances) for the red orientation.

a parent-child relationship, while keeping the parameters of the re-
maining nodes fixed. We optimize node parameters in the reverse
breadth-first search order starting with deepest nodes and moving
all the way to the root. This results in a monotonic decrease in the
objective function �. It is important to note that after each itera-
tion, the subset used for training each classifier or leaf predictor
is modified. Some decision nodes will opt for not using a feature,
hence being redundant (since it directs all input instances to the
same child) and candidates for eventual removal in a postprocess-
ing step at the end of the training. This means that bivariate TAO
indeed achieves pruning, or equivalently learns the tree structure
(subject to being a subset of the initial tree’s structure).

4.1.2 Regression. This requires just two modifications. First, the
reduced problem over a leaf is solved by computing themean of the
samples in its reduced set. Second, the objective (1) in the decision
node is now reduced to a weighted binary classification (instead
of eq. (3)), where the weights are obtained by sending the sample
down each child subtree and computing their respective loss.

4.1.3 Regularization path. For -class classification problemwith
# training samples define #1 ≥ #2 ≥ · · · ≥ # , where #1
is a number of samples in the most populous class. Considering
that empty feature solution of the RP we can derive _q (w8 ) ≥
!0 − !biv ∈ {0, 1, . . . , # − #1}. Since bivariate split generally pro-
duces lower 0/1 loss we typically set� ≥ 1. Furthermore, consider-
ing that values of ! are integer (number ofmisclassified points) it is
enough to run the algorithm for _ = {0, 1, . . . , # −#1} to compute
full regularization path. At _ = # −#1 tree consists of a single leaf
with the label of samples in #1. We compute the full regularization
path and select a tree with best validation error. Nodes with empty
features are retained until the end of the algorithm since their so-
lutions may become nonempty at later iterations or a larger _.

In this context, _q (w8 ) can be interpreted as the maximum al-
lowed number of misclassified samples by a decision node. When
this threshold is exceeded, the node is pruned. For most datasets,
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input training set {x=, ~= }#==1,
binary axis-aligned tree) with given structure and
parameters � at the nodes N = Ndec ∪ Nleaf

repeat

for 8 ∈ N

R8 ← reduced set of node 8
end if

for 3 = Δ downto 0 do

for 8 ∈ nodes at depth 3 (can be done in parallel)
if 8 ∈ Nleaf

28 ← majority class in R8
else

solution of reduced problem eq. (3) for decision node 8 ∈ Ndec

end if

if !biv + _� < min(!univ + _, !0 )

w8 , b8 ← )
biv
8

else if !univ + _ < min(!biv + _�, !0 )

w8 , b8 ← )
univ
8

else if !0 ≤ min(!biv + _�, !univ + _)

w8 , b8 ← )
0
8

end if

end for

end for

until � (�) does not strictly decrease
remove redundant nodes (empty features solution)
return trained)

input training set {x=, ~̄= }=∈R8 of decision node 8 ∈ Ndec,
matrix of orientations W ∈ R2×�

for each pair of features 9, : ∈ �
for w; ∈ W

x
9,:

;
← project selected features of

each sample in R8 onto F;

1
9,:

;
← optimal thresholding over x9,:

;

if 9, :,w; , 1
9,:

;
produce lowest value of eq. (3)

)
18E
8 ← {w∗, 1

9,:

;
}, wherew∗ is a sparse vector

of all zeros with corresponding value of w;

at 9, :
end if

end for

end for

return )
18E
8

Figure 3: Pseudocode: bivariate TAO algorithm (top); solu-

tion to the reduced problem in a decision node 8 (bottom).

there exists a range of _ values where tree parameters does not
change. Knowing theminimum difference in 0/1 loss between empty
feature solution and current best solution (univariate or bivariate)
for each decision node we can calculate next significant _ in regu-
larization path. This way full regularization path can be computed
much faster.

4.1.4 Computational complexity. Assume # training samples and
a complete tree of depth Δ (having 2Δ − 1 decision nodes). Call R8
the reduced set of node 8 . At the start of each iteration we update
R8 for each node by propagating each training instance to its cor-
responding leaf, which is O(Δ# ) with space complexity of O(# )
to store indices.

We optimize node parameters in reverse BFS order starting with
leaves. For each leaf 8 ∈ Nleaf we compute label using majority
vote in O(|R8 |). For each decision node 8 ∈ Ndec we first com-
pute pseudolabels by sending samples of reduces set to the left and
right child at O(2Δ|R8 |). For univariate split, we sort instance fea-
ture values {G=3 }=∈R8 before thresholding. In the final step, we
determine the loss for every bias value similar to how the purest
split is computed within recursive partitioning. It can be done ex-
actly and efficiently through an incremental method, where we
calculate the loss for the next bias value based on the loss of the
current value. The total computational complexity for � features
is O(�Δ|R8 |) + Θ(� |R8 | log |R8 |). For bivariate split the process
is computationally similar to finding univariate split on X

18E
8 (de-

scribed in 4.1) for every pair of features. Since � is constant, total
computations complexity is O(�2

Δ|R8 |
2) + Θ(�2 |R8 |

2 log |R8 |).
The total cost of training is dominated by decision nodes. At any

depth the union of all reduced sets is the whole training set. In this
case the total computational cost is upper bounded byΘ(Δ2�2# 2+

Δ�2# 2 log# ). It is worth mentioning that decision nodes at each
depth can be trained in parallel, which drastically reduces running
time of the algorithm.

4.2 The faster algorithm: bivariate CART

Our idea above of partial enumeration over the bivariate splits
can be combined with greedy recursive partitioning (in particu-
lar CART). This does not anymore optimize any global objective
function and it produces worse trees than bivariate TAO, but it is
much faster. It can be done in two ways. One, more efficient, is by
modifying the CART split step (based on the Gini index) to use the
partial enumeration, in a similar way to the TAO decision node
reduced problem above. Another, less efficient (in memory), is to

construct a new, augmented training set with ≤ �+
(�
2

)
|� | features

in advance and simply run the usual, univariate CART on it. This
algorithm works quite well, as seen in our experiments, resulting
in bivariate trees that are quite smaller and generalize better than
univariate CART. Note this algorithm is different from previous
work on bivariate trees.

4.3 Interaction of � and _: a phase diagram

Here we give a qualitative understanding of the effect of the fea-
ture cost� and the regularization hyperparameter _ on the size of
the tree and the number of features it uses. It can be plotted as a
“phase diagram” in (_,�)-space such as that in fig. 4. Inspection
of the objective function shows that, since the loss is always less
than # (where # is the sample size), there exists a critical value
0 < _∗ < # such that the optimal tree for _ ≥ _∗ consists of a sin-
gle leaf node with a constant label (zero-variate tree). Likewise, for
small enough _, all nodes are bivariate if � ≤ 1 (since univariate
splits are no cheaper and less powerful); and there exists a critical
value 1 < �∗ ≤ # such that all nodes are univariate if � ≥ �∗

(since even a single bivariate node is too costly). Trees with both
uni- and bivariate nodes exist for a region (0, _∗] × (1,�∗], which
contains the practically useful models, where we allow the objec-
tive function to determine the optimal uni/bivariate ratio. This also
suggests a simplified training strategy where we fix� to a value a
bit over one (on practice, � ∈ [1.1, 1.5]) and cross-validate _.

 

1340



KDD ’24, August 25–29, 2024, Barcelona, Spain Rasul Kairgeldin and Miguel Á. Carreira-Perpiñán

% bivariate nodes # decision nodes test error

0  10 100

3  

2.5

2  

1.5

1  

0.5
0

0.2

0.4

0.6

0.8

1

_

�

univariate

bivariate ze
ro
-v
ar
ia
te

un
iv
ar
iat
e

bi
va
ria
te

0  10 100

3  

2.5

2  

1.5

1  

0.5
0

10

20

30

40

50

60

_
0  10 100

3  

2.5

2  

1.5

1  

0.5
100

101

102

_

Figure 4: Phase diagram (_,�) for the Segment dataset.

We plot: the proportion of bivariate vs univariate decision

nodes (indicating the regions of pure zero-, uni- and bivari-

ate trees); the number of decision nodes; and the test error

(%). The ellipse indicates the region of best-error trees.
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univariate CART and C5.0 and bivariate TAO trees as a func-

tion of the sample size (subsampled from the SUSY dataset).

5 Experiments

We provide all necessary details about hyperparameters, imple-
mentations of different algorithms, etc. in the appendix.

Accuracy, tree size and number of features. Table 1 shows that,
almost without exception across several datasets of varying types,
our bivariate TAO tree is both most accurate and smallest com-
pared to any other univariate tree (CART [5], C5.0 [31]) or bivari-
ate tree (in particular, BiDT [3]). This is as expected: it uses the
more flexible model and the better optimization. Next best is our
other, more approximate algorithm, bivariate CART. The improve-
ment in accuracy over univariate trees is consistent and varies de-
pending on the dataset (usually a few percentage points). The re-
duction in depth and number of nodes, and the corresponding sim-

plification of the tree, is drastic, typically several times fewer nodes

(17 times smaller on the MiniBooNE dataset). In terms of training
time, although not as lightning-fast as univariate trees, our bivari-
ate trees scale well to large datasets (unlike BiDT, which times out,
as expected from its brute-force search). When compared with the
oblique trees, bivariate TAO trees are less accurate (as expected)
but there is often little difference. However, oblique trees use quite
a lot of features per node, which makes them more complex. Simi-
lar conclusions follow from the results for regression (table 2).

Dependence on sample size. It is well known that univariate trees
(CART, C5.0) grow in size proportionally to the sample size, in-
dicating a suboptimal training and pruning, as a consequence of
their greedy recursive partitioning [29]. This is confirmed in fig. 5,
where they continue to grow even when their accuracy plateaus af-
ter reaching ≈50% of the total. In contrast, our bivariate TAO tree
slowly grows in size but eventually stops, indicating it has reached
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Figure 6: 0/1 loss, number of nodes and average number of

features per decision node for bivariate (left) and oblique

trees (right) over their regularization path (Segment dataset).

a sufficient model size—all the while with a better accuracy and
much smaller size (≈3–5 times) than the univariate trees. With our
unoptimized code, bivariate TAO is much slower to train than the
(extremely fast) CART and C5.0, but it is still good for practical use.

Oblique trees use many features. Here we show that one cannot
achieve a bivariate tree by overpenalizing a sparse oblique tree.
The latter, proposed in [8], minimizes the sum of the 0/1 loss plus
an ℓ1 penalty _

∑
8 ‖w8 ‖1 on the weight vector of each decision

node 8 in the tree, with hyperparameter _ ≥ 0. Fig. 6 shows the
entire regularization path for a sparse oblique tree and a bivariate
tree on the Segment dataset. While the bivariate tree has an aver-
age of at most 2 features per node throughout its path, the oblique
one reaches an average of 2 only for very high _, at which point the
tree is very small and has an enormous error. The reason for this
is that, while increasing _ does encourage sparsity of weight vec-
tors over the whole tree, this sparsity results in some nodes being
pruned (whenever w8 = 0) while other nodes use more features. In
this dataset, the best trees have about the same error (≈2.5%) and
number of nodes (≈16) for both bivariate and oblique, but the latter
using ≈7 features per node.

5.1 Interpretability of bivariate trees

The small size of a (well-optimized) bivariate tree and the ability
to visualize its decision nodes makes it highly interpretable, as we
demonstrate here in two examples.

5.1.1 Breast Cancer UCI dataset. This is a binary classification
task into malignant and bening tumors. Each input instance con-
tains 30 features (listed in appendix table 4) extracted from a col-
lection of cells, specifically, geometric features about size, shape,
etc. (measured from snake-generated cell nuclei boundaries). Each
such feature is very informative on its own and can be readily iden-
tified and understood by a radiologist.
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Table 1: Comparison between bivariate, univariate and oblique trees for classification. Each tree was selected by cross-

validating its hyperparameter and this was repeated 3 times over random training/validation sets. We report training and

test accuracy (% ±stdev); average depth Δ, node count = and number of features 5 per node (we omit 5 = 1 and 2 for univariate

and bivariate trees, respectively); and average runtime (seconds or “timeout”). We indicate with color green best and blue sec-

ond best result for test accuracy and node count over the univariate and bivariate trees (ignoring the oblique trees).

Dataset (#train ,� , ) . . . . . . . . . . . . . bivariate . . . . . . . . . . . . . . . . . . . univariate . . . . . . . oblique .
TAO CART BiDT CART C5.0 TAO

Breast Cancer (455,30, 2)
training (%) 96.04±1.53 99.12±0.00 96.99±0.10 98.61±0.41 98.9±0.48 98.21±0.79
test (%) 98.25±0.43 98.00±0.00 97.66±0.10 94.73±0.00 95.6±0.67 97.71±1.04
Δ/#nodes/5 1/3 3.0/9 1.6/5 4.0/16 5.3/12 3/15/10.3
runtime (s) 4 6 2 0.1 0.1 5

Segment (1963,19, 7)
training (%) 98.47±0.35 97.30±0.00 97.58±0.01 98.76±0.00 98.9±0.10 99.48±0.21
test (%) 97.41±0.14 96.73±0.14 96.06±0.14 96.01±0.47 96.3±0.48 97.58±1.31
Δ/#nodes/5 11.0/13 11.0/25 9.0/21 15.0/128 12.25/77 8/271/8.5
runtime (s) 30 13 27 0.1 0.1 20

Spambase (3910,57, 2)
training (%) 96.39±0.08 97.49±0.14 95.34±1.85 97.86±2.91 96.16±0.14 96.55±0.47
test (%) 93.34±0.07 92.19±0.05 92.71±0.53 92.18±0.31 92.2±0.42 94.31±1.22
Δ/#nodes/5 14/53 10.0/77 16/161 24.7/362 14.7/77 4/30/42.1
runtime (s) 120 284 208 0.3 0.3 60

House 16H (11464,16, 2)
training (%) 87.1±1.55 89.45±0.00 90.42±0.23 86.2±0.0 91.98±0.55 86.55±1.10
test (%) 85.6±0.07 84.73±0.05 85.6±0.17 83.4±0.0 83.06±0.32 85.47±0.51
Δ/#nodes/5 7/35 10/107 10/115 8/75 15.05/245 4/13/14.9
runtime (s) 30 21 15 0.2 0.1 24

Letter (16000,16,26)
training (%) 100±1.37 100±0.01 98.40±1.76 94.30±0.01 98.66±0.07 95.43±0.29
test (%) 87.25±0.11 87.25±0.00 86.80±0.37 86.04±0.04 86.76±0.33 90.41±0.31
Δ/#nodes/5 35/1314 35.0/2121 37.6/2596 28/3888 16.85/2817 11/2155/8.5
runtime (s) 300 73 12 0.3 0.9 77

Electricity (32702, 8, 2)
training (%) 98.97±2.80 95.80±0.80 96.14±1.20 99.10±0.00 95.04±0.43 98.1±1.8
test (%) 89.38±0.12 86.05±0.05 87.91±0.06 87.80±0.16 88.64±0.42 90.23±0.19
Δ/#nodes/5 23.0/1083 24.0/1741 22.3/1881 30.0/6366 17.25/2615 10/249/6.8
runtime (s) 300 81 393 0.9 0.9 134

MiniBooNE (62048,50, 2)
training (%) 92.36±0.00 96.02±0.02 - 96.61±0.02 95.88±0.07 91.98±0.15
test (%) 91.16±0.00 90.68±0.03 - 90.25±0.03 89.84±0.10 91.43±0.12
Δ/#nodes/5 11.0/105 15/831 - 19.3/2012 15.65/1787 10/133/16.8
runtime (s) 1200 1000 timeout 5.2 6.4 3000

SUSY (600000,18, 2)
training (%) 80.71±0.00 81.35±0.00 - 81.45±0.00 80.90±0.00 81.10±0.00
test (%) 79.51±0.00 79.01±0.00 - 78.90±0.00 79.10±0.00 80.3±0.00
Δ/#nodes/5 17.0/1077 21/2780 - 24/4389 16.25/3227 12/983
runtime (s) ≈2h ≈1h timeout 40.2 35.2 ≈2h

Table 2: Like table 1 but for regression, reporting RMSE

±stdev over 3 runs.

Dataset (#train ,� , ) . . . . . . bivariate . . . . . . univariate oblique
TAO CART CART TAO

airfoil (1002, 5, 1)
0.34±0.13 0.01±0.00 0.52±0.10 3.02±0.29
2.46±0.43 2.72±0.02 2.75±0.62 3.13±0.38
16/252 22/2133 15/479 8/147/3
15 5 1.3 13

abalone (2506, 8, 1)
2.14±0.03 0.39±0.12 2.32±0.11 2.11±0.02
2.24±0.13 2.95±0.38 2.34±0.59 2.18±0.05

2/7 23/903 7/39 6/58.6/6
21 10 0.9 19

cpuact (4915,21, 1)
1.84±0.53 1.74±0.43 2.10±0.71 2.47±0.07
3.11±0.10 3.33±0.31 3.97±1.32 2.71±0.04
10/191 14/327 13/373 6/52.7/13
27 17 1.3 13

ailerons (7154,40, 1)
1.88±0.03 0.71±0.00 1.81±0.12 1.65±0.02
2.03±0.00 2.21±0.00 2.25±0.63 1.76±0.05

5/21 15/50 21/105 6/60.2/13
27 20 1.3 21

Fig. 9 (appendix) shows how our bivariate TAO trees dominate
the univariate CART trees by a significant margin over the range
of tree sizes. Fig. 7 shows the best trees in terms of cross-validation.
The univariate CART tree has depth 7, 16 leaves and 6.4% error. The
bivariate TAO tree has depth 3, 5 leaves and 2% error. Not only is
the bivariate much more accurate, but its small size makes it easier
to understand by simple inspection. It results in only 5 rules vs 16
rules for the univariate tree.

Global level structure. The tree structure shows the bivariate tree
can represent the whole dataset only in 5 very simple IF-THEN-
ELSE rules. It is notable that the tree performs a significant feature
selection. It uses only 6 features (out of 30). Three of them con-
cern the radius measurements of nuclei boundaries (mean value,
largest value and standard error), and obviously capture size infor-
mation about the cells. Two of them concern contour concavities

(mean value and standard error), and obviously capture shape in-
formation about the cells (essentially, whether they are circle-like
or have indentations). The last feature is the texture (mean value)
of the cell nuclei. The tree ignores features about smoothness of
the contour, area of the cells, perimeter of the cell contour, fractal
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univariate CART tree: Δ = 7, 16 leaves, �test = 6.4% bivariate TAO tree: Δ = 3, 5 leaves, �test = 2.0%
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1: if (G7 > 0.05) & (G20 > 0.09) & (G10 > 0.58)
& (G24 > 2.00) & (G14 > −1.19) & (G1 > 0.17)

then PREDICT 1 end if

2: if (G7 > 0.05) & (G20 > 0.09) & (G10 > 0.58)
& (G24 > 2.00) & (G14 > −1.19) & (G1 ≤ 0.17)

then PREDICT 0 end if

3: if (G7 ≤ 0.05) & (G27 ≤ 0.50) & (G16 ≤ 3.20) then PREDICT 1 end if

4: if (G7 ≤ 0.05) & (G27 ≤ 0.50) & (G16 > 3.20) then PREDICT 0 end if

5: ...//12 MORE RULES...

1: if (G7 + 0.3G10 > −0.1) & (G1 + 9.8G20 > 2.3) then PREDICT 1 end if

2: if (G7 + 0.3G10 > −0.1) & (G1 + 9.8G20 ≤ 2.3) then PREDICT 0 end if

3: if (G7 + 0.3G10 ≤ −0.1) & (G20 + 1.2G27 ≤ 0.7) then PREDICT 0 end if

4: if (G7 + 0.3G10 ≤ −0.1) &
(G20 + 1.2G27 > 0.7) & (G0 + 3.9G1 > 1.0)

then PREDICT 1

5: else PREDICT 0 end if

Figure 7: Best univariate CART tree and bivariate TAO tree with their sets of rules (Breast Cancer dataset).

dimension, etc. This makes sense since some of those are likely cor-
related with size and shape as given by the radius and concavity,
and thus are redundant.

Local level structure. At a local level in the tree, we can look
at specific nodes. The pairwise combination of features learned
in each decision node can be seen as a new, constructed feature,
which is quite meaningful and further improves interpretability.
For example, the root of the tree (which uses as features the largest
cell radius and the mean concavity) can be understood as detect-
ing a cell collection where the cell nuclei boundaries are irregular
or unusually large. The root’s right child uses as features the stan-
dard error of radius and concavity, which means it detects high
variance in the shape and size of the cell collection (as opposed
to a collection that has uniform shape and size). Taking these two
nodes together, the tree predicts malignancy (rightmost path). This
can be done with the other 4 leaves, each of which is a population
(malignant or benign) characterized by a short path or rule involv-
ing very few constructed features that are meaningful. As another
example, the deepest decision node classifies the cell collection as
malignant based on a combination of average size and texture vari-
ance irregularities.

5.1.2 Segment dataset. Consider now fig. 8, which shows a bivari-
ate TAO tree on the Segment dataset, a standard UCI benchmark
for classification. It has 1963 instances training, 19 continuous fea-
tures and 7 classes (balanced). Each class is an original color image
and each feature is a local descriptor based on 3×3 patches (listed
in the appendix, table 5). The bivariate tree has 25 nodes (12 de-
cision nodes, 13 leaves), depth 10, and a training and test error of
1.53% and 2.59%, respectively. The univariate CART tree with low-
est test error (not shown) is much bigger: 128 nodes, depth 15 and
test error 3.99%. If we tune CART post-pruning to achieve 25 nodes,
the error increases to 7.5%. Inspecting the bivariate tree reveals a
wealth of information about the data, as we discuss next. Such in-
sight would not be possible with black-box models such as forests
or neural nets.

Global level structure. The tree is heavily lopsided, having depth
10 but only 13 leaves. This means for most decision nodes one or
both children is a leaf, so the IF-THEN-ELSE rules corresponding to
the tree are almost perfectly tail-recursive. This makes them more
interpretable, and faster at inference (many leaves have low depth).

A consequence of the lopsided structure is that several classes,
accounting for over 50% of the dataset, are processed in a cascade
way, and the tree makes early decisions for them (with very short
rules). For example, class 3 is decided at the root (node A) after a
single bivariate decision, with zero training error. Classes 5, 4 and
0 are also decided in a single root-leaf path each after 2, 3 and 5
decision nodes (one of them univariate), respectively, with near-
zero training error. Classes 1, 2 and 6 are harder to separate and
require deeper rules.

The tree has performed a significant feature selection: it uses
only 10 features (0 1 5 6 7 9 10 12 15 18) out of the total 19. Since
the tree has 12 decision nodes, it could use up to 24 distinct fea-
tures, but it uses fewer. This is driven by the optimization we ap-
ply, which globally updates all the tree parameters. In contrast, a
univariate tree with 12 decision nodes would be forced to use at
most 12 features no matter what, because it can have only one in
each node. In order to use sufficiently many features, a univariate
tree has to be overly deep, which limits their interpretability.

Local level structure. We show a scatterplot at each decision node
projecting the instances reaching it onto its two features and show-
ing the boundary of the split. The scatterplots show the power of
bivariate splits (most obviously in nodes E, G, J, etc.). Using uni-
variate splits would require a deep sequence of splits. More im-
portantly, the scatterplots provide a form of supervised dimensional-

ity reduction, like a linear discriminant analysis but tree-structured,

which is very helpful for visualization. It is also directly interpretable
because the projection is directly on two original features (rather
than a complex function of all the features). For example, nodes C
and E show a distinct cluster structure in classes 4 and 0, respec-
tively. Although we were not able to obtain original images of Seg-
ment dataset, we conjecture that these clusters might correspond
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Figure 8: A bivariate TAO tree on the Segment dataset, plotted in 3 columns so it fits. Each decision node shows a scatterplot

of its instances onto its two features. Each node shows the number of training instances reaching it (|R | and their 0/1 loss (!).

to objects of different color. Nodes E, G and K all use a bivariate
split on features (10,12) and show a clear linear, parallel structure
over multiple classes. Features 10 and 12 correspond to average
amount of red and green color of the region. Bivariate split can
be interpreted as a mixture of these two colors. Samples of class 0
in node E can be separated from other samples by measuring the
amount of this mixture and thresholding it using bias.

All nodes use bivariate splits except nodes B and F, which use
a univariate split. For plotting purposes only (so we can show a
2D scatterplot), we include feature 0 (region centroid column) as
the vertical axis in those nodes. This has the serendipitous effect
of showing that all classes show a linear structure along feature 0.

Note how some bivariate splits are able to separate out one class
from the others cleanly (e.g. nodes A, B, C and E). But, in general,
this is not possible with a linear decision boundary and it requires
further partitioning down the tree. For example, nodes D and E
show a sequence of two splits that separate class 0 from the rest.
Thus, we should generally expect that a given decision node will
have some classes straddling both sides of the boundary.

The bivariate decision functions can usually be understood as new,

meaningful features. For example, split in nodeD can be interpreted
as a combination of average amount of red color in the region and
a contrast of adjacent pixels. We assume it can help to distinguish
presence of vertical edges of specific color tone. Some features are
repeatedly used (sometimes the same pair of features), indicating
their relevance to separating some group of classes. For example,
features 1 (row of the center pixel of the region) and 9 (average in-
tensity of the region) are critical to separate cleanly first class 3 and

then class 4 from the rest. This make sense since it indicates posi-
tion of the 3 by 3 patch and its color the intensity. Some features
are used only once, deep down the tree and affecting a small subset
of instances, indicating they are needed to make a fine distinction.
For example, features 0 and 6 appear only once and together in the
deepest node (L). Some bivariate splits could be turned into uni-
variate ones (eg nodes A and C) but at a higher loss. For example
making univariate split at node A results in 15 more misclassified
points.

6 Conclusion

We have proposed bivariate decision trees as a practically useful
tradeoff between univariate trees and oblique trees. They are highly
interpretable because they use two features at most in each deci-
sion node, unlike oblique trees, which use all or many features.
Compared to univariate trees, bivariate trees are much smaller but
significantly more accurate. They also can reveal insights about
the data by constructing new, bivariate features that are useful for
discrimination; and by providing a form of supervised, hierarchi-
cal 2D visualization at each decision node, which reveals patterns
in the data such as clusters or linear structure. To learn a bivari-
ate tree, we have given two algorithms. One is very fast, based
on greedy recursive partitioning. The other is slower but produces
much better trees, by using alternating optimization of the loss and
the node features’ cost globally over all the tree parameters.
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Table 3: Comparison between bivariate, univariate and oblique trees for classification. Each tree was selected by cross-

validating its hyperparameter and this was repeated 3 times over random training/validation sets. We report training and

test accuracy (% ±stdev); average depth Δ, node count = and number of features 5 per node (we omit 5 = 1 and 2 for univariate

and bivariate trees, respectively); and average runtime (seconds or “timeout”). We indicate with color green best and blue sec-

ond best result for test accuracy and node count over the univariate and bivariate trees (ignoring the oblique trees).

Dataset (#train ,� , ) . . . . . . . . . . . . . bivariate . . . . . . . . . . . . . . . . . . . univariate . . . . . . . . oblique . .
TAO CART BiDT CART C5.0 TAO

Breast Cancer (455,30, 2)
training (%) 96.04±1.53 99.12±0.00 96.99±0.10 98.61±0.41 98.9±0.48 98.21±0.79
test (%) 98.25±0.43 98.00±0.00 97.66±0.10 94.73±0.00 95.6±0.67 97.71±1.04
Δ/#nodes/5 1/3 3.0/9 1.6/5 4.0/16 5.3/12 3/15/10.3
runtime (s) 4 6 2 0.1 0.1 5

Segment (1963,19, 7)
training (%) 98.47±0.35 97.30±0.00 97.58±0.01 98.76±0.00 98.9±0.10 99.48±0.21
test (%) 97.41±0.14 96.73±0.14 96.06±0.14 96.01±0.47 96.3±0.48 97.58±1.31
Δ/#nodes/5 11.0/13 11.0/25 9.0/21 15.0/128 12.25/77 8/271/8.5
runtime (s) 30 13 27 0.1 0.1 20

Optical recog. (3823,62,10)
training (%) 97.28±0.36 97.65±0.01 98.70±0.50 98.32±1.18 98.5±0.18 97.68±0.59
test (%) 88.48±0.39 87.03±0.02 88.10±0.32 85.32±0.22 86.8±0.23 91.27±1.74
Δ/#nodes/5 9.0/54 14.0/149 16.0/188 15.0/358 13.65/335 7/115.8/15.0
runtime (s) 30 233 17 0.3 0.3 10

Spambase (3910,57, 2)
training (%) 96.39±0.08 97.49±0.14 95.34±1.85 97.86±2.91 96.16±0.14 96.55±0.47
test (%) 93.34±0.07 92.19±0.05 92.71±0.53 92.18±0.31 92.2±0.42 94.31±1.22
Δ/#nodes/5 14/53 10.0/77 16/161 24.7/362 14.7/77 4/30/42.1
runtime (s) 120 284 208 0.3 0.3 60

Pageblock (4652,10, 5)
training (%) 98.39±0.00 98.41±0.00 99.19±0.40 99.74±0.01 97.7±0.09 95.96±0.12
test (%) 97.93±00 96.83±0.01 96.38±0.06 96.52±0.17 96.54±0.13 96.35±0.41
Δ/#nodes/5 8.0/25 18.0/159 4.3/14 18/268 10.05/90 6/39/7.5
runtime (s) 30 21 15 0.2 0.1 39

House 16H (11464,16, 2)
training (%) 87.1±1.55 89.45±0.00 90.42±0.23 86.2±0.0 91.98±0.55 86.55±1.10
test (%) 85.6±0.07 84.73±0.05 85.6±0.17 83.4±0.0 83.06±0.32 85.47±0.51
Δ/#nodes/5 7/35 10/107 10/115 8/75 15.05/245 4/13/14.9
runtime (s) 30 21 15 0.2 0.1 24

Letter (16000,16,26)
training (%) 100±1.37 100±0.01 98.40±1.76 94.30±0.01 98.66±0.07 95.43±0.29
test (%) 87.25±0.11 87.25±0.00 86.80±0.37 86.04±0.04 86.76±0.33 90.41±0.31
Δ/#nodes/5 35/1314 35.0/2121 37.6/2596 28/3888 16.85/2817 11/2155/8.5
runtime (s) 300 73 12∗ 0.3 0.9 77

Electricity (32702, 8, 2)
training (%) 98.97±2.80 95.80±0.80 96.14±1.20 99.10±0.00 95.04±0.43 98.1±1.8
test (%) 89.38±0.12 86.05±0.05 87.91±0.06 87.80±0.16 88.64±0.42 90.23±0.19
Δ/#nodes/5 23.0/1083 24.0/1741 22.3/1881 30.0/6366 17.25/2615 10/249/6.8
runtime (s) 300 81 393 0.9 0.9 134

MiniBooNE (62048,50, 2)
training (%) 92.36±0.00 96.02±0.02 - 96.61±0.02 95.88±0.07 91.98±0.15
test (%) 91.16±0.00 90.68±0.03 - 90.25±0.03 89.84±0.10 91.43±0.12
Δ/#nodes/5 11.0/105 15/831 - 19.3/2012 15.65/1787 10/133/16.8
runtime (s) 1200 1000 timeout 5.2 6.4 3000

SUSY (600000,18, 2)
training (%) 80.71±0.00 81.35±0.00 - 81.45±0.00 80.90±0.00 81.10±0.00
test (%) 79.51±0.00 79.01±0.00 - 78.90±0.00 79.10±0.00 80.3±0.00
Δ/#nodes/5 17.0/1077 21/2780 - 24/4389 16.25/3227 12/983
runtime (s) ≈2h ≈1h timeout 40.2 35.2 ≈2h

A Experiment setup

We use the CART Python implementation in scikit-learn [30].
We grow the tree to its maximum depth by setting the minsplit
parameter to 1 and the ccp alpha complexity parameter to 0, and
determine the optimal pruning parameter on the hold-out set.

We employ an open-source single-threaded Linux version of the
C5.0 implementation in C (https://rulequest.com/download.html).
To optimizemodel performance for each dataset, we conduct a grid
search on the hold-out set to identify the most suitable parame-
ters. We mainly fine-tune two parameters: -c CF, which governs
the pruning severity, and -m cases, which specifies the minimum
number of data points required to split a node. It’s worth noting

that we maintain default configurations for all other model param-
eters. Remarkably, our findings indicate that the tuned parameter
values closely align with the default settings in many instances.

We use an open-source multithreaded implementation of BiDT
by [3] written in C++ with Python interface (https://github.com/
fbollwein/OptimizedDecisionTrees). We enable both univari-
ate and bivariate splits. The resulting tree grows fully and is then
pruned either using reduced error pruning orminimum cost-complexity
pruning using the hold-out set.

We implement bivariate TAO in C++ with parallel processing
and fine-tune regularization parameters � and _. For each experi-
ment we start with � = 1 and increase in with a step of 0.25 until
the tree becomes fully univariate. Through empirical analysis, it
was found that algorithm generalizes well when� falls within the
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Table 5: Feature description of Segment dataset. Description

provided from the official UCI web page. Index column is

used to indicate features in fig. 8 in the main paper.

Index Description

G0 the column of the center pixel of the region
G1 the row of the center pixel of the region
G2 # pixels in a region = 9

G3 # lines of low contrast that go through the region
G4 # lines of high contrast, greater than 5
G5 contrast of horizontally adjacent pixels in the region
G6 standard deviation of prev. feature
G7 contrast of vertically adjacent pixels
G8 standard deviation of prev. feature
G9 average over the region of (R + G + B)/3
G10 average over the region of the R
G11 average over the region of the B
G12 average over the region of the G
G13 excess red: (2R - (G + B))
G14 excess blue: (2B - (G + R))
G15 excess green: (2G - (R + B))
G16 Value of HSV
G17 Saturation of HSV
G18 Hue of HSV

Table 6: Comparison between bivariate CART and univari-

ate CART initialization for bivariate TAO. We report train

and test accuracy (%, ±stdev over 3 runs), average depth Δ of

the tree and average node count.

Dataset (#train,� , ) bivariate univariate
CART init. CART init.

Breast Cancer (455,30, 2)
training (%) 96.04±1.53 99.12±0.01
test (%) 98.25±0.43 97.37±0.12
Δ/#nodes 1/3 3.1/9.5

Segment (1963,19, 7)
training (%) 98.47±0.35 99.03±0.30
test (%) 97.41±0.14 97.12±1.10
Δ/#nodes 11.0/13 12.0/45.3

Optical recog. (3823,62,10)
training (%) 97.28±0.36 97.17±0.05
test (%) 88.48±0.39 87.65±0.11
Δ/#nodes 14.0/61 11.0/123

Spambase (3910,57, 2)
training (%) 96.78±0.08 96.39±0.08
test (%) 92.32±0.07 93.34±0.07
Δ/#nodes 11/28 14.0/53

Pageblock (4652,10, 5)
training (%) 98.39±0.00 98.24±0.01
test (%) 97.93±00 97.81±0.01
Δ/#nodes 8.0/25 5.0/23

House 16H (11464,16, 2)
training (%) 91.42±1.55 87.1±1.55
test (%) 84.93±0.07 85.6±0.07
Δ/#nodes 11/83 7/35

Letter (16000,16,26)
training (%) 98.3±1.37 97.25±1.37
test (%) 87.25±0.11 86.99±0.11
Δ/#nodes 35/1314 28/2005

Electricity (32702, 8, 2)
training (%) 98.97±2.80 96.80±0.80
test (%) 89.38±0.12 87.05±0.05
Δ/#nodes 23.0/1083 24.0/1141

MiniBooNE (62048,50, 2)
training (%) 94.72±0.00 92.36±0.00
test (%) 91.31±0.00 91.16±0.00
Δ/#nodes 13.0/225 11/105

Table 4: List of features of BreastCancer dataset.Description

provided from the official UCI web page. Index column is

used to indicate features in fig. 7 in the main paper.

radius1 radius2 radius3
texture1 texture2 texture3

perimeter1 perimeter2 perimeter3
area1 area2 area3

smoothness1 smoothness2 smoothness3
compactness1 compactness2 compactness3
concavity1 concavity2 concavity3

concave points1 concave points2 concave points3
symmetry1 symmetry2 symmetry3

fractal dimension1 fractal dimension2 fractal dimension3

range of 1 and 2.5 acrossmost datasets. Since running algorithm for
each value of _ is computationally costly we perform coarse search
with finer steps closer to 0. As it was discussed in section 3.2 in the
main paper, every next value of _ can be calculated for given� . We
generate a fixed subset of line inclinations � uniformly between
0 and 180 degrees and for most experiments � is set between 30

and 90. We use save values of � for bivariate CART. The initial
tree structure is obtained from fully grown CART tree (univariate
or bivariate).

We run our experiments on datasets from UCI ML repository
[21] and [16]. For datasets that does not have separate test set we
randomly subsample 20% of the whole dataset for testing. We ran-
domly select 10% of samples as hold-out set for validation. For ex-
periments, we report average over 3 runs with stdev for train and
test accuracy. We set a timeout of 2 hours for all algorithms on
all datasets except for SUSY (≈600k samples), for which it was in-
creased to 4 hours. Our hardware setup is Intel Xeon CPU E5-2699
v3 @ 2.30GHz with 256 GB RAM.

B Additional experimental results

Table 6 presents results of different initialization for bivariate TAO.
We use initial tree structure produced by univariate and bivariate
CART proposed in section 3.4. Initializing from bivariate CART
generally results in smaller and better performing final trees. In
the main paper we use both initializations and pick the best one
on the validation set.
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