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Introduction

Decision trees have several attractive properties in this context:

◮ Handle multiple classes directly.

◮ Conditional computation by design (input follows a single root-leaf path).

◮ Easy to train and to tune.

◮ As long as the number of nodes is not very large, they are globally interpretable
by simple inspection of the nodes and the features they involve, without the need
of any approximation or external explanation method.

◮ Each leaf can be described by a set of rules.



Modeling capacity:

Axis-aligned trees Oblique trees

x32 < 1.2

x51 < −2.0

x2 ≥ 3.4

x9 < 1.0

x20 ≥ 1.1

◮ Poor data model: only 5 features
participate in the routing function of the
above leaf.

◮ Resulting tree is much bigger - harder to
interpret

◮ Recursive partitioning does not optimize
global objective function

x1w1 + x2w2 + ...+ xpwp < 3.2

x1w1 + x2w2 + ...+ xpwp ≥ 0.5

◮ Each decision node is a function of all the
features.

◮ Their non-linear combination is a much
more complex order-D interaction.

◮ Better modeling capacity, but harder to
interpret.



Proposed method

The goal is to design a decision trees that are more accurate than univariate trees
while remain highly interpretable. Bivariate decision trees, where each decision node
can have up to 2 features, strike a good tradeoff:

◮ More efficient in capturing feature correlation

◮ Significantly higher accuracy and much smaller compared to univariate trees

◮ Much more interpretable than oblique trees

How interpretable are bivariate trees?

◮ Captures pairwise interaction similar to GA2M and Factorization Machine

◮ Much smaller number of rules to extract

◮ Bivariate split can be understood as a new,meaningful feature on its own

◮ Decision node can be shown as scatterplot in 2D (similar to hierarchical 2D
LDA)



Illustration of a tree partitioning on a toy example

Univariate tree Bivariate tree
∆=8, 15 leaves, 4% error ∆=3, 5 leaves, 2% error
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Figure: Partitioning by a univariate (left) and bivariate tree (right). By allowing some feature
correlations, bivariate trees achieve better performance with much smaller trees.



Trees with extracted rules on breast cancer dataset

univariate CART tree bivariate TAO tree

∆ = 7, 16 leaves, Etest = 6.4% ∆ = 3, 5 leaves, Etest = 2.0%

 

  

1
 

 

0 1

 

1 0 0

 

 

0 1

0

0

1 0

 

  

 

0 1

  

1
 

1

 

1 0

 

 
0

1 0

 

1: if (x7 > 0.05) & (x20 > 0.09) & (x10 > 0.58)
& (x24 > 2.00) & (x14 > −1.19) & (x1 > 0.17)

then PREDICT 1
2: if (x7 > 0.05) & (x20 > 0.09) & (x10 > 0.58)

& (x24 > 2.00) & (x14 > −1.19) & (x1 ≤ 0.17)
then PREDICT 0

3: if (x7 ≤ 0.05) & (x27 ≤ 0.50) & (x16 ≤ 3.20)
then PREDICT 1

4: if (x7 ≤ 0.05) & (x27 ≤ 0.50) & (x16 > 3.20)
then PREDICT 0

5: ...//12 MORE RULES...

1: if (x7 + 0.3x10 > −0.1) & (x1 + 9.8x20 > 2.3)
then PREDICT 1

2: if (x7 + 0.3x10 > −0.1) & (x1 + 9.8x20 ≤ 2.3)
then PREDICT 0

3: if (x7 + 0.3x10 ≤ −0.1) & (x20 + 1.2x27 ≤ 0.7)
then PREDICT 0

4: if (x7 + 0.3x10 ≤ −0.1) &
(x20 + 1.2x27 > 0.7) & (x0 + 3.9x1 > 1.0)

then PREDICT 1
5: else PREDICT 0



Learning bivariate trees

◮ Training set with K classes: {(xn, yn)}
N
n=1 ⊂ R

D × {1, . . . ,K}

◮ A set of decision nodes Ndec, a set of leaves Nleaf, and N = Ndec ∪ Nleaf

◮ a routing function in each decision node i ∈ Ndec as
fi(x;θi): R

D → {lefti , righti} ⊂ N which sends a sample x to either its left or
right child.

◮ fi(x;θi) = lefti if wijxj + wikxk + bi < 0, otherwise righti , and the learnable
parameters are θi = {wi , bi}, where ‖wi‖0 ≤ 2 ensures splits of no more than 2
features.

◮ Each leaf i ∈ Nleaf contains a constant label classifier that outputs a single class
ci ∈ {1, . . . ,K}.



Learning bivariate trees. Optimization problem formulation

We collectively define the parameters of all nodes as Θ = {(wi , bi )}i∈Ndec
∪ {cj}j∈Nleaf

.
T (x;Θ) is a predictive function of the entire tree that guides a sample x to exactly one
leaf. We minimize following objective function, where L(·, ·) is the 0/1 loss:

E (Θ) =

N
∑

n=1

L(yn,T (xn;Θ)) + λ
∑

i ∈ Ndec

φ(wi ) s.t.

{

‖wi‖0 ≤ 2,

i ∈ Ndec
(1)

and we introduce the following, new type of regularization:

φ(wi ) =

{

C , if ‖wi‖0 = 2

‖wi‖0, if ‖wi‖0 < 2.
(2)

Regularization term imposes a cost of 0, 1 or C for each zero-, uni- or bivariate node
(using 0, 1 or 2 features) in the tree, respectively.



Learning bivariate trees. Optimization

◮ We use a recent Tree Alternating Optimization (TAO) to learn bivariate trees
because:
◮ It can directly optimize the objective function (eq. (1)).
◮ It can learn the structure of the tree and the parameters at the nodes.
◮ It can take an initial tree and improve over it.
◮ It is computationally efficient.

◮ The traditional, recursive partitioning algorithms, such as CART or C4.5, are
inadequate because:
◮ They grow a tree greedily from scratch rather than improving a given tree.
◮ They are also quite suboptimal, particularly with oblique trees.

◮ “Optimal tree” algorithms (e.g. based on mixed-integer optimization and
branch-and-bound) do not scale beyond toy datasets and tiny trees.



Learning bivariate trees. Optimization

◮ The underlying mechanism of TAO is to take a parametric tree of fixed structure
(here, the one produced by CART), and perform optimization steps in turn over
the parameters of a single node (decision node or leaf) while keeping the rest of
the parameters fixed.

◮ It works quite similar to how one would optimize a neural network, but instead of
gradients (which do not apply) TAO uses alternating optimization on a fixed tree
structure.

TAO is based on two theorems:

◮ Eq. (1) separates over any subset of non-descendant nodes (e.g. all the nodes
at the same depth); this follows from the fact that the tree makes hard decisions.

◮ Optimizing over the parameters of a single node i simplifies to a well-defined
reduced problem over the instances that currently reach node i (the reduced
set Ri ⊂ {1, . . . ,N}).



Learning bivariate trees. Optimization

The form of the reduced problem depends on the type of node:

Decision node: It is a weighted 0/1 loss binary classification problem:

Ei (wi , bi ) =
∑

n∈Ri

L(ȳn, fi (xn;wi , bi )) + λφ(wi ) s.t. ‖wi‖0 ≤ 2 (3)

where L is the 0/1 loss and ȳn ∈ {left, right} is a pseudolabel assigned
to training instance xn to indicate the child that yields a lower loss value.
The loss is computed by propagating xn down the corresponding child.

Leaf: Equivalent to optimizing the top-level objective (1) over parameter ci on
Ri . Exact solution: the majority class of the samples in Ri :
ci = argmaxk∈{1,...,K}

∑

n∈Ri
L(yn, k).



Learning bivariate trees. Solving reduced problem over decision node

Problem (3) can be solved exactly in O(N3D2) by enumerating every possible split
over all

(

D
2

)

combinations. Unfortunately, this is very costly. We propose a faster,
approximate solution:

◮ Bivariate solution of eq. (3) s.t. ‖wi‖0 = 2, bi ∈ R is achieved at
θ
biv
i = {wbiv

i , bbivi }

◮ Univariate solution of eq. (3) s.t. ‖wi‖0 = 1, bi ∈ R is achieved at
θ
univ
i = {(0,wuniv

i )T , bunivi }.

◮ Zero-variate solution of eq. (3) s.t. ‖wi‖0 = 0, bi ∈ {−1,+1} is achieved at
θ
0
i = {0, b0i }.



Learning bivariate trees. Solving reduced problem over decision node

◮ Bivariate solution:
◮ W ∈ R

2×H is a small set of line orientations sampled uniformly by rotating it around
the origin.

◮ For each point in the reduced set we project all pairwise feature combinations onto
line orientations Xbiv

i = XiSW where Xi ∈ R
|Ri |×D are points in the reduced set Ri ,

and S ∈ R
D×2 is a selection matrix for feature combinations.

◮ Solution can be computed using thresholding over features of Xbiv
i .

◮ Univariate solution is computed simply by thresholding over original features.

◮ In zero-variate solution all samples in Ri are sent to the left (b0i = −1) or the
right (b0i = 1).



Learning bivariate trees. Bivariate solution
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Figure: Illustration of our approximate solution of the reduced problem at a decision node
assuming a selected pair of features (xi , xj). The instances in the reduced set of the node are
labeled according to their pseudolabels (preferred child, left ◦ or right ×). The optimum (in
0/1 loss) linear classifier is the thick blue line (one misclassification). The approximate
optimum found using the H = 4 possible directions (inset) is the thick red line (two
misclassifications). The thin red lines are all the possible thresholds (passing through midpoints
between projected instances) for the red orientation.



Learning bivariate trees. Solution to the reduced problem.

The solution of the RP can be summarized as follows:

θ
∗
i =











θ
biv
i , if Lbiv + λC < min(Luniv + λ, L0)

θ
univ
i , if Luniv + λ < min(Lbiv + λC , L0)

θ
0
i , if L0 ≤ min(Lbiv + λC , Luniv + λ)

We break the ties always in favor of a model with lower number of parameters.
Since bivariate split generally produces lower 0/1 loss we typically set C ≥ 1.
λφ(wi ) can be interpreted as the maximum allowed number of misclassified samples by
a decision node. When this threshold is exceeded, the node is pruned.



Overview of Tree Alternating Optimization (TAO)

◮ Given an initial tree structure (typically produced with CART) with initial
parameter values, the resulting algorithm repeatedly visits nodes in reverse
breadth-first search order.

◮ Each iteration trains all nodes at the same depth (in parallel) from the leaves to
the root, by solving either an eq. (3) or reduced problem at each leaf.



Pseudocode of bivariate TAO

input training set {xn, yn}Nn=1,
binary axis-aligned tree T with given structure and parameters Θ at the nodes N

repeat
for i ∈ N
Ri ← reduced set of node i

end if
for d = ∆ downto 0 do
for i ∈ nodes at depth d (can be done in parallel)
if i ∈ Nleaf

ci ← majority class in Ri

else
solution of reduced problem eq. (3) for decision node i ∈ Ndec

end if
if Lbiv + λC < min(Luniv + λ,L0): wi , bi ← θ

biv
i

else if Luniv + λ < min(Lbiv + λC , L0): wi , bi ← θ
univ
i

else if L0 ≤ min(Lbiv + λC , Luniv + λ): wi , bi ← θ
0
i

end if
end for

end for
until E(Θ) does not strictly decrease
remove redundant nodes (empty features solution)
return trained T



Bivariate CART

Our idea above of partial enumeration over the bivariate splits can be combined with
greedy recursive partitioning (in particular CART).

◮ Does not anymore optimize any global objective function and it produces worse
trees than bivariate TAO.

◮ Much faster to train.

◮ Can be implemented in 2 ways:
◮ Modifying the CART split step (based on the Gini index) to use the partial

enumeration
◮ Constructing a new, augmented training set with ≤ D +

(

D
2

)

|H | features in advance
and simply run the usual, univariate CART

◮ Works quite well on its own, can be used to initialize bivariate TAO.



Experiments: interaction of C and λ
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Figure: Phase diagram (λ,C ) for the Segment dataset. We plot: the proportion of bivariate vs
univariate decision nodes (indicating the regions of pure zero-, uni- and bivariate trees); the
number of decision nodes; and the test error (%). The ellipse indicates the region of best-error
trees.



Experiments: dependence on the training set size
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Figure: Number of nodes, test error and training time for univariate CART and C5.0 and
bivariate TAO trees as a function of the sample size (subsampled from the SUSY dataset).



Experiments: comparison to oblique trees
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Figure: 0/1 loss, number of nodes and average number of features per decision node for
bivariate (left) and oblique trees (right) over their regularization path (Segment dataset).



Experiments: quantitative comparison

Dataset (Ntrain,D,K ) . . . . . . . . . . . . . . . . . bivariate . . . . . . . . . . . . . . . . . . . . . . . . . univariate . . . . . . . . . . oblique . .
TAO CART BiDT CART C5.0 TAO

Spambase (3910,57, 2)
training (%) 96.39±0.08 97.49±0.14 95.34±1.85 97.86±2.91 96.16±0.14 96.55±0.47
test (%) 93.34±0.07 92.19±0.05 92.71±0.53 92.18±0.31 92.2±0.42 94.31±1.22
∆/#nodes/f 14/53 10.0/77 16/161 24.7/362 14.7/77 4/30/42.1
runtime (s) 120 284 208 0.3 0.3 60

House 16H (11464,16, 2)
training (%) 87.1±1.55 89.45±0.00 90.42±0.23 86.2±0.0 91.98±0.55 86.55±1.10
test (%) 85.6±0.07 84.73±0.05 85.6±0.17 83.4±0.0 83.06±0.32 85.47±0.51
∆/#nodes/f 7/35 10/107 10/115 8/75 15.05/245 4/13/14.9
runtime (s) 30 21 15 0.2 0.1 24

Letter (16000,16,26)
training (%) 100±1.37 100±0.01 98.40±1.76 94.30±0.01 98.66±0.07 95.43±0.29
test (%) 87.25±0.11 87.25±0.00 86.80±0.37 86.04±0.04 86.76±0.33 90.41±0.31
∆/#nodes/f 35/1314 35.0/2121 37.6/2596 28/3888 16.85/2817 11/2155/8.5
runtime (s) 300 73 12 0.3 0.9 77

Electricity (32702, 8, 2)
training (%) 98.97±2.80 95.80±0.80 96.14±1.20 99.10±0.00 95.04±0.43 98.1±1.8
test (%) 89.38±0.12 86.05±0.05 87.91±0.06 87.80±0.16 88.64±0.42 90.23±0.19
∆/#nodes/f 23.0/1083 24.0/1741 22.3/1881 30.0/6366 17.25/2615 10/249/6.8
runtime (s) 300 81 393 0.9 0.9 134

MiniBooNE (62048,50, 2)
training (%) 92.36±0.00 96.02±0.02 - 96.61±0.02 95.88±0.07 91.98±0.15
test (%) 91.16±0.00 90.68±0.03 - 90.25±0.03 89.84±0.10 91.43±0.12
∆/#nodes/f 11.0/105 15/831 - 19.3/2012 15.65/1787 10/133/16.8
runtime (s) 1200 1000 timeout 5.2 6.4 3000

SUSY (600000,18, 2)
training (%) 80.71±0.00 81.35±0.00 - 81.45±0.00 80.90±0.00 81.10±0.00
test (%) 79.51±0.00 79.01±0.00 - 78.90±0.00 79.10±0.00 80.3±0.00
∆/#nodes/f 17.0/1077 21/2780 - 24/4389 16.25/3227 12/983
runtime (s) ≈2h ≈1h timeout 40.2 35.2 ≈2h



Experiments: interpretability
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Conclusion

◮ We have proposed a new algorithm for training bivariate decision trees, a
practically useful tradeoff between univariate trees and oblique trees.

◮ They are highly interpretable because they use two features at most in each
decision node, unlike oblique trees, which use all or many features.

◮ Compared to univariate trees, bivariate trees are much smaller but significantly
more accurate.

◮ Bivariate trees reveal insights about the data by constructing new, bivariate
features that are useful for discrimination; and by providing a form of supervised,
hierarchical 2D visualization at each decision node, which reveals patterns in the
data such as clusters or linear structure.
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