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1 Introduction
Univariate decision trees, commonly used since the

1950s, predict by asking questions about a single fea-

ture in each decision node. While they are interpretable,

they often lack competitive predictive accuracy due to

their inability to model feature correlations. Multivariate

(oblique) trees use multiple features in each node, cap-

turing high-dimensional correlations better, but some-

times they can be difficult to interpret.We advocate for

a model that strikes a useful middle ground: bivariate

decision trees, which use two features in each node.

This typically produces trees that not only are more

accurate than univariate trees, but much smaller, which

offsets the small increase in node complexity and keeps

them interpretable. They also help data mining by con-

structing new features that are useful for discrimina-

tion, and by providing a form of supervised, hierarchi-

cal 2D visualization that reveals patterns such as clus-

ters or linear structure. We give two new algorithms to

learn bivariate trees: a fast one based on CART; and

a slower one based on alternating optimization with a

feature regularization term, which produces the best

trees while still scaling to large datasets.

Work partially supported by NSF award IIS–2007147.

2 Learning bivariate trees with TAO
We establish the following objective function over all parameters of a tree:

min
Θ

E(Θ) =

N
∑

n=1

L(yn,T (xn;Θ)) + λ
∑

i∈Ndec

φ(wi), s.t. ‖wi‖0 ≤ 2, bi ∈ R, i ∈ Ndec;

cj ∈ {1, . . . ,K}, j ∈ Nleaf

(1)

where L(·, ·) is 0/1 loss function. Furthermore, we introduce the following regularization:

φ(wi) =

{

C, if ‖wi‖0 = 2

‖wi‖0, if ‖wi‖0 < 2

Separability condition implies that equation 1 can be separated and optimized over pa-

rameters of any non-descendant nodes (located on the same depth) independently and in

parallel. Reduced problem over a node (RP) states that optimizing equation 1 over param-

eters of the given node i ∈ N reduces to simpler, well-defined problem involving its reduced

set Ri .

For leaf i ∈ Nleaf the exact solution of RP is a majority class of samples in Ri .

For decision node i ∈ Ndec RP is 0/1 loss binary classification problem:

Ei(wi ,bi) =
∑

n∈Ri

L(ȳn, fi(xn;wi ,bi)) + λφ(wi), s.t. ‖wi‖0 ≤ 2, bi ∈ R
(2)

where L is a 0/1 loss and ȳn ∈ {left, right} corresponds to a pseudolabel assigned to a

training instance xn, signifying the child that yields a lower loss value. The loss is computed

by propagating a sample through the corresponding child.

3 Effect of regularization and Interpretability
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Figure: Resulting bivariate tree trained on Segment dataset. We show 0/1 loss of each node on its reduced set

along with number of samples in it. In decision nodes we visualize the best univariate or bivariate split.

input training set {xn, ȳn}n∈Ri
of

decision node i ∈ Ndec,

matrix of orientations W ∈ R
2×H

for each pair of features j , k ∈ D

for wl ∈W

xj ,k
l ← project selected features onto wl

b
j ,k
l ← optimal thresholding over x

j ,k
l

if j , k ,wl , b
j ,k
l produce lowest value of eq. 2

θ
biv
i ← {w

∗,bj ,k
l }, where w∗ is a sparse vector

of all zeros with corresponding value of wl

at j , k
end if

end for
end for

return θ
biv
i

Figure: Pseudocode of bivariate solution.
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Figure: Illustration of our approximate solution of the

RP at a decision node. The instances in the reduced

set of the node are labeled according to their

pseudolabels (preferred child, left ◦ or right +). The

thin red lines are all the possible thresholds (passing

through midpoints between projected instances) for the

red orientation.

∆ = 7, 16 leaves, Etest = 6.4% ∆ = 3, 5 leaves, Etest = 2.0%
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1: if (x7 > 0.05) & (x20 > 0.09) & (x10 > 0.58)

& (x24 > 2.00) & (x14 > −1.19) & (x1 > 0.17)

then PREDICT 1

2: if (x7 > 0.05) & (x20 > 0.09) & (x10 > 0.58)
& (x24 > 2.00) & (x14 > −1.19) & (x1 ≤ 0.17)

then PREDICT 0

3: if (x7 ≤ 0.05) & (x27 ≤ 0.50) & (x16 ≤ 3.20) then PREDICT 1

4: if (x7 ≤ 0.05) & (x27 ≤ 0.50) & (x16 > 3.20) then PREDICT 0

5: ...//12 MORE RULES...

1: if (x7 + 0.3x10 > −0.1) & (x1 + 9.8x20 > 2.3) then PREDICT 1

2: if (x7 + 0.3x10 > −0.1) & (x1 + 9.8x20 ≤ 2.3) then PREDICT 0

3: if (x7 + 0.3x10 ≤ −0.1) & (x20 + 1.2x27 ≤ 0.7) then PREDICT 0

4: if (x7 + 0.3x10 ≤ −0.1) &
(x20 + 1.2x27 > 0.7) & (x0 + 3.9x1 > 1.0)

then PREDICT 1

5: else PREDICT 0

Figure: Best univariate CART tree and bivariate TAO tree with their sets of rules (Breast Cancer dataset).

Decision nodes of bivariate tree are annotated with their meaning.

4 The size of the pruned tree

0

0.5

1.0

1.5

2.0

2.5

CART

C5.0
bivariate TAO

#
d

e
c
is

io
n

n
o

d
e

s
×

1
0

3

0 1 2 3 4 5 6

N×105

20.6

21.2

21.8

22.4

23

E
te

s
t(
%
)

N×105
0 1 2 3 4 5 6


