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1 Motivation and summary

• Deep neural nets are accurate black-box models.

• Our goal is to understand what internal features

computed by the neural net are responsible for

a particular class. We achieve this by mimicking

the classifier part of the net with a decision tree

having sparse weight vectors at the nodes. We

can learn accurate enough sparse oblique trees

with the tree alternating optimization (TAO) algo-

rithm.

Tree with one class per leaf for

VGG16 network trained on subset of

ImageNet dataset with 16 classes.
=⇒

• We found that out of thousands of neurons (in the last layer of feature-extraction

part of the net), there is only a small subset of neurons associated with a given

class. We explore this by introducing a new feature-level adversarial attack via

masking a specific set of neurons. We show that we can easily manipulate the

neural net features in order to make the net predict, or not predict, a given class.

• For VGG16 trained on a subset of ImageNet (16 classes), only 1 366 out of

8 192 (only 17%) neurons are needed to achieve the same performance as the

original network. On an average number of neurons associated with a given

class is around 200.
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2 Masking of deep net features

• Consider a trained deep net classifier: y = f(x).

• We can write f as: f(x) = g(F(x)), where

⋄ F represents the features-extraction part (z = F(x) ∈ RF).

⋄ g represents the classifier part (y = g(z)).

• Train a sparse oblique tree y = T(z) on the training set {(F(xn), yn)}
N
n=1

⊂ R
F × {1, . . . , K}. Choose the sparsity hyperparameter λ ∈ [0,∞) such

that, T mimicks g very good and is as sparse as possible. Next, inspect the

weights of the decsion nodes to create masks.

• Our masking operation is as follows:

⋄ Original net: y = f(x) = g(F(x)).

⋄ Original features: z = F(x).

⋄ Masked net: y = f(x) = g(μ(F(x)))

⋄ Masked features: z = μ(F(x)) = μ(z).

⋄ z = μ(z) = μ× ⊙ z + μ+.

⋄ μ = {μ×,μ+}, where, μ× ∈ {0,1}F is the multiplicative mask and μ+ ≥ 0
is the additive mask.

• We show three masks:

⋄ ALL TO CLASS k: Let k ∈ {1, . . . , K}. Classify all instances x as class k.

⋄ ALL CLASS k1 TO CLASS k2: Let k1 6= k2 ∈ {1, . . . , K}. For any instance

originally classified as k1, classify it as k2. For any other instance, do not

alter its classification.

⋄ NONE TO CLASS k: Let k ∈ {1, . . . , K}. For any instance originally classi-

fied as k, classify it as any other class. For any other instance, do not alter

its classification.
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Mimicking part of a neural net with a decision tree.
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Illustration of masks for a particular image in VGG16. Column 1 shows the image masks (when

available). Column 2 shows the histogram of corresponding softmax values. Row 3 shows a mask

manually cropped in the image, whose features resemble those of row 2. Row 4 shows a mask in

feature space obtained by finding the top-3 superpixels whose features most resemble those of the

masked features of row 2.


