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® Deep neural nets are accurate black-box models.
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e Qur goal is to understand what internal features 4(0=0)
computed by the neural net are responsible for |
a particular class. We achieve this by mimicking
the classifier part of the net with a decision tree
having sparse weight vectors at the nodes. We
can learn accurate enough sparse oblique trees
with the tree alternating optimization (TAQO) algo-
rithm.
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Tree with one class per leaf for
VGG16 network trained on subset of =
ImageNet dataset with 16 classes.
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® \We found that out of thousands of neurons (in the last layer of feature-extraction
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part of the net), there is only a small subset of neurons associated with a given
class. We explore this by introducing a new feature-level adversarial attack via
masking a specific set of neurons. We show that we can easily manipulate the
neural net features in order to make the net predict, or not predict, a given class.

® For VGG16 trained on a subset of ImageNet (16 classes), only 1366 out of

8192 (only 17%) neurons are needed to achieve the same performance as the
original network. On an average number of neurons associated with a given

class is around 200.
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Mimicking part of a neural net with a decision tree.

Masking of deep net features

e Consider a trained deep net classifier: y = f(x).

e We can write f as: f(x) = g(F(x)), where
o F represents the features-extraction part (z = F(x) € RF).
o @ represents the classifier part (y = ¢g(2)).

e Train a sparse oblique tree y = T(z) on the training set {(F(xp), yn)}"_

c Rf x {1,...,K}. Choose the sparsity hyperparameter A € [0, o) such
that, T mimicks g very good and is as sparse as possible. Next, inspect the
weights of the decsion nodes to create masks.

e Our masking operation is as follows:
¢ Original net: y = f(x) = g(F(Xx)).
¢ Original features: z = F(X).
¢ Masked net: y = f(x) = g(u(F(x)))
¢ Masked features: z u(F(x)) u(z).
ozZ=p(Z)=p*0z+u™
o ={u*, ut}, where,u* € {0, 1} is the multiplicative maskand u* > 0
IS the additive mask.

e We show three masks:

¢ ALL TO CLASS k: Let k € {1, ..., K}. Classify all instances X as class k.

¢ ALL CLASS ki TO CLASS kp: Let k1 # kp € {1,...,K}. For any instance
originally classified as k1, classify it as k2. For any other instance, do not
alter its classification.

¢ NONE TO CLASS k: Let k € {1,...,K}. For any instance originally classi-
fied as k, classify it as any other class. For any other instance, do not alter
its classification.
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lllustration of masks for a particular image in VGG16. Column 1 shows the image masks (when
available). Column 2 shows the histogram of corresponding softmax values. Row 3 shows a mask
manually cropped in the image, whose features resemble those of row 2. Row 4 shows a mask in
feature space obtained by finding the top-3 superpixels whose features most resemble those of the
masked features of row 2.



