
Optimal Interpretable Clustering Using Oblique Decision Trees

Magzhan Gabidolla
mgabidolla@ucmerced.edu

Dept. Computer Science & Engineering
University of California, Merced

Merced, CA, United States

Miguel Á. Carreira-Perpiñán
mcarreira-perpinan@ucmerced.edu

Dept. Computer Science & Engineering
University of California, Merced

Merced, CA, United States

ABSTRACT

Recent years have seen a renewed interest in interpretable ma-
chine learning, which seeks insight into how a model achieves a
prediction. Here, we focus on the relatively unexplored case of in-
terpretable clustering. In our approach, the cluster assignments of
the training instances are constrained to be the output of a decision
tree. This has two advantages: 1) it makes it possible to understand
globally how an instance is mapped to a cluster, in particular to
see which features are used for which cluster; 2) it forces the clus-
ters to respect a hierarchical structure while optimizing the origi-
nal clustering objective function. Rather than the traditional axis-
aligned trees, we use sparse oblique trees, which have far more
modelling power, particularly with high-dimensional data, while
remaining interpretable. Our approach applies to any clustering
method which is defined by optimizing a cost function and we
demonstrate it with two :-means variants.

CCS CONCEPTS

• Computing methodologies→ Cluster analysis.

KEYWORDS

clustering, interpretability, decision trees, oblique decision trees

ACM Reference Format:

Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán. 2022. Optimal Inter-
pretable ClusteringUsing ObliqueDecision Trees. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539361

1 INTRODUCTION

The desire to understand the internal working of a predictivemodel
is very old in statistics andmachine learning (ML), but has achieved
enormous prominence in recent years. This is due to the wide-
spread deployment of ML in practical applications; to the black-
box nature of the more accurate models (such as neural networks
and random or boosted forests); and to upcoming regulations in
many jurisdictions that require model or algorithmic decisions to
be explainable in some way, so they can be trusted or audited (for
bias, fairness, mistakes, etc.).

This work is licensed under a Creative Commons Attribution International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539361

The vast majority of work on interpretable models has focused
on classification and, to a less extent, regression. There, the model
takes the form of a predictive mapping (of the label for an input
instance), and multiple approaches exist that seek to interpret the
mapping, globally or locally around a specific instance. Here, we
focus on clustering, which has received far less attention. At a ba-
sic level, the output of a clustering method trained on a dataset
is the set of clusters, i.e., an assignment variable for each training
instance that indicates which cluster it belongs to (we do not con-
sider soft clustering, where the assignment is probabilistic). How-
ever, we can consider that a clustering method also outputs an out-
of-sample mapping that predicts for any instance (not just those in
the training set) the cluster it belongs to. This is effectively a classi-
fier, which we can then interpret, for example to see whether some
input features are not selected, or which features affect which clus-
ters, or whether the clusters exhibit a hierarchical structure. One
simple way to obtain such a mapping is to fit a classifier to the clus-
tering result, but this is suboptimal in that the clustering result and
the explainer mapping should be learned jointly.

Our approach starts by defining a joint learning problem of the
clustering and the explainer mapping.We provide an algorithm for
that which alternates two intuitive steps, one a regularized cluster-
ing and the other a classification. We do this in an agnostic way
with respect to the original clustering method; all we require is
that it define a cost function over the assignments. However, for
the classifier, we use an oblique tree: this strikes a good balance of
interpretability and accuracy, and introduces a hierarchical struc-
ture in the clustering. This provides a principled way to turn a
flat clustering algorithm such as :-means into a hierarchical clus-
tering algorithm that is still driven by the original clustering cost
function.

Next, we first discuss what it means for a clustering method to
be interpretable and argue for our approach (section 3). We dis-
cuss the special case of :-means (section 4). Then, we describe the
class of clustering methods we handle (section 5), define our inter-
pretable clustering formulation (section 6) and give an algorithm
to optimize it (section 7). This critically relies on a recent algorithm
to train sparse oblique trees, Tree Alternating Optimization (TAO),
which we review in section 8. Finally, in section 9 we demonstrate
our approach on two variants of :-means and on datasets of differ-
ent type (tabular, images, documents) and dimensionality.

2 RELATED WORK

We briefly review decision tree based methods for interpretable
clustering. Subspace clustering techniques, which aim to find clus-
ters in low-dimensional subspaces, can also provide interpretable
results (such as those based on feature selection); we refer the reader
to [20, 28] for a detailed review of this work and its applications.

https://orcid.org/0000-0003-3956-2273
https://doi.org/10.1145/3534678.3539361
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539361

KDD ’22, August 14–18, 2022, Washington, DC, USA Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán

The traditional, widely established approach to decision tree
learning in supervised problems, as in CART [3] and C5.0 [29], is
based on greedy top-down induction: by starting with a root node
we greedily split the nodes based on some purity criterion until a
stopping condition is met, and optionally we might prune the tree
based on a validation metric. Several lines of work adapt greedy
recursive partitioning into the domain of clustering [1, 13, 16, 23].
Based on clever heuristics, these papers define new measures of
splitting criteria for clustering such as heterogeneity of the data
based on covariance or density, and they also propose correspond-
ing modifications to the pruning or merging step. Ref. [2] provides
a mixed-integer optimization formulation of a clustering problem
over an axis-aligned decision tree with one leaf per cluster for two
unusual objective functions (the silhouette metric and the Dunn
index). This approach is limited to very small datasets and trees.
Recently, ref. [26] provides theoretical approximation bounds over
the optimal :-means and :-medians clustering for an axis-aligned
decision tree with one leaf per cluster, and proposes a greedy re-
cursive partitioning algorithm to build the tree from the :-means
result. Subsequent works [9, 15, 21, 24] further extend and im-
prove these approximation bounds. All these papers consider axis-
aligned trees with leaves to map the clusters, which is too
restrictive a model. Indeed, their experiments are limited to small
problems. Ref. [14] gives a top-down tree induction algorithm to
build a tree with an arbitrary number of leaves to map the :-means
clustering.

All the aforementioned works consider only axis-aligned trees,
in which a decision node performs the split by thresholding a sin-
gle feature. Oblique trees, which use a linear combination of fea-
tures at a decision node, are much more flexible models than axis-
aligned ones. To the best of our knowledge, there are no existing
works that use (sparse) oblique trees in interpretable clustering.

3 WHAT IS AN “INTERPRETABLE”
CLUSTERING?

In this section we discuss what we mean by interpretable or ex-
plainable clustering, and justify our approach. Throughout, our
work applies generally to any clustering method that defines a cost
function of the cluster assignments; an example which is useful to
keep in mind is :-means.

Interpretability of the clustering out-of-sample mapping. Firstly,
clustering is an exploratory data analysis technique, so it is itself
used to gain insights about a dataset regarding the existence of
clusters. The clustering interpretability or explainability we seek is
different. It aims at explaining how an input instance x ∈ R� (not
necessarily in the training set) is mapped or assigned to a particular
cluster. We call this the out-of-sample mapping. For some cluster-
ing methods, an out-of-sample mapping is naturally implicit. For
example, for :-means it is given by assigning the instance x to its
closest centroid (which involves computing the distance of x to
each centroid). However, this mapping is not very helpful in ex-
plaining how the input features in x determine the cluster, or even
if all features are required or just a subset. Also, precisely char-
acterizing the cluster regions (Voronoi cells in � dimensions!) is
complicated. For other clustering methods (e.g. spectral clustering)
a natural out-of-sample mapping is much harder to determine. For

these reasons, we want to determine an out-of-sample mapping
that is interpretable, and in a way that is agnostic to how the clus-
tering cost is defined, so it is generally applicable.

What kind of mapping is most suitable? It should be flexible
enough to model possibly complex clusters, but interpretable. This
rules out black-box models such as neural networks or random
forests. Some interpretable models are quite limited in modelling
power (e.g. linear models or generalized additive models) and also
do not provide a hierarchical clustering. Here we consider sparse
oblique decision trees, where each split is a hyperplane using few
features.

Sparse oblique decision trees as out-of-sample mapping. Decision
trees have several attractive properties in our context. 1) They nat-
urally handle multiple classes, by assigning one leaf (or more) to
each class. 2) By using multiple leaves per class, they can model
nonconvex and even disconnected classes. 3) They make the clus-
tering hierarchical, i.e., they define a nested set of clusters. 4) As
long as the number of nodes is not very large, they are globally
interpretable by simple inspection of the nodes and the features
they involve, without the need of any approximation or external
explanation method. 5) Each leaf can be described by a rule (given
by the root-leaf path). (Note we do not consider soft trees, where
an instance traverses all the paths in the tree and the prediction is
a weighted average of all the leaves, because this makes the tree
hard to interpret.)

These comments apply to the traditional axis-aligned trees (where
each decision node tests a single input feature). However, axis-
aligned trees are inadequate mappings, particularly for high-di-
mensional data. This is well known because of the restrictive mod-
elling assumption that each leaf must be a box [17]. A CART tree
will typically have many leaves (hence being hard to interpret)
and yet be quite inaccurate. For example, a CART tree trained on
the MNIST dataset (10 digit classes) has hundreds of nodes and a
test error of ≈11%, far worse than a linear classifier. But an even
stronger limitation comes from the number of features the tree
uses. A binary tree with ! leaves has ! − 1 decision nodes, each of
which uses one feature. So the total number of features through-
out the tree is at most ! − 1 (usually less because the same feature
may be used in multiple nodes), and the number of features along
any one root-leaf path is even smaller (log2 ! for a complete tree).
With high-dimensional data, i.e., when the number of features in
an instance is large, this restriction is crippling—particularly if we
use one leaf per cluster, as some recent papers do (see section 2)

In contrast, sparse oblique trees achieve much higher accuracy
and yet the tree remains interpretable. The hyperplane splits are a
good model for high-dimensional data, which often has correlated
features. In practice, using the TAO algorithm (section 8) with a
regularized penalty that sparsifies the weight vectors and prunes
the tree, accurate sparse oblique trees can be learned that are quite
small and use few features at each node, as seen in section 9.

An additional advantage of sparse oblique trees is that their in-
ference is very fast. For :-means, using the natural out-of-sample
mapping takes O(�) time (to compute the distance to each cen-
troid),while using a tree of depthΔ takesO(�Δ) if dense andmuch
less if sparse, which is a huge savings if ≫ Δ (for a complete tree,
Δ = ⌈log2 ⌉).

Optimal Interpretable Clustering Using Oblique Decision Trees KDD ’22, August 14–18, 2022, Washington, DC, USA

Joint optimization of the clustering and the tree. One important
point and a contribution of our paper is that the correct solution
of our problem involves a joint optimization over the clustering as-
signments (according to the original clustering cost) and the tree
parameters (which constrain the assignments). One shortcut to
this joint optimization is to optimize the original clustering on its
own and then directly fit a tree to that. While this may sometimes
provide a reasonable solution, it is suboptimal because the tree
will not be able to model the assignments perfectly, particularly
when we constrain the tree to be small and use few parameters, to
facilitate interpretability. Allowing the assignments and the tree
to coadapt, as our algorithm does, results in a better solution, as
demonstrated in our experiments

Tree size vs complexity of explanation. There is a tradeoff be-
tween accuracy and interpretability in the out-of-sample mapping.
A perfectly accurate mapping can be easily obtained—even with
axis-aligned trees—by simply growing a tree large enough that all
instances in each leaf belong to the same cluster. However, as is
well known in classification, this tree will be very large (hence
hard to interpret) and overfit the data. In fact, such a tree behaves
like a fast data structure to search for the leaf an instance belongs
to, rather than like a classifier that generalizes. In classification,
a supervised problem, this model selection issue is conveniently
solved by cross-validation. In clustering, an unsupervised problem,
we instead provide a hyperparameter _ that the user can tune,
in an exploratory way, to find a tree that strikes a good compro-
mise between prediction accuracy and explanation simplicity. As
seen in section 8, with sparse oblique trees this is achieved with
an ℓ1 penalty _‖w8 ‖1 on the weight vector of each decision node.
This has two useful effects: it sparsifies each hyperplane (using
fewer features hence being more interpretable) and it automati-
cally prunes the tree: ifw8 = 0 for a node 8 , that node is redundant
(as it sends all instances to the same child) and can be removed at
the end. By exploring a range of _ ∈ [0,∞) values (similarly to
the regularization path of the Lasso [17]), we get trees of different
sizes and so explanations of varying complexity—from highly pre-
cise trees that account for minutiae in the data, to less precise trees
that give a higher-level, perhaps more fundamental, explanation.

Summary. For any given clustering method defined by a cost
function, we seek to learn (jointly with the cluster assignments)
an out-of-sample mapping that is a sparse oblique tree.

4 :-MEANS CASE: AN EXACT OBLIQUE TREE

Our paper is agnostic with respect to the clustering criterion. We
seek a controllable tradeoff between faithfulness towards this cri-
terion and interpretability of the tree out-of-sample mapping (in
size of the tree and sparsity of its hyperplane splits). That said, we
consider here the special case of :-means (the squared error dis-
tortion). We show that an exact representation of the clustering
out-of-sample mapping can be done with a (deep) oblique tree but
not with an axis-aligned tree, however deep.

Assume centroids c1, . . . , c ∈ R
� (obtained, say, by running

:-means), and define the ideal out-of-sample mapping as assign-
ing a point x ∈ R� to its closest centroid in Euclidean distance
(breaking ties in some deterministic way). As is well known, this

partitions R� into Voronoi cells, each a convex polytope whose
sides are portions of bisector hyperplanes between pairs of cen-
troids (see fig. 1, plot 1). Can we represent this partition exactly,
for any x ∈ R� , with a decision tree? That is, with a finite binary
tree such that each leaf region is entirely contained in one Voronoi
cell, and each Voronoi cell is the union of one or more leaf regions.
The answer depends on what type of decision nodes we allow.

Arbitrary decision nodes. The answer is, trivially, yes. We can
construct a one-sided tree (an IF-THEN-ELSE sequence) with
leaves, one per cell, and − 1 decision nodes, each with a test of
the form “x is in cell :”. However, this is not very helpful.

Axis-aligned decision nodes. The answer is, in general, no, be-
cause the cell boundaries are oblique, as shown in fig. 1 (plot 1).
This shows that approximating a Voronoi tessellation with an axis-
aligned tree will either require a large tree (clumsy and hard to in-
terpret) or incur a large approximation error. Several papers (see
section 2) provide some form of theoretical guarantees for axis-
aligned treeswith leaves (one per cluster), but this does not trans-
late into good practical performance for the reasons described.

Oblique decision nodes. The answer is yes, always, as given by
the following construction (see fig. 1 plots 2–3). The tree is com-
plete of depth −1 and the decision nodes at depth : ∈ {0, . . . , −
1} all have tests of the form “38 < 3: ” where 8 is some other cen-
troid, and 38 = ‖x − c8 ‖2 is the Euclidean distance from the input x
to centroid 8 . Some cells are given by a single leaf, others by more
than one (each a subset of the Voronoi cell). In effect, the tree en-
codes all possible execution paths of computingmin(31, . . . , 3) by
scanning the centroids sequentially from 1 to . The tree is oblique
because the test 38 < 3: can be written linearly asw

)
8:
x+18: (with

hyperplane weight vector w8: and bias 18:):

328 −3
2
:
= ‖x − c8 ‖

2
2−‖x − c: ‖

2
2 = 2(c:−c8)

)
x+ ‖c8 ‖

2
2+ ‖c: ‖

2
2. (1)

This result is also a corollary of theorem 3.1 in [32], which states
that any -class linear classifier can be exactly represented with
an oblique tree of depth − 1, by noting that a Euclidean distance
classifier (which the Voronoi tessellation is) is a linear classifier
(from eq. (1)).

Although the number of tests is
(
2

)

=
 (−1)

2 , which is much
smaller than 2 −1−1 (the number of decision nodes), the same test
38 < 3: may appear in multiple decision nodes, each correspond-
ing to a specific portion of the hyperplane. The tree depends on
the particular order of the centroids 1, . . . , , and different orders
result in different trees, possibly of even different sizes. This is be-
cause some decision node tests can be redundant (always true or
always false no matter the value of x). For example, this would hap-
pen in fig. 1 (plots 2–3) if the centroids were in 1D rather than 2D.
In general with centroids, it is an interesting question to con-
sider what the smallest tree is and how to compute it efficiently.
However, this is unlikely to be practical if is large, because even
the smallest tree will be huge.

Fig. 1 (plots 4–5) shows a different construction: a much smaller
oblique tree, having leaves (one per cell), but a large approxima-
tion error. It is built by recursive partitioning as in CART, taking

KDD ’22, August 14–18, 2022, Washington, DC, USA Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán

1

2

3

2

31<32

31<33 32<33

1 3 2 3

Y

YY

N

NN

1

2

3

31<32

31<33

32<33

31<32

31<33

1 3

Y

Y

N

N

2

1

2

3

31<32

31<33

Figure 1: Plot 1: Voronoi tessellation induced by = 3 centroids in 2 dimensions. Plots 2 and 3: oblique tree with 4 (= 2 −1)
leaves and the partition it induces, which is equivalent to the Voronoi tessellation. Plots 4 and 5: oblique tree with 3 (=)

leaves and the partition it induces, which is not equivalent to the Voronoi tessellation.

the centroids as a training set, but where each decision node de-
fines an oblique, bisector split 38 < 3 9 between two centroids 8 and
9 . The resulting tree has a depth between ⌈log2 ⌉ and − 1.

This brings us back to our goal: to trade off optimally the cluster-
ing accuracy (according to a specific clustering criterion) with the
interpretability of the clustering out-of-sample mapping, having
the form of a small oblique tree with sparse hyperplane splits.

5 CLUSTERING PROBLEM FORMULATION

Consider a clustering algorithm defined by optimizing problem:

min
Z,	

� (Z,) s.t. Z
)
1 = 1, Z ∈ {0, 1} ×# (2)

given a training set X�×# = (x1, . . . , x#) and seeking clusters,
where 1 is a vector of ones of suitable dimension. Here, � (Z,) is a
cost function defining the goodness of a particular clustering. The
assignment variables Z ×# = (z1, . . . , z#) indicate which cluster
each instance x= is assigned to, encoded as one-hot vectors. The
variables 	 include any other variables learnt by the algorithm,
for example the cluster centroids in :-means. Any clustering algo-
rithm must produce as output the assignment variables, but not all
algorithms need learn additional variables 	. Our formulation can
also handle soft clustering, where z= ∈ [0, 1] , or other constraints
in problem (2), e.g. must-link or cannot-link constraints between
pairs of instances, but for simplicity we ignore this here.

For example, the following cost function:

� (Z,) =
∑#
==1

∑
:=1 I:= 3 (x=, 7:), (3)

where 71, . . . , 7 ∈ R
� and 3 is a distance function, corresponds

to centroid-basedmethods, such as:-means (where3 is the squared
Euclidean distance), spherical :-means (3 is the cosine distance,
or equivalently the negative dot product, assuming instances and
centroids are normalized), :-medoids (7: is constrained to be a
training instance), :-modes [7, 30], :-medians, :-centers, etc. [17].
All of these clustering methods can be solved (approximately, at
least) via various algorithms. The most popular one is alternating
optimization:

• Assignment stepminZ
∑#
==1

∑
:=1 I:= 3 (x=, 7:) s.t.Z

)
1 =

1, Z ∈ {0, 1} ×# : set z= to the cluster : having smallest
3 (x=, 7:), separately for each instance x1, . . . , x# .
• Centroid stepmin	

∑#
==1

∑
:=1 I:= 3 (x=, 7:):

set 7: = argmin
∑

=:I=:=1 3 (x=, 7:). For example, for 3 =

ℓ22 and 3 = cosine distance this sets 7: to the mean of the
instances in cluster : (normalized, for the cosine distance).

Other examples use a cost function defined on a graph where each
instance is one vertex, such as spectral clustering, correlation clus-
tering, etc.

Most clustering methods use a cost function �, but not all. One
is mean-shift clustering, where the number of clusters is implic-
itly defined by the modes of a kernel density estimate. Another
is agglomerative or divisive clustering, which iteratively merge
instances or split groups, respectively (although some work has
sought to define a cost function for these algorithms [10]).

6 INTERPRETABLE CLUSTERING PROBLEM
FORMULATION

We now solve problem (2) but demand that the cluster assignments
z= be produced by an out-of-sample mapping T(x=;�), a classifi-
cation tree with parameters �. That is:

min
	,�

� (T(X;�),) + _ q (�) (4)

where T(·;�): R� → {1, . . . , } (one-hot encoded) and the nota-
tion T(X;�) stands for T(x1;�), . . . ,T(x# ;�). We consider either
an axis-aligned tree or an oblique tree, depending on whether the
decision nodes use a single feature or a (sparse) linear combination
of them. As for the leaf predictors, we consider either a class label
or a histogram over classes (where the most frequent class is the fi-
nal prediction). The regularization term q (�) with user parameter
_ ≥ 0 controls the tree complexity. This is explained in section 8.

This is a difficult optimization problembecause the treeT (which
makes hard decisions at its nodes) is not a differentiable function
of �, and besides T appears as an argument of the nonlinear func-
tion �. To make (4) amenable to iterative optimization, we apply
the method of auxiliary coordinates [6, 8]. We first rewrite (4) as a
constrained problem by introducing the assignment variables:

min
Z,	,�

� (Z,) + _ q (�)

s.t. Z = T(X;�), Z
)
1 = 1, Z ∈ {0, 1} ×# .

(5)

7 INTERPRETABLE CLUSTERING:
OPTIMIZATION ALGORITHM

We apply a penalty method to the equality constraints in (5) that
involve T (leaving the other constraints in place) and define the
problem (similar to that in [5, 31] for dimensionality reduction):

min
Z,	,�

� (Z,) + _ q (�) + ` % (Z,T(X;�))

s.t. Z
)
1 = 1, Z ∈ {0, 1} ×#

(6)

Optimal Interpretable Clustering Using Oblique Decision Trees KDD ’22, August 14–18, 2022, Washington, DC, USA

where ` ≥ 0 is a penalty parameter and % is a penalty function
satisfying % (z, z) = 0 and % (z, z′) > 0 if z ≠ z

′ . The notation
% (Z,T(X;�)) stands for % (z1, T(x1;�)) + · · · + % (z# , T(x# ;�)).
If ` → ∞ then (5) and (6) have the same solutions (in fact, as
seen later, this happens if ` > `∗ for some finite `∗). The objective
of (6) becomes progressively ill-conditioned (hence harder to opti-
mize numerically) as ` increases. Thus, rather than optimizing (6)
directly for a very large value of `, we follow a path of solutions
starting from small `, as is common with quadratic-penalty and
other homotopy methods [27].

For a fixed value of `, we optimize (6) using alternating optimiza-
tion over the clustering variables (Z,) and the tree parameters�.
This results in an intuitive algorithm with the following steps:

• Clustering step (over Z,	 given �):

min
Z,	

� (Z,) + `

#
∑

==1

% (z=, z=)

s.t. Z
)
1 = 1, Z ∈ {0, 1} ×#

(7)

where z= = T(x=;�) is a constant vector for = = 1, . . . , # .
This can be seen as the original clustering problem (2) but
with a regularization term that pulls the assignments Z to-
wards Z. This step can be usually solved using a modified
version of the algorithm for (2). For example, for centroid
clustering as in section 5, the centroid step does not change,
and the assignment step takes the following form (separately
for each = = 1, . . . , #): minz=

∑
:=1 X:=I:= s.t. 1) z= = 1,

z= ∈ {0, 1} , where X:= = 3 (x=, 7:) + ` ?:= ≥ 0 and ?:=
is the penalty value % (z=, z=) when z= picks cluster : . The
solution is to set z= to the cluster : having smallest X:= .
• Tree step (over � given Z,):

min
�

#
∑

==1

% (z=,T(x=;�)) +
_

`
q (�). (8)

This takes the form of a classification problem with loss % ,
tree classifier T and regularizationq , which we can solve us-
ing the TAO algorithm (section 8). Importantly, we can use
warm-start, i.e., initialize TAO using the tree parameters �
of the previous iteration. Note the tree structure is the same
throughout the algorithm, and given in the first iteration. At
the end of the algorithm, we can prune nodes with w8 = 0.

Choice of penalty function and type of tree leaf. There are mul-
tiple choices of penalty function in (6) and of what form of label
the tree leaves should use. The following two possibilities are most
convenient algorithmically:

• % = 0/1 loss (% (z, z) = 0 and % (z,)) = 1 if z ≠)) and leaf
8 has a constant label (one-hot encoded)) 8 ∈ {0, 1} (with
1
)) 8 = 1), which gives the class label it predicts.

• % = squared error (% (z,)) = ‖z −) ‖22) and leaf 8 has a con-

stant histogram) 8 ∈ [0, 1] (with 1
)) 8 = 1), which gives

the probability of each class in that leaf.

The abovemeans that the tree step (which is always a classification
problem with inputs X and “ground-truth” class labels Z) uses ei-
ther the 0/1 loss or the squared error, respectively. TAO can handle
both types of loss function besides the regularization term q .

input X�×# = {x1, · · · , x# }, _ ≥ 0, 0 > 0, `0 > 0
initial tree structure and random �

Z,	← argmin � (Z,) s.t. Z
)
1=1, Z∈{0,1} ×# Free clustering

�←

{

argmin % (Z,T(X;�)), _ = 0

0, _ > 0
Direct tree fit

` ← `0
repeat

Z,	← argmin� (Z,) + ` % (Z,T(X;�)) Clustering step

s.t. Z
)
1 = 1, Z ∈ {0, 1} ×#

�← % (Z,T(X;�)) + _` q (�) Tree step

` ← ` · 0

until Z = T(X;�) and no parameter change
return tree T(·;�) and Z,	

Figure 2: Pseudocode of the joint optimization framework

for interpretable clustering

Beginning of the solution path. Eq. (6) has an intuitive solution
(Z∗(0),	∗ (0),�∗(0)) for ` → 0+: Z∗ (0) and 	

∗ (0) are the mini-
mizers of (2), without the constraint on T, which we call the free
clustering; and �

∗ (0) is either 0 if _ > 0 (which corresponds to a
single-leaf tree, and a single cluster) or, if _ = 0, the minimizer of
% (Z∗(0),T(X;�)). The latter corresponds to fitting a classification
tree to a training set (X,Z∗ (0)) that maps each instance to its free
clustering cluster. As noted earlier, this is suboptimal.

End of the solution path and stopping criterion. As noted earlier,
when ` → ∞ then the constraints Z = T(X;�) in (5) must be sat-
isfied and the solution(s) of (5) and (6) coincide. In fact, this is true
when ` > `∗ for a certain finite `∗ > 0. This is because both the
assignment variables z= and the tree outputs) 8 at the leaves take
values from a finite set. This happens because either the variables
are discrete, or (with histogram leaves) they are real but the total
number of possible histograms is finite (because the total number
of training instance subsets at any leaf is finite). Hence, the total
number of possible values for the penalty % (Z,T(X;�)) is also fi-
nite, so when ` is large enough, the penalty term ` % (Z,T(X;�))
must jump to 0 andmakeZ = T(X;�). We could compute an upper
bound for the value `∗ when this happens, but it is not necessary.
We can simply stop the algorithm when, after one iteration (both
clustering and tree steps) Z = T(X;�) and the parameters did not
change (or changed less than a set tolerance).

Schedule of `. To increase ` progressively, we use a multiplica-
tive schedule of the form `C = `0 0

C for C = 0, 1, 2 . . . with 0 > 1
and `0 > 0. The slower we increase `, the better we follow the solu-
tion path, but the more computation. In practice we take 0 ∈ (1, 2).
Pseudocode in fig. 2 summarizes the proposed algorithm.

8 REVIEW OF TREE ALTERNATING
OPTIMIZATION (TAO)

As a subproblemof our algorithm, we have to train a sparse oblique
classification tree with some specific loss function and a regular-
ization term (eq. (8)). This means learning the structure of the tree
and the parameters at the nodes. Besides, it should be able to take
an initial tree and improve over it, so the tree step decreases the
overall objective function in (6) (i.e., warm-start). Finally, it should

KDD ’22, August 14–18, 2022, Washington, DC, USA Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán

be computationally efficient. A recent algorithm, Tree Alternating
Optimization (TAO), satisfies all of the above, and we use it here.
The traditional, recursive partitioning algorithms, such as CART
[3] or C4.5 [29], are inadequate because they grow a tree greedily
from scratch (at each split using a proxy purity criterion) rather
than improving a given tree globally with respect to a specific loss
function. They are also quite suboptimal, particularly with oblique
trees, and so are typically used with axis-aligned trees. Other algo-
rithms are based on a brute-force search via branch-and-bound or
mixed-integer optimization and have a worst-case complexity that
is higher than exponential, so they are impractical.

The underlying mechanism of TAO [4] is to take a parametric
tree of fixed structure (here, complete of depth Δ), and perform
optimization steps in turn over the parameters of a single node
(decision node or leaf) while keeping the rest of the parameters
fixed. This succeeds because of the two theorems that we describe
below. It works quite similar to how one would optimize a neural
network, but instead of gradients (which do not apply) TAO uses
alternating optimization on a fixed tree structure. This results in
iteratively updating all the parameters in the tree (decision node
hyperplanes and leaf output values), with a monotonic decrease of
the objective function at each iteration over all nodes and conver-
gence to a local optimum.

TAO handles naturally the objective function provided over the
tree step in (8). Let us formally define T(x;�) as a binary deci-
sion tree of some predetermined structure with parameters � =

{(w8 ,F80)}8∈D ∪ {) 8 }8∈L, decision nodes in set D and leaves in
set L. The prediction of T(x;�) is obtained by routing x from
the root to exactly one leaf and outputting the cluster label or his-
togram) 8 ∈ R

 . At a decision node 8 we apply a decision function
58 (x;w8 ,F80): R� → {left8 , right8 } ⊂ D ∪ L denoting “go to
the right child if w)8 x + F80 ≥ 0, else go to the left child”. In this
formulation axis-aligned trees are a special case of oblique trees,
where w8 is all zeros but one at the threshold feature index and
−F80 serves as a threshold value. As a regularization term in (8)
we use an ℓ1 penalty: q (�) =

∑

8∈D ‖w8 ‖1. For oblique trees this
encourages sparsifying the hyperplanes. For axis-aligned trees, the
regularization is interpreted as equalling _ if using one feature and
0 if using no features. This penalty for both types of trees can make
decision nodes redundant (when w8 = 0) so they can be pruned at
the end.

TAO is based on two theorems. First, eq. (8) separates over any
subset of non-descendant nodes (e.g. all the nodes at the same depth);
this follows from the fact that the tree makes hard decisions. All
such nodes may be optimized in parallel. Second, optimizing over
the parameters of a single node 8 simplifies to a well-defined re-

duced problem over the instances that currently reach node 8 (the
reduced set R8 ⊂ {1, . . . , # }). The form of the reduced problem
depends on the type of node:

Decision node It is a weighted 0/1 loss binary classification

problem, where the two classes correspond to the left and
right child, which are the only possible outcomes for an in-
stance. Child left8 (right8) incurs a loss (weight) given by
the prediction of the leaf reached from the left (right) child’s
subtree. Thus, each instance is assigned as pseudolabel the
child with lower loss. The reduced problem takes the form

(where ! is the said loss):

min
w8 ,F80

∑

=∈R8

!̄(z=, 58 (x;w8 ,F80)) + _ ‖w8 ‖1 . (9)

For oblique nodes this problem is NP-hard but can be well
approximatedwith a convex surrogate; we use ℓ1-regularized
logistic regression where each instance is weighted by the
loss difference between the winner child and the other child,
and solve it using LIBLINEAR [11].We can guarantee amono-
tonic decrease in the objective by only accepting this update
if it improves over the previous step. For axis aligned splits
the optimal solution is found by enumeration.

Leaf The reduced problem consists of optimizing the original
loss but over the leaf classifier on its reduced set:

min
)8

∑

=∈R8

% (z=,) 8) . (10)

For the two penalty functions that we consider the solution
is either a majority label or a normalized histogram.

Given an initial tree structure with initial parameter values, the
resulting algorithm repeatedly visits nodes in reverse breadth-first
search order. Each iteration trains all nodes at the same depth (in
parallel) from the leaves to the root, by solving either an ℓ1-regu-
larized logistic regression for oblique splits or by enumeration in
axis-aligned case, or the above exact solution at each leaf.

9 EXPERIMENTS

Our experimental findings illustrate that 1) The proposed optimiza-
tion framework producesmore optimal trees for:-means and spher-
ical :-means objectives than just naively fitting a tree to free clus-
tering for both axis-aligned, and especially for oblique trees; 2) The
resulting oblique trees are sparse, shallow and easily interpretable,
while distorting very little the cluster quality as measured by the
objective function, and one can directly tune the tradeoff between
these with a single sparsity parameter _.

We first demonstrate the effectiveness of the proposed algorithm
in terms of objective function improvement, followed by quantita-
tive comparison of axis-aligned and oblique trees. Then we demon-
strate the interpretability of sparse oblique trees on image and doc-
ument data. For experiments with oblique trees, we obtain the ini-
tial tree parameters by recursive :-means bipartitioning: starting
from the root we split the points into two clusters (left and right
children) using :-means with = 2, and continue this recursively
until we construct a complete tree of given depth Δ. More details
on the experiments, including datasets and implementation, can be
found in appendix A.

9.1 The benefit of joint optimization

To see whether the proposed joint optimization framework can
produce more optimal clustering trees than just directly fitting a
tree to free clustering assignments, in fig. 3 we plot how the value
of the clustering objective function changes as we iterate through
the ` schedule. The beginning of the path corresponds to the direct
fit of an oblique TAO tree to free clustering assignments, where
the initial tree is a complete tree of depth Δ=6 for MNIST and Δ=4
for Web of Science, and has random initial parameters. The down-
ward trend of the curves clearly demonstrate the effectiveness of

Optimal Interpretable Clustering Using Oblique Decision Trees KDD ’22, August 14–18, 2022, Washington, DC, USA

MNIST Web of Science

0 10 20 30 40 50
2.352

2.354

2.356

2.358

2.36
10

6

Iterations

The result of the
joint optimization

The tree fitted on
the free clustering

free :-means

_=1.0

_=0.1

:
-m

ea
n
s
ob

j.

0 10 20 30 40 50
3.94

3.96

3.98

4

4.02

4.04

4.06

4.08
10

4

Iterations

The result of the
joint optimization

The tree fitted on
the free clustering

free spherical :-means

_=10.0

_=5.0

Sp
h
er
ic
al
:
-m

ea
n
s
ob
j.

Figure 3: The plots of the :-means and spherical :-means ob-

jectives for MNIST and Web of Science datasets as our joint

optimization algorithm progresses over the ` schedule. Each

point shows the clustering objectivewhen the cluster assign-

ments are given by a sparse oblique tree. The initial points

are the direct fit of TAO to the free clustering assignments.

Method cost (%) Δ #leaves

CART 9.77 4 10
CART 5.58 7 20
CART 4.61 8 40
TAO 4.34 7 10
IMM 4.34 7 10
ExGreedy 4.25 7 10
ExKMC 2.57 10 20
TAO 2.53 10 20
ExKMC 1.95 12 40
TAO 1.70 12 39

FIFA19 (16k, 80, 10)

Method cost (%) Δ #leaves

CART 3.30 5 10
CART 2.54 6 20
IMM 1.19 9 10
TAO 0.77 9 10
CART 0.66 9 40
ExGreedy 0.59 9 10
ExKMC 0.49 12 20
TAO 0.48 12 20
ExKMC 0.08 13 40
TAO 0.00 12 37

Adult (30k, 103, 10)
Table 1: Quantitative comparison of axis-aligned trees for

two tabular datasets. “TAO” refers to the result of joint opti-

mization with an axis-aligned tree. The dataset name is fol-

lowed (# , �, :), where # is the number of points, � feature

dimension, and : is the number of clusters. The cost (%) is

the percentage increase from the reference :-means cluster-

ing. We also report the depth Δ of the tree and the number

of leaves. Sorted by the decreasing :-means objective value.

the proposed joint optimization framework, and that the margin
of improvement can be quite significant.

9.2 Quantitative comparison

Axis aligned trees. For two tabular datasets we evaluate the per-
formance of axis-aligned trees in Table 1. For methods that allow
trees of various size we report multiple of those in order to com-
pare the objective in terms of different tree sizes. The ExKMC algo-
rithm is specifically designed for:-means objective and can induce
trees with an arbitrary number of leaves. For these tabular datasets
it performs much better than a naive CART tree fitted to cluster
assignments. To further improve the ExKMC cluster quality, we
initialize axis-aligned TAO trees from ExKMC at the beginning of
the path (` = 0+), and proceed with alternating optimizations over
the ` schedule. As the results in Table 1 show, in most cases the
proposed algorithm can improve the objective, and in some cases
produce even smaller trees (because some leaves might become
dead and so pruned). But as we will see later, for other types of
data, such as image pixels, axis-aligned trees are not very suitable
to optimally represent the clusters (without being very large).

Method cost (%) #parameters #features/node Δ #leaves

IMM 14.34 28 1 9 10
Ex-Greedy 12.48 28 1 8 10
CART 11.54 28 1 4 10

M
N
IS
T
(6
0k
,7
84
,1
0)

TAO 7.90 199 23 4 9
CART 1.87 3070 1 16 1024
ExKMC 1.81 3070 1 29 1024
TAO 1.50 753 66 5 12
TAO 0.94 1372 96 4 15

IMM 28.34 28 1 9 10
CART 23.33 28 1 4 10
Ex-Greedy 17.28 28 1 7 10

Fa
sh
M
N
IS
T
(6
0k
,7
84
,1
0)

TAO 5.22 452 43 5 11
ExKMC 2.49 3070 1 59 1024
CART 1.75 3070 1 17 1024
TAO 1.74 825 80 5 11
TAO 0.44 2081 146 4 15

IMM 35.02 76 1 25 26
CART 30.61 76 1 10 26
ExGreedy 27.78 76 1 21 26

Le
tt
er

(2
0k
,1
6,
26
)

TAO 9.94 523 15 5 32
TAO 4.06 516 8 6 52
CART 2.89 3070 1 25 1024
ExKMC 2.91 3070 1 39 1024
TAO 2.75 858 12 6 64

Table 2: Like Table 1, but now “TAO” refers to the joint op-

timization with an oblique tree. We also report the number

of parameters and the average number of features used at a

decision node over the whole tree, which is constant (=1) for

axis-aligned splits and varies in (sparse) oblique splits.

Method cost (%) #parameters #features/node Δ #leaves

random 5.81
CART 2.89 19 1 6 7
CART 1.32 190 1 37 64

W
eb
Sc
.(
47
k,
22
k,
7)

CART 0.99 766 1 70 256
TAO 0.80 365 59 6 7
CART 0.62 3070 1 111 1024
TAO 0.41 859 121 6 8
TAO 0.35 1209 199 4 7

random 13.13
CART 2.14 34 1 10 12
CART 0.56 766 1 73 256

A
m
az
.(
46
k,
13
k,
12
)

TAO 0.56 734 59 4 13
TAO 0.29 532 42 6 13
CART 0.28 3070 1 125 1024
TAO 0.18 673 54 6 13

Table 3: Like Tables 1 and 3, but for spherical :-means. TAO

refers to an oblique tree resulted from the proposed algo-

rithm for joint optimization. The cost is measured in terms

of the spherical :-means objective. Random refers to the re-

sult from random assignment of cluster labels. It is included

to show the significance of small improvements in percent-

age, because the scale of the cosine distance is quite small.

Oblique trees. We test the proposed algorithm for oblique trees
on 3 simple image datasets where features are grayscale pixels
(MNIST, FashionMNIST) or statistical moments (Letter). As an ini-
tial tree we take a complete tree of depth Δ and random node
parameters. For comparison we also evaluate the performance of
axis-aligned trees. Table 2 summarizes the results. Clearly, sparse
oblique trees performmuch better than any other axis-aligned tree

KDD ’22, August 14–18, 2022, Washington, DC, USA Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán

but still remaining shallow and using only a small subset of fea-
tures at decision nodes. For example, on FashionMNIST an oblique
with 11 leaves matches the performance of axis-aligned trees with
1024 leaves, while using on average only 10% of features at a de-
cision node. In section 9.3 we visualize these trees to show their
interpretability.

Spherical :-means. The literature on text mining suggests that
a distance based on cosine similarity is a more appropriate mea-
sure in clustering documents than a Euclidean distance [12]. The
corresponding change to the :-means objective is to use a cosine
distance (1.0 − cosine similarity) in place of Euclidean, which re-
sults in a spherical :-means objective. The assignment step from
the regular :-means will now be based on a cosine distance, but the
centroid step will still use the mean vector. Given the modularity
of our proposed optimization framework, there will also be a min-
imal change to our algorithm: the assignment and centroid steps
will correspondingly adjust to the spherical :-means objective, but
the step over the tree will still be the minimization of squared error
plus regularization.

We evaluate the proposed optimization approach for spherical
:-means objective with oblique decision trees for two document
datasets, where the features are tf-idf transformed unigram bag-
of-words. Table 3 summarizes the quantitative results. For com-
parison we also show axis-aligned CART trees fitted to cluster as-
signments. The other algorithms designed specifically for regular
Euclidean :-means are not evaluated here, because it might not
be appropriate to compare them in terms of the spherical :-means
objective. Similar to image datasets, oblique trees achieve more op-
timal clustering objective while still being small and using on the
order of 0.5% features at a decision node. Section B shows a visu-
alization and interpretation of one such sparse oblique tree for the
Amazon Reviews dataset.

9.3 Interpreting :-means clustering for
Fashion MNIST

Fashion MNIST is a dataset of normalized grayscale images of dif-
ferent types of clothes and shoes with 10 number of classes. Run-
ning the free :-means with 10 clusters and visualizing the average
of those clusters (see the right column of fig. 4) reveal that in most
cases clusters are dominated by items with a similar shape. An ex-
ception is cluster 7, which has mostly Sandals (≈ 50%) mixed with
Shirts, T-shirts and Dresses (≈ 25%). On the left column of fig. 4
we visualize 2 sparse oblique trees obtained from our proposed al-
gorithm with different levels of sparsity parameter: _ = 10 and
_ = 100. The sparser top tree has 11 leaves, from which it follows
that 2 leaves (numbered 14 and 24) are predicting the same cluster,
which is, quite interestingly, turns out to be the mixed cluster 7.
Looking at the mean image of these two leaves we could see that
now Sandals are better separated in leaf 24 (≈ 70%) along with the
other shoe (Sneakers ≈ 10%), while Shirts/T-Shirts/Dresses domi-
nate the leaf 14 (≈ 70%). From the tree we can see that a separa-
tion between these leaves takes place at a decision node 3, which
uses pixels in the middle right (corresponding to the ankle side of
shoes) to send points to the subtree with Sandals. Looking at the
other leaves of that same subtree (rooted at node 6) we see that it
is mostly dominated by shoe images and the decision nodes learn

to distinguish them based on specific characteristics such as height
or heel position. The tree at the bottom has denser decision nodes
and is more accurate in terms of :-means objective. In the fig. 4
we provide additional annotations to provide some possible inter-
petation of clustering. In summary, the clustering oblique tree can
serve as a helpful exploratory tool to gain more insight about the
data.

10 CONCLUSION

Wehave proposed a way to redefine any clusteringmethod defined
by a cost function of the cluster assignments, by constraining the
latter to be produced by an interpretable out-of-sample mapping.
The mapping is given by a sparse oblique decision tree, which is
far more powerful than the usual axis-aligned trees, particularly
with high-dimensional data. The tree makes it possible to explain
how a predictionwas arrived at by simple inspection. The resulting
problem involves a joint optimization over the original clustering
parameters and the tree. We give an algorithm that iteratively al-
ternates a step that optimizes over the cluster assignments with a
step that fits a classification tree until both eventually agree. The
complexity of the tree is controlled by a hyperparameter, which
allows a user to explore a tradeoff between accuracy of the cluster-
ing and simplicity of the explanation. In our experiments we have
demonstrated this with :-means-type methods, but the approach
applies to other clustering methods defined by a cost function.
Acknowledgments.Work supported by NSF award IIS–2007147.

REFERENCES
[1] Jayanta Basak and Raghu Krishnapuram. 2005. Interpretable Hierarchical Clus-

tering by Constructing an Unsupervised Decision Tree. IEEE Trans. Knowledge
and Data Engineering 17, 1 (Jan. 2005), 121–132.

[2] Dimitris Bertsimas, Agni Orfanoudaki, and Holly Wiberg. 2021. Interpretable
Clustering: An Optimization Approach. Machine Learning 110, 1 (Jan. 2021).

[3] Leo J. Breiman, Jerome H. Friedman, R. A. Olshen, and Charles J. Stone. 1984.
Classification and Regression Trees.

[4] Miguel Á. Carreira-Perpiñán and Pooya Tavallali. 2018. Alternating Optimiza-
tion of Decision Trees, with Application to Learning Sparse Oblique Trees. In
(NEURIPS), S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (Eds.), Vol. 31. 1211–1221.

[5] Miguel Á. Carreira-Perpiñán and Max Vladymyrov. 2015. A Fast, Universal Al-
gorithm to Learn Parametric Nonlinear Embeddings. In (NIPS), C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. 253–261.

[6] Miguel Á. Carreira-Perpiñán and WeiranWang. 2012. Distributed Optimization
of Deeply Nested Systems. (Dec. 24 2012). arXiv:1212.5921.

[7] Miguel Á. Carreira-Perpiñán and Weiran Wang. 2013. The -Modes Algorithm
for Clustering. (April 23 2013). arXiv:1304.6478.

[8] Miguel Á. Carreira-Perpiñán and WeiranWang. 2014. Distributed Optimization
of Deeply Nested Systems. In Proc. of the 17th (AISTATS 2014), Samuel Kaski and
Jukka Corander (Eds.). Reykjavik, Iceland, 10–19.

[9] Moses Charikar and Lunjia Hu. 2022. Near-Optimal Explainable :-Means for All
Dimensions. In Proc. of the 33rd ACM-SIAM Symposium on Discrete Algorithms
(SODA 2022), Joseph Naor and Niv Buchbinder (Eds.). Virtual, 2580–2606.

[10] Sanjoy Dasgupta. 2016. A Cost Function for Similarity-Based Hierarchical Clus-
tering. In Proc. of the 48th ACM symposium on Theory of Computing (STOC 2016).

[11] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. 2008. LIBLINEAR: A Library for Large Linear Classification. J. Machine
Learning Research 9 (Aug. 2008), 1871–1874.

[12] Ronen Feldman and James Sanger. 2006. The Text Mining Handbook. Advanced
Approaches in Analyzing Unstructured Data. Cambridge University Press.

[13] Ricardo Fraiman, Badih Ghattas, and Marcela Svarc. 2013. Interpretable Cluster-
ing Using Unsupervised Binary Trees. Advances in Data Analysis and Classifica-
tion 7, 2 (June 2013), 125–145.

[14] Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. 2020. ExKMC: Expand-
ing Explainable :-Means Clustering. (July 2 2020). arXiv:2006.02399.

[15] Buddhima Gamlath, Xinrui Jia, Adam Polak, and Ola Svensson. 2021. Nearly-
Tight and Oblivious Algorithms for Explainable Clustering. In (NEURIPS),

Optimal Interpretable Clustering Using Oblique Decision Trees KDD ’22, August 14–18, 2022, Washington, DC, USA

1

-1 -0.5 0 0.5 1

2

4, cl=8

2423

5

10, cl=9

3100

11

22, cl=10

2377

23

46, cl=6

9352

47, cl=3

11360

3

6

12

24, cl=7

5854

25

50, cl=2

6104

51, cl=4

5137

13, cl=1

2112

7

14, cl=7

3061

15, cl=5

9120

No particular pattern,

but brighter clothes

go to the right

High

ankle

boots

Absence of

top pixels

distinguishes

it from shirts

Long

sleeves

distinguish

it from

T-shirts

Horizontal edge

pixels and absence of

vertical edge pixels

define the bag

These pixels

distinguish shoes

from the clothes

on the right

The presence of

top and bottom pixels

characterize the

clusters of the

right subtree

These pixels

distinguish ankle

boots from sneakers

Shape of

trousers

and

brighter

than left

Mask of the features used

1

-1 -0.5 0 0.5 12

4

8

16, cl=2

6574

17, cl=4

1801

9

18, cl=10

2513

19, cl=8

2315

5

10

20, cl=3

4988

21, cl=9

2421

11

22, cl=9

3773

23, cl=7

7669

3

6

12

24, cl=9

647

25, cl=5

9125

13

26, cl=6

7387

27, cl=9

691

7

14

28, cl=4

2529

29, cl=3

4699

15, cl=1

2868

Mostly

shirts have

top pixels

Short Ankle

Boots in the

left subtree

High

Ankle

Boots

Distinguishes

from boots
Trousers

shape BrighterBrighter

Ankle

Boots

Sneakers

Mask of the features used

0 20 40 60 80 100

1.9

2

2.1

2.2

10
6

The result of the
joint optimization

The tree fitted on
the free clustering

free :-means

:
-m

ea
n
s
ob

j.

iterations

cl=1, 2986 cl=2, 6535

cl=3, 9614 cl=4, 4257

cl=5, 9085 cl=6, 7386

cl=7, 7759 cl=8, 2360

cl=9, 7454 cl=10, 2564

0 10 20 30 40
1.9

1.91

1.92

1.93

1.94

1.95

10
6

The result of the
joint optimization

The tree fitted on
the free clustering

free :-means

:
-m

ea
n
s
ob
j.

iterations

Figure 4: Visualization of trees resulted from the proposed optimization algorithm for FashionMNIST dataset with different

sparsity parameters. The top tree results from _ = 100.0, Δ = 5 and has a distortion of 5.22% from the free :-means clustering

objective. The lower tree is obtained with _ = 10.0, Δ = 4, and is only worse by 0.44% than the free clustering. The weight vector

of a decision node is visualized as a 28×28 image. Red/blue pixels contribute sending points to the right/left. A leaf visualizes

the mean of images that reach it. On the top right of the trees, we show the mask of all the features used by a tree. On the

right we visualize the free clustering by plotting the mean image and the number of points. On the right we also plot the

corresponding objective function during the run the algorithm.

M. Ranzato, A. Beygelzimer, P.S. Liang, J. W. Vaughan, and Y. Dauphin (Eds.),
Vol. 34. 28929–28939.

[16] Badih Ghattas, PierreMichel, and Laurent Boyer. 2017. Clustering Nominal Data
Using Unsupervised BinaryDecisionTrees. Pattern Recognition 67, C (July 2017).

[17] Trevor J. Hastie, Robert J. Tibshirani, and Jerome H. Friedman. 2009. The Ele-
ments of Statistical Learning—Data Mining, Inference and Prediction (second ed.).

[18] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual
Evolution of Fashion Trends with One-Class Collaborative Filtering. In Proc. of
the 25th (WWW’2016). 507–517.

[19] Kamran Kowsari, Donald E. Brown, Mojtaba Heidarysafa, Kiana Jafari
Meimandi, Matthew S. Gerber, and Laura E. Barnes. 2017. HDLTex: Hierarchical
Deep Learning for Text Classification. In 16th Int. Conf. Machine Learning and
Applications (ICMLA). 364–371.

[20] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. 2009. Clustering High-
Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering,
and Correlation Clustering. ACM Trans. Knowledge Discovery from Data 3, 1
(March 2009), 1.

[21] Eduardo Laber and Lucas Murtinho. 2021. On the Price of Explainability for
Some Clustering Problems, See [25], 5915–5925.

[22] M. Lichman. 2013. UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml.

[23] Bing Liu, Yiyuan Xia, and Philip S. Yu. 2000. Clustering through Decision Tree
Construction. In 9th ACM (CIKM 2000). 20–29.

[24] Konstantin Makarychev and Liren Shan. 2021. Near-Optimal Algorithms for
Explainable :-Medians and :-Means, See [25], 7358–7367.

[25] MarinaMeila and Tong Zhang (Eds.). 2021. Proc. of the 38th (ICML 2021). Online.
[26] Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, and Nave Frost. 2020.

Explainable :-Means and :-Medians Clustering. In Proc. of the 37th (ICML 2020),
Hal Daumé III and Aarti Singh (Eds.). Online, 7055–7065.

[27] Jorge Nocedal and Stephen J.Wright. 2006. Numerical Optimization (second ed.).
[28] Lance Parsons, Ehtesham Haque, and Huan Liu. 2004. Subspace Clustering for

High Dimensional Data: A Review. SIGKDD Explorations 6, (June 2004), 90–105.
[29] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
[30] Weiran Wang and Miguel Á. Carreira-Perpiñán. 2014. The Laplacian -Modes

Algorithm for Clustering. (June 15 2014). arXiv:1406.3895.
[31] Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán. 2022. Learning In-

terpretable, Tree-Based Projection Mappings for Nonlinear Embeddings. In Proc.
of the 25th (AISTATS 2022). Online, 9550–9570.

[32] Arman Zharmagambetov,Magzhan Gabidolla, andMiguel Á. Carreira-Perpiñán.
2021. Softmax Tree: An Accurate, Fast Classifier When the Number of Classes
Is Large. In Proc. Conf. (EMNLP 2021), Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (Eds.). Online, 10730–10745.

http://archive.ics.uci.edu/ml

KDD ’22, August 14–18, 2022, Washington, DC, USA Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán

A REPRODUCIBILITY

A.1 Datasets

Amazon Reviews We select a small subset of text reviews
from the large collection in [18]1. We use the version from
year 2014, and use the full reviews (listed under Per cate-
gory files). To have some hierarchy of products, we select
the reviews from the following categories: {Toys and Games:
[Electronics for Kids, Arts & Crafts, Baby & Toddler Toys,
Learning & Education], Beauty: [Skin Care: (Body, Face),
Hair Care: (Styling Tools, Styling Products)], Grocery&Gourmet
Food: [Candy Chocolate, Snack Foods, Breakfast, Beverages]
}. From each category, except the “Breakfast”, we select the
longest (in terms of number of words) 4000 reviews. The
“Breakfast” category has only 2358 reviews, from which we
include all. We then extract unigrams from raw texts using
scikit-learn’s CountVectorizer class. For stop_words we
use a built-in English stopword list, andwe set min_df=0.0002
and max_df=0.2 to remove too frequent or very rare words.
Thenwe apply tf-idf transformation using the TfidfTransformer
class. We set the number of clusters equal to the number of
categories (=12) in spherical :-means.

Web of Science Dataset of abstracts of scientific papers [19]2.
From the raw texts of 7 categories we extract the tf-idf fea-
ture vectors using the same procedure as in Amazon Re-
views dataset. We set the number of clusters equal to the
number of categories (=7) in spherical :-means.

MNIST and Fashion MNIST We use only the training set
(#=60000) and scale pixel values to [0,1].We set the number
of clusters equal to the number of classes (=10).

FIFA19 The dataset of football player attributes from a pop-
ular simulation game FIFA 2019 3. We exclude the follow-
ing features: {ID, Name, Photo, Nationality, Club, Club Logo,
Special, Loaned From, Contract Valid Until, Release Clause,
Flag, Position, Jersey Number, Body Type, Real Face, Joined},
because they do not describe the actual physical characteris-
tics of a player. For categorical features we perform one-hot
encoding. We then transform the features to make the mean
0 and variance 1 (feature-wise). We set the number of clus-
ters to 10 (arbitrary choice).

Adult The dataset of 1994 Census participants available in the
UCI Machine Learning repository [22]. We exclude the “fnl-
wgt” feature, as it does not really describe the person. We
perform one-hot encoding of categorical features, and trans-
form the features to have mean 0 and variance 1 (feature-
wise). We set the number of clusters to 10 (arbitrary choice).

Letter English letter recognition task, available in the UCI Ma-
chine Learning Repository [22]. The features are edge counts
and statistical moments. We transform the features to make
mean 0 and variance 1 (feature-wise). We set the number of
clusters equal to the number of classes (=26).

1https://jmcauley.ucsd.edu/data/amazon/
2https://data.mendeley.com/datasets/9rw3vkcfy4/6
3https://www.kaggle.com/karangadiya/fifa19

A.2 Implementation

To obtain the initial free :-means clustering, we use a scikit-learn’s
implementation. For spherical :-means, we implement it ourselves.
We set the number of repeats n_init=50, and the number of it-
erations max_iter=500 to obtain good reference clustering. For
regular Euclidean :-means for initial centroid assignment we use
:-means++, but for spherical :-means the initial centroids are se-
lected randomly. The reference :-means clusters are the same for
all the following decision trees.

TAO We implement TAO ourselves in Python. We initialize
axis-aligned trees from ExKMC, but the oblique trees are
initialized from a complete tree of depth Δ using bisecting :-
means. Depending on the dataset, initial oblique trees have
the following depths Δ ∈ {4, 5, 6}. We consider several val-
ues of sparsity parameter _ ∈ {100, 10, 5, 1, 0.5, 0.1} to obtain
trees with different levels of complexity and cost. We esti-
mate the starting value of `0 in the quadratic penalty sched-
ule as the smallest value of ` needed to change the assign-
ment of points in the Z step. Then we use the following `
schedule ` = `0 × 1.1

8 for 8 ∈ 0, 1, 2, . . . , 100. The algorithm
might terminate early if the penalty term vanishes. When
fitting the initial tree (direct fit) we set the number of TAO
iterations �=20. After that, at each ` step we just perform
�=5 TAO iterations. Once we obtain the final tree, we prune
the nodes that do not receive any points.

ExKMC The algorithmpresented in [14]where a tree can have
an arbitrary number of leaves. We use the authors imple-
mentation4. We set the base_tree to IMM, and consider the
following number of leaves for tabular datasets: {:, 2:, 4:},
where : is the number of clusters. For other datasets we con-
sider trees with the number of leaves up to 1024.

IMM Iterative Mistake Minimization algorithm from [26]. We
use the authors implementation provided in ExKMC.We set
the base_tree to IMM and max_leaves to the number of
clusters : , as IMM only constructs trees with : leaves.

ExGreedy The algorithm from [21]. We use the authors im-
plementation5. The algorithm constructs trees with exactly
: leaves.

CART We use a scikit-learn’s implemention of decision tree
to fit the cluster labels of :-means as a classification prob-
lem. We do not restrict max_depth and control the tree size
through max_leaf_nodes ∈ {:, 2:, 4:} for tabular datasets,
where : is the number of clusters. For other datasets we con-
sider trees with max_leaf_nodes up to 1024.

B INTERPRETING SPHERICAL :-MEANS
CLUSTERING FOR AMAZON REVIEWS
DATASET

We select a subset of Amazon Reviews from 4 types of products
of the following high level categories: Beauty, Food, and Toys. The
details about the selection process can be found in the appendix
A.1. In total our dataset has about 46k text reviews from 12 prod-
uct categories. Having extracted tf-idf transformed bag-of-words

4https://github.com/navefr/ExKMC
5https://github.com/lmurtinho/ExKMC

https://jmcauley.ucsd.edu/data/amazon/
https://data.mendeley.com/datasets/9rw3vkcfy4/6
https://www.kaggle.com/karangadiya/fifa19
https://github.com/navefr/ExKMC
https://github.com/lmurtinho/ExKMC

Optimal Interpretable Clustering Using Oblique Decision Trees KDD ’22, August 14–18, 2022, Washington, DC, USA

hair

toy

taste

kids

flavor

34

play

acne

antiperspirant

face

soap

fragrance

bottle

oil

skin

gum

toy

popcorn

face

tea

coffee

hair

34

iron

dryer

heat

curls

brush

skin

gum

taste

popcorn

bars

face

eat

toy

tea

coffee

fun

daughter

set

colors

skin

face

lotion

cream

scent

smell

oil

taste

razor

flavor

popcorn

eat

gum

energy

Snack Foods
Beverages
Hair Styling Products
Body Care
Face Care

0 2000 4000

popcorn

razor

taste

gum

bars

chocolate

bar

protein

popcorn

razor

pop

shave

popped

popper

corn

Breakfast
Hair Styling Tools
Candy Chocolate
Body Care
Snack Foods

0 500

Body Care
Breakfast
Candy Chocolate
Beverages
Snack Foods

0 1000 2000

gum bars

Hair Styling Products
Candy Chocolate

Face Care
Hair Styling Tools
Beverages

0 500 1000

Body Care
Beverages
Candy Chocolate
Snack Foods
Breakfast

0 500 1000

game

games

camera

books

leapfrog

apps

leappad

toy

markers

colors

set

loves

tea

toys

Toys: Baby Toddler
Snack Foods
Toys: Arts Crafts
Toys: Learning
Toys: Electronics

0 1000 2000

toy

set

fun

kids

play

daughter

coffee

tea

cup

cups

pods

espresso

set

paper

kids

markers

kit

color

draw

toy

music

baby

months

toys

son

month

Candy Chocolate
Toys: Electronics
Toys: Baby Toddler
Toys: Learning
Toys: Arts Crafts

0 2000 4000

Candy Chocolate
Toys: Arts Crafts
Toys: Electronics
Toys: Learning
Toys: Baby Toddler

0 1000 2000 3000

Breakfast
Snack Foods
Baby Toddler Toys
Candy Chocolate
Beverages

0 500 1000 1500

34
hair

iron

Snack Foods
Beverages
Toys: Baby Toddler
Toys: Learning
Toys: Arts Crafts

0 100 200

hair

spray

brush

oil

wig

iron

dryer

straightener

wand

heat

plates

curling

Toys: Arts Crafts
Face Care
Body Care
Hair Styling Tools
Hair Styling Products

0 2000 4000

Toys: Learning
Toys: Arts Crafts
Body Care
Hair Styling Products
Hair Styling Tools

0 1000 2000

Hair Styling Tools
Beverages
Hair Styling Products
Body Care
Face Care

0 100 200 300

0 20 40 60 80
3.52

3.53

3.54

3.55

3.56

3.57
10

4

sp
h
er
ic
al
:
-m

ea
n
s
ob
j.

iterations

The result of the
joint optimization

The tree fitted on
the free clustering

free spherical :-means

cl=1, 6820 cl=2, 1398

Candy Chocolate

Toys: Arts Crafts

Toys: Electronics

Toys: Learning

Toys: Baby Toddler

0 1000 2000 3000

Hair Styling Products

Beverages

Breakfast

Snack Foods

Candy Chocolate

0 500 1000 1500

cl=3, 6720 cl=4, 7121

Beverages

Candy Chocolate

Toys: Baby Toddler

Toys: Learning

Toys: Arts Crafts

0 1000 2000 3000 4000

Snack Foods

Hair Styling Products

Beverages

Body Care

Face Care

0 1000 2000 3000 4000

cl=5, 2862 cl=6, 5521

Snack Foods

Toys: Baby Toddler

Toys: Arts Crafts

Toys: Learning

Toys: Electronics

0 1000 2000 3000

Toys: Arts Crafts

Face Care

Body Care

Hair Styling Tools

Hair Styling Products

0 1000 2000 3000 4000

cl=7, 1464 cl=8, 2614

Beverages

Body Care

Toys: Baby Toddler

Toys: Learning

Toys: Arts Crafts

0 50 100 150 200

Toys: Baby Toddler

Snack Foods

Body Care

Candy Chocolate

Beverages

0 500 1000 1500 2000

cl=9, 6223 cl=10, 1006

Body Care

Breakfast

Beverages

Candy Chocolate

Snack Foods

0 500 1000 1500 2000

Toys: Baby Toddler

Breakfast

Candy Chocolate

Body Care

Snack Foods

0 200 400 600 800

cl=11, 2078 cl=12, 2531

Body Care

Beverages

Candy Chocolate

Snack Foods

Breakfast

0 500 1000

Candy Chocolate

Face Care

Body Care

Hair Styling Products

Hair Styling Tools

0 1000 2000 3000

Figure 5: Visualization of a tree resulted from the proposed algorithm for spherical:-means objective for the subset of Amazon

Reviews dataset. On the top left we plot the curve of the objective function during the algorithm run. We show histograms

(horizontally) of the product categories of the clusters obtained by free spherical :-means on the right column. We visualize

decision nodes by showing the words corresponding to the most positive/negative top 7 weights in red/blue. The words are

sorted by the weight magnitude with higher weights appearing on top. We report the number of nonzero weights (nnz) at the

top of a decision node. At a leaf we plot the histogram of product categories of the points reaching that leaf.

features, we set the number of clusters to 12 and run the free spher-
ical :-means and visualize the clusters by plotting the histograms
in the right column of fig. 5. In general the clusters are dominated
by products from a single category or a few similar categories with
the exception of cluster 7, which has products mostly from Toys,
but also from Body Care and Beverages. We run our joint optimiza-
tion approach for spherical :-means objective with an oblique tree
of depth Δ = 6 and _ = 5 initialized randomly. As the curve on the
top left plot of fig. 5 shows, the tree considerably improves over the
direct fit, and has a distortion of only 0.29% over the free clustering,
and uses on average only 42 features at a decision node. Plotting
the words corresponding to the most significant weights (both pos-
itive and negative) we can visualize the tree in fig. 5. We can no-
tice some hierarchical structure of the nodes with leaves of similar

cluster categories appearing together. For example, the children of
a decision node 11 are about hair care products, where one is dom-
inated by styling products and the other by styling tools, and simi-
larly for the children of decision nodes 34, 35, and 38. The cluster 7
with mixed product categories are predicted by a leaf numbered 10.
Strangely, the parent of it uses a single word “34” to distinguish this
cluster. A closer look at the text reviews in cluster 7 reveals that it
contains documents with the word “"”. This is a decimal en-
coding of a quotation mark in Unicode format. Because of using
stop words in bag-of-words feature extraction, “34” appears as a
significant word characterizing these documents. This case clearly
illustrates the value of an interpretable model such as a decision
tree in debugging or finding artifacts in data, which is not in gen-
eral possible from the free clustering result.

	Abstract
	1 Introduction
	2 Related Work
	3 What is an ``interpretable'' clustering?
	4 k-means case: an exact oblique tree
	5 Clustering problem formulation
	6 Interpretable clustering problem formulation
	7 Interpretable clustering: optimization algorithm
	8 Review of Tree Alternating Optimization (TAO)
	9 Experiments
	9.1 The benefit of joint optimization
	9.2 Quantitative comparison
	9.3 Interpreting k-means clustering for Fashion MNIST

	10 Conclusion
	References
	A Reproducibility
	A.1 Datasets
	A.2 Implementation

	B Interpreting spherical k-means clustering for Amazon Reviews dataset

