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Abstract

Recent years have seen a renewed interest in inter-
pretable machine learning, which seeks insight into how
a model achieves a prediction. Here, we focus on the
relatively unexplored case of interpretable clustering.
In our approach, the cluster assignments of the training
instances are constrained to be the output of a decision
tree. This has two advantages: 1) it makes it possible
to understand globally how an instance is mapped to
a cluster, in particular to see which features are used
for which cluster; 2) it forces the clusters to respect
a hierarchical structure while optimizing the original
clustering objective function. Rather than the tradi-
tional axis-aligned trees, we use sparse oblique trees,
which have far more modelling power, particularly with
high-dimensional data, while remaining interpretable.
Our approach applies to any clustering method which
is defined by optimizing a cost function and we demon-
strate it with two k-means variants.
Work supported by NSF award IIS–2007147.

Defining “Interpretable” Clustering

•We aim at explaining how an input instance x ∈
R

D (not necessarily in the training set) is mapped to
a particular cluster. We call this the out-of-sample
mapping.
•The optimal out-of-sample mapping for k-means is
given by assigning the instance x to its closest centroid.
But this mapping is not very helpful in explaining how
the input features in x determine the cluster.
•For other clustering methods (e.g. spectral cluster-
ing) a natural out-of-sample mapping is much harder
to determine.
•Therefore, we want to determine an out-of-sample
mapping that is interpretable, and in a way that is
agnostic to how the clustering cost is defined, so it is
generally applicable.

Joint optimization algorithm

•We consider clustering algorithms defined by a cost
function E , and demand the cluster assignments come
from a classification tree T(x, Θ). To jointly learn
both clustering Ψ and tree Θ parameters:

min
Ψ,Θ

E (T(X; Θ), Ψ) + λ φ(Θ). (1)

•We rewrite this as a constrained problem using as-
signment variables Z:

min
Z,Ψ,Θ

E (Z, Ψ) + λ φ(Θ) s.t.

Z = T(X; Θ), ZT1 = 1, Z ∈ {0, 1}K×N.
(2)

We apply a penalty method to the equality con-
straints that involve T and define the problem:

min
Z,Ψ,Θ

E (Z, Ψ) + λ φ(Θ) + µ P(Z, T(X; Θ))

s.t. ZT1 = 1, Z ∈ {0, 1}K×N.
(3)

where µ ≥ 0 is a penalty parameter and P is a penalty
function satisfying P(z, z) = 0 and P(z, z′) > 0 if
z 6= z′. If µ → ∞ then both have the same solutions.
We follow a path of solutions starting from small µ,
and for each µ, we perform alternating optimization:
•Clustering step (over Z, Ψ given Θ):

min
Z,Ψ

E (Z, Ψ) + µ
N∑

n=1
P(zn, zn)

s.t. ZT1 = 1, Z ∈ {0, 1}K×N

(4)

where zn = T(xn; Θ) is a constant vector for n =
1, . . . , N . This is very similar to the unconstrained
clustering problem, but with a regularization term
that pulls the assignments Z towards Z.
•Tree step (over Θ given Z, Ψ):

min
Θ

N∑

n=1
P(zn, T(xn; Θ)) +

λ

µ
φ(Θ). (5)

This takes the form of a classification problem with
loss P , tree classifier T and regularization φ, which
we can solve using the Tree Alternating Optimization
(TAO) algorithm.

Axis-Aligned vs Oblique trees

x32 < 1.2

x51 < −2.0

x2 ≥ 3.4

x9 < 1.0

x20 ≥ 1.1

•Only 5 features participate in the routing
function of the above leaf.
•Max order of feature interactions is lim-
ited by the depth ∆ in axis-aligned trees.
•Can model only axis-aligned boundaries.

xT w1 < 3.2

xTw2 ≥ 0.5

•Each decision node is a function of all
the features.
•Their non-linear combination is a much
more complex order-D interaction.
•As out-of-sample mapping, sparse
oblique trees should have better modeling
capacity while remaining small and inter-
pretable.

k-means clustering Axis-aligned tree, k leaves
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Axis-aligned tree, 2k leaves Sparse oblique tree, k leaves
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Experiment Results
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•Trees for k-means on FashionMNIST with different sparsity.
•Top tree: λ = 100.0, depth = 5, cost = 5.22%.
•Bottom tree: λ = 10.0, depth = 4, cost = 0.44%.
•Decision nodes: weight vector visualized as a 28×28 image.
•Red/blue pixels contribute sending points to the right/left.
•Leaves: visualizes the mean of images that reach it.
•The plots on the right: k-means objective during the algorithm run.
•Right side: free clustering (the mean image and number of points).
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The result of the
joint optimization

The tree fitted on
the free clustering

free spherical k-means

•A tree for spherical k-means on the subset of Amazon Reviews.
•Top left plot: the clustering objective during the algorithm run.
•Decision nodes: the words corresponding to the most posi-
tive/negative top 7 weights in red/blue (sorted by weight magnitude).
•nnz: number of nonzero weights (shown at the top of a node).
•Leaf: the histogram of product categories (shown horizontally).


