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Abstract

Maps of ocular dominance and orientation in primary visual cortex have a highly characteristic structure.

The factors that determine this structure are still largely unknown. In particular, it is unclear how short-range

excitatory and inhibitory connections between nearby neurons influence structure both within and between

maps. Using a generalized version of a well-known computational model of visual cortical map development, we

show that the number of excitatory and inhibitory oscillations in this interaction function critically influences

map structure. Specifically, we demonstrate that functions that oscillate more than once do not produce maps

closely resembling those seen biologically. This strongly suggests that local lateral connections in visual cortex

oscillate only once and have the form of a Mexican hat.

1 Introduction

The primary visual cortex of cats, monkeys and ferrets is characterized by a series of columnar maps, each
representing particular features of the visual input. The most noticeable and well-characterized of these are
visual field position (VF, topography), ocular dominance (OD) and orientation preference (OR). These maps
co-exist on the same neural substrate in highly stereotyped patterns. For instance, OD columns tend to intersect
OR columns at steep angles, and OR pinwheels tend to lie at the center of OD columns (Bartfeld and Grinvald,
1992; Obermayer and Blasdel, 1993; Hübener et al., 1997; Crair et al., 1997; Kim et al., 1999; Müller et al., 2000).
These maps and their interrelationships have provided a paradigm example for the investigation of how cortical
structure arises during development.

In particular, theoretical models of columnar development have been remarkably successful at accounting for
many of the observed features of cortical maps (reviewed in Erwin et al., 1995; Swindale, 1996; Carreira-Perpiñán
and Goodhill, 2002b). Many of these models can be seen, explicitly or implicitly, as trading off coverage versus
continuity (Swindale, 1996; Swindale et al., 2000; Carreira-Perpiñán and Goodhill, 2002a). Coverage refers to a
desire to represent all input features uniformly, while continuity refers to the desire to represent all input features
smoothly. In the cortex, continuity arises from the pattern of short-range lateral connections. By specifying the
degree to which neurons at different distances from a particular cortical neuron are excited or inhibited by that
neuron, the continuity term in theoretical models effectively controls the type of surface defined by the sheet of
cortical receptive fields through the higher-dimensional space of input features, and thus the relations between
maps.

A large number of experimental studies have investigated the form these lateral connections take in V1
(reviewed in Callaway, 1998; Lund et al., 2003). Anatomically, a localized injection of an axonal tracer such
as biocytin (e.g. Amir et al., 1993; Bosking et al., 1997; Kisvárday et al., 1997) or GFP adenovirus (Stettler
et al., 2002) leads to a small, densely labeled central region of diameter roughly 500 µm, surrounded by a halo
of more patchy and diffuse connectivity. Physiological studies investigating the sign of the connections within
the central region have generally found a mixture of excitation and inhibition (e.g. Hata et al., 1991; Roerig
and Chen, 2002). It has also been suggested that within this region excitation is more spatially restricted than
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inhibition (Hata et al., 1991), though this is not generally confirmed (see also Swindale, 1996). While the short-
range connections are largely non-specific, the longer-range connections tend to link cells with similar orientation
preferences (e.g. Bosking et al., 1997; Roerig and Chen, 2002). Although the anatomical data does not directly
support a lateral-connection pattern with a Mexican-hat form (central excitation sorrounded by inhibition), other
sources of evidence exist. For example, in mouse visual cortex, extracellular recordings and optical imaging (see
Schuett et al., 2002 and references inside) have shown that stimulation of a limited region of the visual cortex also
elicits surround inhibition, thus suggesting a Mexican-hat pattern. The range of inhibition also seems to extend
farther than suggested by the purely anatomical evidence, and this has a role on map development (see Hensch
and Stryker, 2004; Fagiolini et al., 2004; and references inside).

Models of cortical pattern formation during development have generally considered only the effect of the
dense, short range mixture of excitatory and inhibitory connections, and have ignored the patchy longer-range
connections. In particular, most models have assumed lateral interactions take the form of a radially symmet-
ric disk of short-range excitation surrounded by an annulus of longer range inhibition (e.g. von der Malsburg,
1973; Willshaw and von der Malsburg, 1976; Miller et al., 1989; Goodhill, 1993; reviewed in Swindale, 1996).
Even models which allow plasticity of lateral interactions have imposed the condition of short-range excitation
and longer-range inhibition (Sirosh and Miikkulainen, 1997). Although as discussed above there is little direct
biological evidence to support this assumption, such “Mexican hat” functions for short-range connectivity are
very popular in models for cortical function as well as cortical development (e.g. Somers et al., 1998; Dragoi and
Sur, 2000; Ernst et al., 2001; Kang et al., 2003). One very appealing feature of Mexican hat interactions is their
powerful pattern-forming properties (Turing, 1952; Meinhardt, 1982; Ball, 1999).

However, despite this popularity there has been very little investigation of how important the precise form of
short-range Mexican hat interactions (i.e., the continuity term) is to theoretical models of cortical development.
If it were the case that different types of continuity term led to maps with broadly similar properties, then models
would not provide strong constraints on what patterns of lateral connections might exist in the real cortex. Here
we show that, on the contrary, the precise form of the continuity term provides very sensitive control over the
details of the maps formed. This greatly strengthens the prediction that lateral connections in the real cortex do
indeed have the form of short-range excitation and longer-range inhibition. Our results demonstrate the fragility
of the interrelations between maps with respect to a class of Mexican-hat functions which could be implemented in
biological hardware in terms of localized arbors (of different widths and amplitudes) of excitatory and inhibitory
connections.

The particular model we investigate is the elastic net (Durbin and Willshaw, 1987; Durbin et al., 1989; Durbin
and Mitchison, 1990; Goodhill and Willshaw, 1990; Dayan, 1993). Together with the Kohonen model, the elastic
net exceeds all other models in the closeness with which the maps it produces match the details of real maps
(Erwin et al., 1995; Swindale, 1996). Unlike the Kohonen model however, the elastic net has an objective function
which implements explicitly the trade-off between coverage and continuity. This property allows the effect of the
continuity term to be cleanly separated from that of the coverage term. We first present a novel interpretation
of the continuity term in terms of a pattern of lateral interactions in the cortex, and show that the standard
form of the continuity term, in effect a first-order derivative, represents short-range excitation and longer-range
inhibition. We also generalize the continuity term to higher-order derivatives, and show how these correspond to
patterns of lateral interactions which oscillate more than once (i.e., the annulus of inhibition is now surrounded
at longer range by an annulus of excitation, and so forth). Simulations of the joint development of OD and
OR columns are then compared using these differing assumptions regarding lateral interactions. We find that as
derivative order increases normal map structure is gradually disrupted: in particular many OR pinwheels move to
OD borders, and the histogram of intersection angles between OR and OD columns becomes flat though the maps
themselves remain columnar. These results lead to two testable biological predictions: (1) the sign of short-range
lateral interactions changes only once in visual cortices that have been well-characterized so far; (2) if cortices
are found where columns do not intersect at right angles and OR pinwheels are not constrained to mostly lie on
OD centers, these cortices may contain short-range lateral interactions that change sign more than once.

2 Materials and methods

The elastic net (Durbin and Willshaw, 1987; Durbin and Mitchison, 1990; Goodhill and Willshaw, 1990) produces
maps that attempt to minimize a tradeoff between coverage C, the desire to represent all stimulus features
uniformly in the cortex (Swindale, 1991), and continuity R, the desire to produce a smooth mapping of stimulus
features. This trade-off is expressed in terms of minimizing an “energy function” E = C + β

2
R, where β controls

the weight of R with respect to C. Let xn represent the stimulus space vector n (combination of preferred
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position, ocular dominance and orientation), and ym represent the center in stimulus space of the receptive field
of cortical neuron m. (Note: although it is convenient to refer to m as being a single cortical neuron, it should
more properly be thought of as representing a small patch of neurons. We use the term “receptive field” to refer
to all features jointly, i.e., visual field, ocular dominance and orientation, and not only to the visual field.) In the
elastic net the coverage term is then defined as follows:

C(y1, . . . ,yM ;K) = −K

N
∑

n=1

log

M
∑

m=1

e−
1
2‖

xn−ym
K ‖

2

.

K is a parameter that gives the receptive field size in feature space (‖·‖ represents the Euclidean norm, or length, of
a vector), such that large values of K mean cortical neurons are quite unselective for specific features, while small
values of K mean they are quite selective. We reduce (anneal) K over the course of the simulation, corresponding
to a gradual sharpening of the cortical receptive fields. This implements an efficient optimization procedure known
as deterministic annealing (Rose, 1998). This iterative minimization procedure can be interpreted in terms of
Hebbian learning (Durbin and Mitchison, 1990), although other interpretations are also possible. The stimulus
space is densely populated with points along the dimensions of visual field (VFx, VFy), ocular dominance (OD),
and orientation preference and selectivity (OR, ORr). In our case, the stimulus values (training set) are a grid of
Nx × Ny × NOD × NOR × 1 in the rectangle [0, 1] × [0, 1] × [−l, l] × [−π

2
, π

2
] × [0, r], where OR is conventionally

represented by two variables in polar coordinates, with NOR values uniformly arranged on a ring of radius r (see
e.g. Swindale, 1996). There are N = NxNyNODNOR such 5-dimensional points xn. The net consists of a square
lattice with M centroids, representing a square array of cortical neurons (the depth dimension of the cortex is
not modeled).

The continuity term in the elastic net is defined as

R(y1, . . . ,yM ) =

M
∑

m=1

‖f(ym)‖
2

where for each neuron m the term f is a fixed linear combination of cortical neurons in a neighborhood of m. That
is, f specifies the strength of the interaction between a cortical neuron and its neighbors. We call the coefficients
of the linear combination the stencil. In the original formulation of the elastic net (Durbin and Willshaw, 1987),

R was defined as
∑M

m=1 ‖ym+1 − ym‖
2
, i.e., the sum of squared distances in feature space between adjacent

receptive field centers of neighboring cortical neurons. In the generalized elastic net (Carreira-Perpiñán and
Goodhill, 2004), each term f(ym) = (ym+1 − ym) is viewed as a discretized derivative operator of order p = 1,
i.e., an approximate gradient. We can prove (Carreira-Perpiñán and Goodhill, 2004) that the continuity term can
be rewritten as a Mexican hat function as follows (see p = 1 in table 1). Define the cortical interaction function

ek and the local linear combination g with coefficients ek as:

ek =
−4

π(4k2 − 1)
, k = 0,±1,±2, . . . g(ym) =

∞
∑

k=−∞

ekym+k. (1)

Then, for a large number M of net centroids, it holds that

R(y1, . . . ,yM ) =

M
∑

m=1

‖ym+1 − ym‖
2
≈

M
∑

m=1

‖g(ym)‖
2

(exact expressions can be derived for any finite M , but are complicated and nearly coincide numerically with
the limit approximation). In other words, we can represent the continuity term R(y1, . . . ,yM ) either in terms
of the original linear combinations f(ym) = ym+1 − ym or in terms of the new linear combinations g(ym) given
in eq. (1). That is, the continuity term in the original elastic net is mathematically equivalent to a Mexican hat
function consisting of short-range excitation and long-range inhibition. This demonstrates the equivalence in the
elastic net model of the Mexican-hat cortical interaction and the interpretation of Durbin and Mitchison (1990)
in terms of wirelength minimization (in the stimulus space). It also shows that the sum-of-squared-distances
equation, which involves only nearest-neighbor connections, can be implemented with a denser net of connections
(whose strength decays rapidly with distance).

Instead of choosing, for the function f(ym), the first order derivative of sensory space over cortex, we could
explore the effects of choosing higher order derivatives. For this paper we chose derivatives of order 2, 3 and
4. The discrete forms of these higher-order derivatives are shown in table 1; they are obtained by repeatedly
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Order p Continuity term R =
∑M

m=1 ‖f(ym)‖
2

Cortical interaction function ek

1

∑

m

‖ym+1 − ym‖
2

PSfrag replacements k

ek

ek =
−4

π(4k2 − 1)
,

k = 0,±1,±2, . . .

2

∑

m

‖ym+1 − 2ym + ym−1‖
2

PSfrag replacements k

ek

ek =











2, k = 0

−1, k = ±1

0, rest

3

∑

m

‖ym+2 − 3ym+1 + 3ym − ym−1‖
2

PSfrag replacements k

ek

ek =
96

π(4k2 − 1)(4k2 − 9)
,

k = 0,±1,±2, . . .

4

∑

m

‖ym+2 − 4ym+1 + 6ym − 4ym−1 + ym−2‖
2

PSfrag replacements k

ek

ek =



















6, k = 0

−4, k = ±1

1, k = ±2

0, rest

Table 1: Cortical interaction functions for continuity terms of differential order p = 1 to 4 in the generalized
elastic net in 1D. The equations for R are the discretized difference formulation (using the f linear combinations),
while the graphs show the equivalent Mexican-hat representation and corresponding cortical interaction function
(using the g linear combinations). The vertical axes have been rescaled to aid the visualization. All functions are
constrained to integrate to 0 (note the sum of the coefficients of the discretized difference is 0 in each row). For
p = 1, the cortical interaction function has only one change of sign (considering only one half of the horizontal axis,
by symmetry); as p increases, the function develops progressively more changes of sign (oscillations). For a 2D
net, the resulting lateral connections consist of several concentric regions of alternating excitation and inhibition.

applying the first-order derivative (ym+1 − ym). In each case, we can show that the sum
∑M

m=1 ‖f(ym)‖
2

is

equivalent, in the limit of large M , to
∑M

m=1 ‖g(ym)‖
2

with an appropriate g interaction function; and that this
g interaction function has a progressively larger number of distal oscillations, or alternating rings of excitatory
and inhibitory connections, with increasing order of the derivative. Since the continuity term R should not depend
on the location of the net, but only the relative arrangement of its centroids, the coefficients in the stencil should
add to zero, which is the same as requiring that applying the stencil to a constant function give zero (by definition
of differential stencil). 2D stencils can be readily obtained by passing a 1D stencil horizontally and vertically,
resulting in two terms Rh and Rv that are then added. This is the natural extension of the first-order 2D stencil
used in the original elastic net, though it leads to a Fourier spectrum that is increasingly anisotropic as p increases.

There are other ways to construct 2D stencils, e.g. the Laplacian stencil ∇2
+ =

(

0 1 0
1 −4 1
0 1 0

)

, of order p = 2, which

has a more isotropic spectrum. Note however that in a discrete grid there is not a unique definition of the concept
of isotropy. Although in reality it is likely that the lateral connections are maturing as the maps develop (Sur and
Leamey, 2001), the elastic net model (in common with most other models) simplifies this situation by assuming
a fixed pattern of lateral connections.

Simulation setup We trained nets for derivative orders p = 1, 2, 3 and 4 with the following configuration:
training set: Nx = Ny = 20, NOD = 2, NOR = 12, l = 0.09 and r = 0.16 (totalling N = 9600 points in
5 dimensions); net: 128 × 128 centroids; β = 10; nonperiodic boundary conditions. We reduced K with an
annealing rate of 0.992 from 0.1 to the point at which the OD and OR maps have just arisen (K ≈ 0.05 for all
values of p). We achieved the minimization of E at each value of K by Cholesky factorization (Carreira-Perpiñán
and Goodhill, 2004). This method is both more efficient and more robust than the numerical procedures used
previously (e.g. Durbin and Willshaw, 1987; Durbin and Mitchison, 1990; Goodhill and Willshaw, 1990), which
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were limited to very small β values. We ran 5 different simulations for each value of p in order to obtain error
bars in figs. 3–4, adding a small amount of random noise to the initial net and the training set in each case. The
simulations were performed using custom software written in Matlab.

Several of the statistics reported are based on histograms; in all cases we used n = 10 bins and took each bin’s
center as class representative. Using a different number of bins (100 instead of 10) did not significantly alter any
of the results. In order to quantitatively characterize the histograms (average and variability) as a function of p in
a compact way in fig. 3, we summarized each histogram by 3 statistics. (1) Its Kullback-Leibler divergence (Cover
and Thomas, 1991) to the uniform histogram in the same domain, defined as KL(u) =

∑n
i=1 pi log pi

ui
, where pi

and ui are the values (normalised to sum 1) at bin i of the histogram and the uniform histogram, respectively;
KL(u) quantifies departure from uniformity and takes values from 0 for a uniform histogram to log n ≈ 2.303

when all pi are zero except at a single bin. (2) Its Fisher skewness γ1 = µ3µ
−3/2
2 (where µi is the ith central

moment), which is 0 for a histogram symmetric around its mean and negative (positive) for tails on the left (right)
of the mean. (3) Its mean µ. Both γ1 and µ are independent of the number of bins n; all three are independent of
translations or scalings of the data. Other summary statistics are possible, but these three sufficed to characterize
the histograms we obtained.

Stripe width The power of the discrete Fourier transform of OD and OR angle maps was roughly isotropic
and concentrated around a ring. We summarized it by the mean wavelength (mean stripe width), averaged over
all directions.

Crossing angles We disregarded the points lying 5 pixels or less from the boundaries of the net (a thin inner
stripe framing the maps in fig. 1) to eliminate border effects. At each pixel, we computed the angle between the
gradient vectors of OD and OR (see below) and mapped it to [0◦, 90◦], thus obtaining the angle between contours
of OD and OR. Each such angle counted with a weight proportional to the product of the gradient moduli of OD
and OR, ‖∇OD‖ × ‖∇OR‖, so that pixels lying in areas of either constant OD or constant OR (i.e., away from
borders of OD or contours of OR) were effectively removed from the histogram. This is because, in an area where
either map is nearly constant, the gradient vector is negligible in modulus and its direction basically arbitrary;
unlike along borders, where the gradient vector is large and its direction well defined.

Pinwheel distributions An OR singularity, or pinwheel, is defined positive if the orientation angle increases
in a clockwise direction around the pinwheel and negative if anticlockwise. Pinwheels were automatically located
in the OR maps as follows. First, the winding number of each pixel in the OR map was estimated by summing
the increments of OR angle (in [−π

2
, π

2
]) along a closed path (a square of radius 1 pixel centered in the pixel

considered) in a clockwise direction and dividing the result by 2π; this results in 0 for non-pinwheel points and
+ 1

2
(− 1

2
) for pixels at or adjacent to a positive (negative) pinwheel, respectively. The exact pinwheel location was

obtained by grouping clusters of nonzero winding number and computing their centers of mass. To quantify the
layout of pinwheels with respect to OD stripes, we computed, for every pinwheel, the distribution of distances of
a given pinwheel to its closest OD border. We prefer this to calculating distances to OD centers since the “center
of an OD stripe” is generally not well defined, except for stripes which are translations of each other, and becomes
difficult to use with stripes with irregular boundaries, forks, islands or other complex shapes. In contrast, the
OD borders are well defined in all these cases.

To compute the distances between a pinwheel and its closest OD border, we represented the OD borders by
a finely spaced collection of points (the contours generated by Matlab for the OD map); the said distance was
then given by the point in this collection closest to the given pinwheel. We considered that a pinwheel lay on an
OD border if the distance between the two was 1 pixel or less. The distributions of random pinwheels were built
by generating, uniformly over the cortex, the same number of pinwheels as in the actual map produced by the
simulation, and then computing the distance histogram; this process was repeated 50 times to obtain an average
histogram with error bars that is the one plotted along with the actual ones for comparison. Note that theoretical
distributions (such as the Rayleigh distribution for nearest-neighboring pinwheels; Müller et al., 2000) differ from
the true one because they do not take into account the border effects of a finite cortex.

Gradient correlations The gradient of a variable f (one of VFx, VFy, OD, OR) with respect to the cortical

location (x, y), ∇f(x, y) =
(

∂f
∂x , ∂f

∂y

)

, was approximated at each pixel (i, j) by a central finite difference: ∇fij =
(

fi+1,j−fi−1,j

2h ,
fi,j+1−fi,j−1

2h

)

, where h = 1 pixel is the grid size. For points along the cortex boundaries, a forward

difference
fi+1,j−fi,j

h was used at a small accuracy loss. In both cases, for OR the gradient values were corrected
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to have a maximal absolute value of π
2
. The 2D gradient vector ∇f was converted to polar coordinates (modulus,

angle) for each variable separately, with the angle being used in the histogram of crossing angles. The moduli were
used for the correlation plots (the modulus of VF gradient was defined operationally as the sum of the gradient
moduli of VFx and VFy). The units of the gradient modulus of variable f are those of variable f per pixel. The
linear correlation was quantified by Pearson’s correlation coefficient r. The customary regression lines X → Y

and Y → X minimize the vertical and horizontal errors, while the line X,Y minimizes the orthogonal distances
to the line and is given by the principal component of the data covariance matrix. All 3 lines pass through the
data mean but with different slopes in general. For highly correlated data (r2 ≈ 1), all 3 lines are very close,
while for highly uncorrelated data (r2 ≈ 0) X → Y and Y → X become horizontal and vertical, respectively.

Gradient correlations have also been reported in the experimental literature (e.g. Das and Gilbert, 1997;
Hetherington and Swindale, 1999), where the preferences of VF and OR were determined electrophysiologically
at several cortical sites and then the difference in preference between neighboring sites divided by their cortical
distance. However, for practical reasons “neighboring” sites are much further apart over the cortical surface in
these studies than neighboring points in our simulated cortex.

3 Results

We present the results obtained with a generalized elastic net model of the maps of visual field position (VF),
ocular dominance (OD) and orientation preference (OR). The model attempts to represent the 5 dimensions of
VF (x and y directions), OD and OR (preferred angle and selectivity) using a 2D array of cortical neurons (the
elastic net), thus achieving a reduction of dimension. The maps are the result of maximizing the coverage of these
stimuli while minimizing a continuity constraint on the shape of net (the geometry of the maps). The continuity
constraint penalizes the squared magnitude of the derivative of order p integrated over the whole net, thus forcing
a representation of the maps that is as smooth as possible. Biologically, the continuity constraint represents a
cortical interaction function with the shape of a Mexican hat, in which the number of excitatory-inhibitory regions
increases with the derivative order p (table 1). We considered p = 1 to 4. Table 1 shows, for each of p = 1 to 4, the
corresponding form of the continuity term in the elastic net, and the equivalent (short-range) cortical interaction
function (for details see Methods). For p = 1 (the standard elastic net) the cortical interaction function has the
form of short-range excitation surrounded by an annulus of longer-range inhibition which decreases smoothly to
zero. For p = 2, the magnitude of the longer-range inhibition decreases quickly to zero. For p = 3, the magnitude
of the longer-range inhibition decreases quickly to zero, and then there is a small annulus of excitation surrounding
this which decreases smoothly to zero. For p = 4, the annulus of excitation is stronger but falls rapidly to zero.
It should be emphasized that in each case these functions represent only radially-symmetric short-range cortical
interactions, i.e., within a radius of about 500 microns, and longer-range patchy connections are not considered.

By simulating the development of VF, OD and OR maps using the elastic net with each of these continuity
terms, we demonstrate that these very subtle differences in the form of the Mexican hat cortical interactions
have profound effects on the detailed structure of the maps obtained. Fig. 1 shows the maps obtained from one
simulation for derivative orders p = 1 to 4. The maps obtained in simulations using different random numbers
differed in the detailed layout but were qualitatively similar. Figs. 2 and 5 quantitatively assess the specific maps
of fig. 1, while figs. 3–4 summarize the various statistics as a function of the derivative order; the average value
and error bars (standard deviations) result from 5 simulations per order.

Figure 1 (following page): Simulated maps of ocular dominance and orientation for a generalized elastic net of
derivative orders p = 1 to 4. Left column: ocular dominance map. Center column: orientation polar map.
Right column: contours of ocular dominance and orientation. For each order p, the continuity terms and cortical
interaction functions are given in table 1. The grids contain 128×128 cortical points. This is one of 5 simulations
run with different noise in the initial net and training set. The training set consists of a uniform, dense grid in the
5-dimensional stimulus space of visual field (VFx, VFy), ocular dominance (OD) and orientation (selectivity ORr
and preferred angle ORt). The maps are the result of minimizing the generalized elastic net energy E = C + β

2
R

with β = 10. Note how as p increases the pinwheels increasingly co-locate with OD borders, and the contours
increasingly align along the diagonals. For p = 1, the pinwheels are preferentially away from OD borders, near
OD centers, and the contours of OD and OR intersect preferentially at right angles. As p increases, more and
more pinwheels lie right on OD borders, like beads on a string, and the contours tend to intersect at any angle.
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Crossing angles The distribution of crossing angles of the contours of OD and OR for the maps of fig. 1
are shown in the left column of fig. 2. For p = 1, this distribution is strongly skewed towards orthogonality,
in agreement with experimental data (macaque: Bartfeld and Grinvald, 1992; Obermayer and Blasdel, 1993;
cat: Hübener et al., 1997; Crair et al., 1997; Kim et al., 1999; Müller et al., 2000). However, as p increases, the
distribution quickly loses its bias, and becomes practically uniform for p ≥ 3. The loss of orthogonality is apparent
by close inspection of the contours in fig. 1 (right column). The transformation of the distribution from being
sharply skewed towards orthogonality (mean 65◦) to being practically uniform (mean ≈ 45◦) is clearly shown in
fig. 3 (first row).

Stripe widths Fig. 4 (left) plots the mean wavelength of OD and OR in pixels, showing that the stripes become
narrower as the derivative order increases. The stripe width depends for any derivative order on the variance along
the OD and OR dimensions in the training set, and is related to the order in which both maps arise (Goodhill
and Cimponeriu, 2000). For the results shown in this paper we chose these variance parameters such that OD
columns are slightly wider than OR columns, as is the case in macaques (e.g. Obermayer and Blasdel, 1993).
However, we also investigated the case where OR columns are wider than OD columns, corresponding to the case
in cats (e.g. Löwel et al., 1988). No important differences were found of increasing derivative order in the effects
we have quantified here (data not shown). Specifically, all histograms and curves in figures 2–5 remained basically
the same (same increasing or decreasing pattern, similar location of peaks, etc.), and in figure 4 (left) the two
curves cross over between p = 1 and p = 2, since the OR wavelength decreases faster than the OD one.

It is noticeable that the stripes become increasingly more aligned with the diagonals of the cortical region
considered as p increases, as seen from fig. 1. This is due to the fact that the 2D stencils (pattern of lateral
interactions) we use are increasingly anisotropic in Fourier space as p increases (Carreira-Perpiñán and Goodhill,
2004). In order to eliminate the possibility that some of the other effects on map structure we report might not
appear using more isotropic 2D stencils representing equal derivative order, we also investigated a 2D Laplacian
stencil (order p = 2), which has a more isotropic spectrum. The matching of pinwheels and OD borders and
the uniformity of crossing angles still appeared with this stencil (results not shown), so we conclude that the
anisotropy is not responsible for the effects we report.

Orientation pinwheels Fig. 2 (right column) shows the distribution of distances between nearest-neighboring

pinwheels, normalized by the wavelength of OR. The histograms are very similar for all orders p. When pinwheels
are considered independently of their sign, the histogram peaks quite sharply at half the OR wavelength and has
a slight tail on the right towards higher distances, while quickly dropping to 0 for small distances. If the same
number of pinwheels are uniformly distributed at random, then the histogram peaks at a smaller distance and
has a much longer right tail. When only pinwheels of the same sign are considered, the histogram contains half

Figure 2 (following page): Distribution of crossing angles of OD and OR, distance pinwheel-to-closest-OD-border
and distance pinwheel-to-closest-pinwheel for derivative orders p = 1 to 4, for the maps of fig. 1. The number
of bins is 10 for all histograms; the value at each bin is plotted against the center of the bin and the resulting
points are connected by lines. Left column: histogram of crossing angles in [0◦, 90◦] of the contours of OD and
OR. The horizontal dashed line represents the uniform histogram. Note the bias for orthogonality for p = 1 and
the progressive flattening as p increases. Center column: histogram of the distance from a pinwheel to its closest
OD border. The axes represent the number of pinwheels as a function of the distance in fractions of the OD
wavelength. The two vertical dashed lines mark 1

4
of the wavelengths of OR and OD. “Random (all)” means

pinwheels distributed uniformly at random in the map (the standard deviation bars resulting from 50 such random
sets); “actual (all)” means the actual pinwheels shown in fig. 1 irrespectively of their sign, with “actual (+)” and
“actual (−)” meaning the histogram considering only positive or negative pinwheels, respectively. Note that for
p = 1 there is a single peak (at around λ(OD)/4, the center of an OD stripe); but for p > 1 there is also a second
peak (at 0, the OD border) whose height progressively increases with p at the expense of the OD-center peak. In
all cases the histogram is very different from that resulting from random pinwheels. Right column: histogram of
the distance between nearest-neighboring pinwheels. The axes represent the number of pinwheels as a function
of the distance in fractions of the OR wavelength. The two vertical dashed lines mark 1

2
of the wavelengths of

OR and OD. “Random (all/all)” means pinwheels distributed uniformly at random in the map (the standard
deviation bars resulting from 50 such random sets); “actual (all/all)” means the actual pinwheels shown in fig. 1
irrespectively of their sign, with “actual (+/+)” and “actual (−/−)” meaning the histogram considering only
positive or negative pinwheels, respectively. This histogram remains essentially the same for all values of p.
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Figure 3: Summary statistics for the histograms of fig. 2 as a function of the derivative order p = 1 to 4
(explanations of what these statistics mean are in the Methods). The graphs show the average over 5 different runs
of a histogram statistic and the error bars represent standard deviations. The statistics shown are the Kullback-
Leibler divergence to the uniform histogram KL(u) (left column), the Fisher skewness γ1 (center column) and
the mean µ (right column). The vertical axis for the KL(u) statistic is the same for all rows, as is for the γ1.
Row 1 : statistics for the histogram of crossing angles. All three statistics decrease with increasing p, indicating
a left-skewed histogram for p = 1 that quickly flattens for p > 1. Row 2 : statistics for the histogram of
distance pinwheel-to-closest-OD-border. This histogram remains nonuniform for all p (high KL(u)) but changes
the skewness sign and decreases the mean for p > 1, indicating the growth of the peak at distance 0 (OD border).
Row 3 : statistics for the histogram of distance pinwheel-to-closest-pinwheel. This histogram remains essentially
unchanged, with a tiny decrease of its mean for increasing p due to the increase of the number of pinwheels per
OR module (fig. 4, right column).
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Figure 4: Summary statistics for map wavelengths and pinwheels on OD borders as a function of the derivative
order p = 1 to 4. The graphs show the average over 5 different runs of a statistic and the error bars represent
standard deviations. Left graph: mean wavelengths of OD and OR in pixels (note the cortical grid is 128 × 128
pixels). Right graph: percentage of pinwheels per module of OR lying right on OD borders, where a module of
OR is defined as a square of side equal to the OR wavelength (the plot using the module of OD looked exactly
the same). Note how both the OR and OD wavelengths decrease with p and the percentage of pinwheels on OD
borders per module of OR increases dramatically from a minority (10%) for p = 1 to half for p = 4.

the number of pinwheels and has the same shape, but peaks at about 3
4

the OR wavelength. This is confirmed
by the summary statistics of fig. 3 (third row); the large error bars for p = 1 are due to the very small number
of pinwheels present in the map (around 50), which results in a more variable histogram. A slight tendency for
pinwheels to be more closely packed as p increases is visible in fig. 3 (µ graph), consistent with the slight increase
of pinwheels per OR module mentioned above.

This reflects the fact that pinwheels are laid out in a noisy grid-like arrangement (of grid length half the OR
wavelength), with pinwheels repelling each other, so that same-sign pinwheels alternate in the nodes of the grid.
Thus, while the numbers of pinwheels and stripe widths vary with p, the arrangement of pinwheels relative to
each other remains the same for all p, in agreement with optical imaging data for squirrel and macaque monkeys
(Obermayer and Blasdel, 1997).

The effect on the distribution of the distance from a pinwheel to its closest OD border is more striking. In
fig. 2 (center column), for p = 1 the histogram shows a quite sharp peak around 1

4
of the OD wavelength, with

a long tail on the left. Thus, pinwheels tend to locate at the centers of OD columns, almost always avoiding
OD borders, as apparent in fig. 1 and in agreement with optical imaging data (macaque: Bartfeld and Grinvald,
1992; Obermayer and Blasdel, 1993; cat: Hübener et al., 1997). However, for p = 2 the histogram becomes
bimodal, preserving a now less sharp peak at 1

4
of the OD wavelength and developing a very sharp peak at

distance 0, indicating that pinwheels generally lie either away from the OD borders (at a distance around 0.17
of the OD wavelength) or right on top of an OD border. As p increases, the peak at distance 0, which remains

Figure 5 (following page): Pairwise scatterplots of the gradient moduli of visual field, ocular dominance and
orientation angle for derivative orders p = 1 to 4, for the maps of fig. 1. The total number of points in each cloud
is 128 × 128 = 16 384, equal to the number M of points in the net. The pinwheels are marked by red (positive)
and blue (negative) circles. The units of the axes are # per pixel, where # is degrees for the orientation angle
and arbitrary for the visual field and ocular dominance (i.e., as given by the training set). Note the different
scales in the axes. The lines shown are the regression of Y on X (X → Y ), of X on Y (Y → X) and the principal
component (X,Y ). The clouds of points are diffuse, indicating that all combinations of gradients are abundantly
represented, also evidenced by the low correlation coefficients. In general, the clouds appear compressed because
of a rescaling of the axes needed to accommodate a few points of very high gradient (such as pinwheels). The
apparent trend in the slope of the regression lines as p increases is caused by the increase in the number of
pinwheels and their separation into two groups: right at OD borders (high OD gradient) and away from them
(near-zero OD gradient). These two groups correspond to the two peaks at 0 and ≈ λ(OD)/4, respectively, in
the histogram of distance pinwheel-to-closest-OD-border of fig. 2 (center column).
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sharp, increases at the expense of the peak at distance 0.17 of the OD wavelength, which becomes broader. This
remarkable effect is apparent in fig. 1: note for p ≥ 2 how the OD borders meet runs of pinwheels like beads on a
string. As fig. 2 shows, this distribution is very different from that resulting from the same number of pinwheels
but uniformly distributed at random, which would have a roughly flat value for distances up to 0.15 of the OD
wavelength to then taper off at larger distances. The histograms also show that, for all orders, the distance to
OD borders is equally distributed with respect to the sign of the pinwheels (naturally, the histograms of positive
and negative pinwheels are half the height of the histogram for all signs). The summary statistics in fig. 3 (second
row) confirm that the histogram remains nonuniform for all p, its mean µ (normalized by the OD wavelength)
monotonically decreases and its skewness changes from negative for p = 1 (tail on the left) to positive for high p

(tail on the right). Fig. 4 (right) shows how the proportion of pinwheels that lie right on OD borders grows from
barely 10% for p = 1 to almost 50% for p = 4. Note that the flattening of the angle histogram is consistent with
the increasing proportion of pinwheels on OD borders, since an OD border crossing a pinwheel must be parallel
to some OR contours. In other words, an orthogonality bias requires that pinwheels avoid OD borders.

Gradient correlations Fig. 5 shows the pairwise correlation plots between the gradient moduli of VF, OD and

OR (cf. Das and Gilbert, 1997; Hetherington and Swindale, 1999; White et al., 2001; Bosking et al., 2002; Buzás
et al., 2003) for orders p = 1 to 4. In general, although there is an absence of pixels where the gradient of two
or more variables are simultaneously high, there is practically no correlation between gradients, as shown by the
low r value and the horizontal and vertical regression lines X → Y and Y → X, respectively. As p increases,
the maximal gradient values increase (note the increasing ranges of the axes) due to a small proportion of high-
gradient points, but by and large the bulk of the cloud changes little. In particular, there is neither a positive
correlation between gradients nor a negative one, or very small if at all (as in Hetherington and Swindale, 1999;
White et al., 2001; Bosking et al., 2002; Buzás et al., 2003; and in contrast with Das and Gilbert, 1997). What is
remarkable, and confirms what we said above, is the correlation between the gradients of OD and OR at points
at or near pinwheels (which is responsible for the apparent trend in the slope of the regression lines). For p = 1,
pinwheels (by definition characterized by a high OR gradient) lie almost exclusively in areas of zero OD gradient,
i.e., away from borders. As p increases, the pinwheel population separates in two groups, one at near-zero OD
gradient and another at high OD gradient, i.e., the OD borders, with very few pinwheels lying in between.

4 Discussion

Although a dense network of short-range cortical connections is known to exist in visual cortex (e.g. Amir et al.,
1993; Bosking et al., 1997; Kisvárday et al., 1997; Callaway, 1998; Stettler et al., 2002; Lund et al., 2003),
the precise form of the resulting intracortical interaction function is unclear. We have examined the effect of
varying the form of the continuity term representing these short-range interactions in the elastic net model of
visual cortical map development. In particular, we have investigated continuity terms corresponding to 1st, 2nd,
3rd and 4th order derivative constraints on the rate of change of cortical receptive field location in a feature
space consisting of visual field position, ocular dominance and orientation preference. We have shown that this
progression of derivatives corresponds to a progression of patterns of short-range intracortical interactions with
increasing numbers of oscillations in the sign of the interactions. Our simulations lead us to hypothesize that the
greater the number of oscillations in the continuity term the stronger the co-location between OR pinwheels and
OD borders. In particular, we predict that lateral connections oscillate only once in the regions of cat and monkey
cortex that have been well-characterized by optical imaging so far. These results provide a way to infer the form
of the lateral connections from the observed map structure. Thus, if in other species, visual cortical areas, or at
other developmental stages a strong co-location between OR pinwheels and OD borders is observed, this can be
interpreted in our model in terms of lateral interactions that oscillate more than once.

In fact, a recent experimental report might be consistent with this. Kisvárday et al. (2001) optically imaged
the maps of OD and OR in adult cats (> 4 months) and kittens (< 4 months). They found that the tendency of
pinwheels to lie near OD centers and of OD and OR maps to intersect at steep angles was hardly present in the
region between areas 17 and 18, and very weak in area 18. Further, the tendency was significantly weaker for adult
cats than for kittens in all three regions. These results suggest that the arrangement of pinwheels with respect to
OD domains may change with age and cortical region. It is also worth noting that published experimental data
do show a proportion, though small, of pinwheels right on OD borders (e.g. fig. 4A of Hübener et al., 1997).

The growing co-location of discontinuities of OR (pinwheels) and OD (borders) and the flattening of the angle
histogram with increasing p seems to be an essential feature of the elastic net. However, although the dependence
of these statistics on p is generally gradual and monotonic, there seem to be two qualititatively different classes
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of lateral interactions: one for p = 1 and another for p ≥ 2, with p = 2 often being a transition case, as evidenced
by the sharp migration of pinwheels to OD borders for p > 1 (figs. 1–2). Another characteristic feature of the
generalized elastic net is the narrowing of the stripes and the fact that the ratio of OD to OR wavelength is
smaller for the first-order derivative than for the higher-order ones, given by fig. 4 (left). In principle, this might
suggest cats have cortical interaction functions of higher order than monkeys (consistent with there being less
tendency towards pinwheels lying in OD centers in cats compared to monkeys). Also, this could suggest that
any changes in the ratio of wavelengths in an individual between the fovea and periphery might be indicative of
a change in lateral interactions over the cortex. However, the stripe widths are also strongly determined by the
correlations in the input space (Goodhill and Cimponeriu, 2000) and the strength of the continuity term β, which
makes it difficult to separate the individual contributions of each of these factors.

Our results show that interrelations between OD and OR maps are caused by the specific form of lateral
interactions used by the elastic net. From a structural point of view, what is special about the first-order derivative,
i.e., lateral interactions that oscillate only once? This form was originally used in the elastic net since it is relevant
to solving the Traveling Salesman Problem, i.e., minimizing (squared) distances between the receptive fields in
feature space of neurons that are neighboring in the cortex (Durbin and Willshaw, 1987; Durbin and Mitchison,
1990). This also had a flavor of wirelength minimization though in the input feature space (Durbin and Mitchison,
1990) rather than the cortical space (Koulakov and Chklovskii, 2001). Durbin and Mitchison (1990) explored the
effect of varying the exponent in the sum-of-distances term, but did not explore higher-order derivatives as we
have done. The motivation for exploring higher-order derivatives comes also from regularization theory (Tikhonov
and Arsenin, 1977). Derivative-based penalties can be used to represent biological or physical constraints and so
obtain good solutions to inverse problems in areas as diverse as vision (Poggio et al., 1985), geophysics (Tarantola,
1987) or statistical smoothing and spline approximation (Wahba, 1990; Green and Silverman, 1994). The effect
of the derivative order on the stripe width is theoretically understood in some of these problems (Wahba, 1990;
Carreira-Perpiñán and Goodhill, 2004). However, at present such a theoretical understanding is lacking for the
other aspects of the 2D structure of the maps that are more subtle but occur reliably in our simulations, such as
crossing angles and pinwheel locations. Note also that the different maps are independent in the continuity term,
so that these effects are due to the combined action with the coverage term. However, the uncertainty about the
definition of coverage is smaller than that of continuity (Swindale et al., 2000; Carreira-Perpiñán and Goodhill,
2002a) and we may expect similar effects with slightly different definitions of coverage. From a functional point
of view, the consequences of any of these different forms for the lateral interactions remain unclear.

It should be noted that different models have somewhat different ways of mapping between the form of cortical
continuity they implicitly or explicitly employ and a pattern of lateral interactions. In, for instance, correlational
models such as that of Miller et al. (1989), the effective cortical interaction I maps to a pattern of lateral
interactions B by the relation I = (1 − B)−1 (where I and B are matrices and 1 represents the identity matrix;
Miller et al., 1989; Miller and Stryker, 1990). In this model, I’s of Mexican hat form generally thus correspond to
patterns of lateral interactions with many oscillations, and when the joint development of OR and OD is simulated
with this model, neither the orthogonality between the two columnar systems nor the positioning of OR pinwheels
at the center of OD columns are robustly reproduced (Erwin and Miller, 1998; see also Piepenbrock et al., 1997).
Mathematical relationships between correlational and elastic-net-type models are discussed by Dayan (1993) and
Yuille et al. (1996).

In general, we find a substantially weaker relationship in our simulations between the rate of change of
different input features with cortical position than has generally been thought to occur in the elastic net (Durbin
and Mitchison, 1990). Also, by simulating tangential penetrations across pinwheels (data not shown) we do not
generally find a jump in the VF position (as confirmed by the fact that pinwheels lie in areas of low to middle VF
gradient in fig. 5). The diffuse clouds of points in fig. 5 demonstrate that many types of relationships between
gradients of variables coexist in the simulated cortex. The elastic net (or dimension reduction models in general)
is not best characterized as producing purely negatively correlated representations where, in general, when one
feature varies much, the remaining ones vary little (Durbin and Mitchison, 1990). Das and Gilbert (1997) have
claimed that the rate of change of orientation preference is positively correlated with that of visual field position
in the cat, though this has not been reproduced by other investigators (cat: Hetherington and Swindale, 1999;
Buzás et al., 2003; ferret: White et al., 2001; tree shrew: Bosking et al., 2002). It is interesting to note that
a model specifically formulated to obtain this result (Mitchison and Swindale, 1999) yielded as a by-product
pinwheels on OD borders (corresponding to a positive correlation between the rate of change of OR and OD),
which is contrary to what is observed in optical imaging images. Our results show that, as the derivative order
increases, the discontinuities of OD and OR increasingly tend to co-locate, but the gradients of OR and VF
do not correlate. However, it is important to note that the methodology of experimental studies is practically
constrained to be quite different from the complete analysis of rates of changes between feature variables that is
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possible in theoretical models (fig. 5). Our gradients are, up to the small discretization error induced by the grid,
“true” gradients. Gradients computed from a set of electrode penetrations cannot be considered true gradients for
three reasons: first, they are really directional derivatives along the line joining two sites (the gradient equation
takes into account all directions); second, the separation between sites is usually so large (over 100 µm, or about
10% of the OR wavelength) that the discretization error becomes very large and can corrupt any local correlation
or lack of it; third, the number of sites is very small (a few dozens compared to M = 16 384 in our simulations).
The significance of the location of pinwheels in areas of low to medium VF gradients with respect to coverage
uniformity (Das and Gilbert, 1997; Bosking et al., 2002) remains unclear.
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mayer. An analysis of orientation and ocular dominance patterns in the visual cortex of cats and ferrets. Neural

Computation, 12(11):2573–2595, Nov. 2000.

K. Obermayer and G. G. Blasdel. Geometry of orientation and ocular dominance columns in monkey striate
cortex. J. Neurosci., 13(10):4114–4129, Oct. 1993.

K. Obermayer and G. G. Blasdel. Singularities in primate orientation maps. Neural Computation, 9(3):555–575,
Apr. 1997.

C. Piepenbrock, H. Ritter, and K. Obermayer. The joint development of orientation and ocular dominance: Role
of constraints. Neural Computation, 9(5):959–970, July 1997.

T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature, 317:314–319, 1985.

B. Roerig and B. Chen. Relationships of local inhibitory and excitatory circuits to orientation preference maps
in ferret visual cortex. Cerebral Cortex, 12(2):187–198, Feb. 2002.

K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related optimization
problems. Proc. IEEE, 86(11):2210–2239, Nov. 1998.
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