2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks

Plug-and-play Irrigation Control at Scale

Daniel A. Winkler
University of California, Merced
dwinkler2@andes.ucmerced.edu

ABSTRACT

Lawns, also known as turf, cover an estimated 128,000km? [9] in
North America alone, with landscape requirements representing
30% of freshwater consumed in the residential domain [27]. With
this consumption comes a large amount of environmental, eco-
nomic, and social incentive to make turf irrigation systems as effi-
cient as possible. Recent work introduced the concept of distributed
control in irrigation systems, but existing control strategies either
do not take advantage of the distributed control, or don’t revise the
strategy over time in response to collected data. In this work, we
introduce PICS, a data-driven control strategy that self-improves
over time, adapts to the local specific conditions and weather chan-
ges, and requires virtually no human input in both setup and main-
tenance providing a plug-and-play system that requires minimal
pre-deployment efforts. In addition to substantial improvements
in ease-of-use, we find across 4 weeks of large-scale irrigation sys-
tem deployment that PICS improves system efficiency by 12.0% in
comparison to industry best and 3.3% in comparison to academic
state-of-the-art. Despite using less water, PICS also was found to
improve quality of service by a factor of 4.0x compared to industry
best and 2.5x compared to academic state of the art.
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1 INTRODUCTION

Turf is the largest irrigated crop by surface area, covering an esti-
mated 128,000 km? in North America alone. Accessible fresh water
is estimated to make up just 1% of all water on Earth’s surface [4],
and lawn irrigation is estimated to consume roughly 7 billion gal-
lons per day [27]. Due to the scale of this usage, there is much
economic, environmental, and social pressure to improve the effi-
ciency of these systems as much as possible.

Although system efficiency (minimizing costs) is a key selling
point, the primary goal of these systems is to maintain healthy
turf, and this must be done carefully. An under-watered plant will
eventually wilt and die, making them aesthetically unpleasant, but
over-watering can cause many issues as well. Consistently over-
saturated soil can cause turfroots to rot and soil to erode, and in ex-
treme cases excessive irrigation can carry fertilizer chemicals deep
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beyond the root zone into drinking water sources, as has occurred
in California’s Salinas Valley [23]. However, as aesthetic symptoms
of under-watering are more pronounced, many irrigation systems
over-water by design to ensure that wilting does not occur.

These issues can all be avoided if each location in the irrigated
space receives just the water it requires. Complex models exist that
predict the movement of moisture across and through the soil of
an irrigated space, but each of these models must make assump-
tions. Most commonly, due to the difficulty of sampling soil type,
soil depth, direct solar irradiance, and other key factors across an
irrigated space, all controllers are forced to assume that water must
move in a uniform way until it settles. Coupled with the centrally-
located water valve that is industry standard, it is impossible to
control in such a way that all locations in the space are adequately
irrigated, while also minimizing water consumption.

Some of these limitations are addressed by the distributed sens-
ing/actuation node developed in [32], which allows each sprin-
Kkler in the irrigation system to independently actuate based on
a wirelessly-transmitted schedule and monitor local soil moisture
conditions in real time, allowing more efficient control routines to
be developed. However, the proposed control framework requires
manual model generation and offers no model correction, limit-
ing its scalability. In this work, the control system is tailored to
the space in a data-driven way that requires no human interven-
tion. This allows us to not only deploy the system with ease and
minimal configuration, but perhaps more importantly, it allows us
to learn and adapt to the local conditions experienced in the field.
PICS does not require cumbersome measurements of soil type, to-
pography, direct solar irradiance, but rather adapts to the condi-
tions measured from the moisture data, even if the conditions are
heterogeneous accross the field.

In this work, PICS uses this alternate approach to solve this very
complex problem. We argue that a model adaptively trained from
data will react to unforeseen conditions better than a system using
a mechanistic model using approximated parameters and fixed as-
sumptions. The contributions of this work are as follows: (1) As no
manual input is required of the installer, PICS is a truly plug-and-
play system, avoiding costly expertise to determine environmen-
tal characteristics (e.g. soil characteristics, topography, solar expo-
sure) which can be difficult or infeasible to measure accurately at
scale; (2) Constant model re-training with fresh data allows PICS
to automatically adapt to unforeseen/changing environmental con-
ditions and seasonal variations, and weather forecasting allows
PICS control to react to future weather conditions; (3) To improve
system scalability, PICS decouples short- and long-term models,
allowing the latter to become spatially independent; (4) As PICS
closes the loop, the lightweight learning model reduces the com-
putational complexity, allowing us to compute optimal schedules
in a timely manner without significant computational resources
while maintaining overall accuracy. In 4 weeks of deployment, we
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demonstrate that in addition to improved ease-of-use and scalabil-
ity, PICS reduces water consumption against all baselines, while
simultaneously improving quality of irrigation.

2 RELATED WORK

In [32], the distributed irrigation sensor/actuator was introduced,
allowing a greenskeeper to wirelessly send irrigation schedules
to each individual sprinkler head, breaking the traditional limita-
tion of a single valve per irrigation system and allowing more cus-
tomized irrigation schedules to be computed and run. In conjunc-
tion, a control strategy was proposed which builds a mechanistic
PDE model of moisture movement within irrigated space. Using
this model, optimal schedules with respect to water consumption
were computed, which would maintain proper moisture levels un-
til the end of irrigation. Although this was found to reduce water
consumption and improve irrigation quality, the system had practi-
cal limitations. No process was proposed to correct the model over
time, and future weather prediction was not taken into account,
which can result in increased water consumption. Furthermore,
the size and complexity of the model and optimization problem
resulted in it requiring simplification via linearization and spatio-
temporal discretization to make it tractable. Even with these simpli-
fications that sacrifice model accuracy, significant processing was
still required and could only guarantee satisfactory moisture levels
for the immediate hours after irrigation, not the full 24-hour cycle.

The models used in [32] were configured manually and stat-
ically using approximated parameters at installation-time under
the assumption that these model parameters were either spatially-
homogeneous or that they would not change over time. However,
many of these parameters such as soil depth can significantly vary
spatially and others such as solar irradiance certainly change over
time (seasonally). These assumptions were made in [32] due to the
difficulty or infeasibility of accurately measuring these parameters
at scale. As an example, to measure unsaturated soil conductivity,
there are several techniques as listed by the USDA [10]; The least
accurate technique, relying on core samples, is low-cost but each
measurement requires a few hours to several days depending on
the soil type. The most accurate technique, instantaneous profile,
requires equipment costing around $3000 USD and each measure-
ment can take up to a week to complete. To make tens or hundreds
of such measurements across a large irrigated space to generate
accurate models for a static framework simply does not scale, es-
pecially when some parameters change seasonally. In contrast, as
water retention and movement through the soil is influenced by
all of these parameters, the learning model used by PICS can learn
and adapt to these environmental characteristics with data-driven
model generation using direct soil moisture measurements with-
out having to make crude assumptions to fit a mechanistic model.

With the introduction of more accurate and efficient soil mois-
ture sensors, work has been done to create irrigation controllers
that react directly to moisture levels in the soil [16, 25]. However,
without a model of the way water is lost, these systems must either
over-irrigate to artificially create a buffer, or reactively trigger ir-
rigation during the day, which can lead to plant sunburn and an
increase of wasted water to evaporation. In our work, we use sen-
sor feedback and predictive modeling together to control in a way

that is more water efficient and improves quality of control with-
out having to make assumptions about water needs.

As weather is a primary water source or sink in an irrigated
space, systems have been developed to use weather as input for
control. The simplest of these systems use standard fixed-schedule
irrigation, but allow a precipitation sensor to override control to
save water during rain [8]. The more complicated systems, now in-
dustry standard, use evapotranspiration, an estimate of the amount
of water lost to evaporation and plant transpiration to do efficient
water-loss replacement [17, 24]. Some providers boast an average
30% reduction in water consumption, but as with all industry ir-
rigation systems, ET-based systems are limited by centralized con-
trol, and can not provide site-specific irrigation, reducing potential
system efficiency and quality of control.

In order to control intelligently, we must take into account fu-
ture temperature shifts, precipitation, and other effects that affect
irrigation requirements as discussed in Section 4.1. The standard
weather metric for irrigation control has become evapotranspira-
tion (ET), a measure of how much water is lost from the soil due to
solar radiation, temperature, humidity, and wind. In [29], a patent
describes an irrigation controller that predicts future ET losses, but
the main contribution is the combination of a reference ET esti-
mate offset by predicted precipitation, to produce a system that
will not over-irrigate with rain in the near future. Although the
author recognizes the potential to use other forecasted weather
metrics to predict future ET, they offer no implementation of this
feature. An extensive study in [20] finds that exceptional predic-
tion of ET is possible when predictions for all four ET variables
(solar radiation, temperature, humidity, and wind) are available in
local data sources. The authors recognize that this is often not the
case, and this holds true in our work, as wind speed and solar ir-
radiance predictions are unavailable for our locale. As no suitable
ET prediction could be found, we design our own.

3 SYSTEM OVERVIEW

Our system takes advantage of a distributed irrigation control sys-
tem, with sensing/actuation nodes installed beneath each sprinkler.
Each node is equipped with a wireless sensing mote [15] provid-
ing minor computational capability and wireless communications,
a volumetric water content (VWC) sensor to sense local condi-
tions, and a solenoid, allowing the opening and closing of water
to the sprinkler on command. These devices form a mesh network,
and are accessible through a border router, a special node phys-
ically connected to a nearby internet-accessible computer. Sprin-
kler schedules are sent outbound along this link, and real-time data
from the sensing nodes are sent inbound along this link, allowing
us to automate the system with any strategy we like.

The goal of our irrigation system is to keep the turf healthy and
in order to do so, a number of requirements must be satisfied. Ad-
equate solar exposure must be provided, the soil must contain the
correct types of nutrients in appropriate amounts, and an adequate
amount of moisture must be provided to the soil to be absorbed by
the plant roots. Although our irrigation system has no control over
solar exposure and soil nutrient composition, it has direct control
on the application of water onto the surface of the soil. In plant
physiology, the volumetric water content (VWC) at which plants
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Figure 2: Sample fluid curve across the 24-hour cycle

can no longer extract water from the soil is known as the Perma-
nent Wilting Point, or GPWP[14, 26, 28]; if a plant spends an ex-
tended period of time in soil beneath this threshold, it will begin
to wilt and die. To provide ample moisture to the plant at all times,
we aim to minimize the amount of time the soil VWC remains be-
low this threshold, as verified in our system with the installation of
VWC sensors to constantly monitor soil moisture levels. By achiev-
ing this goal, the plant will have the water it needs to thrive.

Figure 2 shows an example 24-hour irrigation cycle. Between
day 1's start of irrigation t5,1 and finish of irrigation ¢7,;, the water
applied to the space gradually increases VWC within the soil. tf,;,
the time that irrigation ends is not known beforehand, but occurs
when VWC has reached a pre-computed Goal State for this sen-
sor node. During this irrigation time, we utilize a short-term model
(STM) describing how the actuation of one or more sprinklers af-
fects the moisture in the soil at all sensor locations, and solve an
optimization problem to find the most efficient irrigation sched-
ule to reach the Goal State at each sensor location, allowing us to
save water by utilizing sprinkler overlap, soil runoff, and schedule
intermittency to our advantage.

After day 1’s irrigation ends at t7,; as shown in Figure 2, the
water begins discharging from the soil subject to the effects of dif-
fusion, leaching, and weather effects, which occur very slowly rel-
ative to effects during irrigation. After hours of these losses, the
soil VWC will reach its minimum value just before the start of irri-
gation at day 2, t; 2. The effects of diffusion, leaching, and weather
are not homogeneous; differences in environmental factors such as

soil type, soil depth, and solar irradiance change the rate at which
moisture is lost across the space. Over time, we use the historical
loss trends to build a Long-term model (LTM) that characterizes the
amount of water that is lost between irrigation cycles for each in-
dividual sensing node, which can then be used to set future Goal
States in a way that will ensure we stay above minimum VWC pwp
at all times without wasting water.

The de-coupling of these two models allows this technique to
scale to control very large irrigation systems. The two are inter-
twined, as one produces the Goal State used by the other. In the
short-term, the model and optimization takes into account the ef-
fects of all nodes’ sprinkler coverage jointed spatially and tempo-
rally, but once irrigation ends, the models describing losses across
the field become spatially independent.

Figure 1 shows the data processing required to achieve these
goals at irrigation-time (daily irrigation at dusk, by request of cam-
pus groundskeepers). First occurs model generation. The freshest
data from the irrigated space is used to build the long- and short-
term models for use in loss prediction and irrigation schedule op-
timization. The short-term model describes the direct in-flow of
moisture as sprinkler moisture lands above the sensor, and takes
into account sprinkler overlap and water runoff effects. The long-
term model shows how the moisture tends to move across the full
24-hour cycle due to soil transport effects such as diffusion and
leaching [22], and a separate weather prediction module predicts
future weather trends in the form of evapotranspiration [24].

Next, using the long-term model, the Expected Losses module
computes a Goal State for each node in the space. This state is
computed by taking the minimum acceptable VWC, and added the
node’s expected moisture losses between irrigation cycles. As later
explained in Section 4.3, future weather predictions are decoupled
from the long-term model, so forecasted evapotranspiration losses
are also added at this stage, computed as described in Section 4.1.
In this way, the minimum moisture, experienced right before the
next irrigation will begin, should be at or above the minimum VWC
threshold. This Goal State is later used by the optimization module.

Goal State = Opwp + Expected Losses + ETgorecasted (1)

Once these initial conditions are defined for irrigation, the con-
trol loop is entered, which will fetch the freshest data snapshot
from all nodes across the space. This data is used as the initial
moisture conditions for an optimization problem that computes
the optimal actuation sequence for each individual node in the
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space, such that the Goal State VWC will be reached by the end of
the irrigation period. If our short-term model used in optimization
is accurate, we can perform this control loop only once. However,
for safety and for accuracy, it is advantageous to occasionally re-
run this control loop during the irrigation period. This prevents
schedules from over- or under-watering due to stale starting con-
ditions, and will allow the optimizer to re-search for more efficient
schedules from the freshest starting point.

In our deployment, the model generation and optimization takes
place on a computationally-weak Raspberry Pi [13] that is collo-
cated with our irrigation system. Attached to the Raspberry Pi via
USB is a TMote Sky [15], through which schedules can be sent and
data can be received. Once optimization is complete, the sched-
ules produced by the optimizer are sent over USB and through the
wireless sensor network to their respective sensing/actuation node.
The schedule is run, and if desired, a fresher data snapshot will be
obtained and optimization will occur again.

4 SYSTEM MODELING

The purpose of the control system is to decide how much mois-
ture must be applied to the surface by the sprinklers. Whereas
standard irrigation controllers use weather-only or rule-of-thumb
techniques to make this decision, we hope to leverage the rich,
spatially-distributed data collected by our sensing/actuation nodes
to make this process more efficient. Towards this goal, we generate
data-driven models that help us understand how moisture tends to
move in the short- and long-term.

The water used for irrigation moves through the space subject
to many factors, which all tend to occur within two different time
horizons. In the short term, during irrigation, factors such as sprin-
kler distribution and water runoff on the surface of the soil allow
movement that will occur for seconds or minutes, movement that
tends to comes to an end when irrigation is completed or soon
thereafter. Once this moisture infiltrates fully into the soil, much
slower effects begin to take place. For instance, depending on the
type of soil, leaching of water beyond the root zone and diffusion
can occur on the order of 1072 — 1073 cm/s [18], and will continue
to move for hours or days.

Previous work [32] combines all of these factors together in one
large mathematical model based on first principles. However, the
size of the resulting models have performance repercussions, and

the lack of model correction could potentially cause it to deviate
from reality. In this work, we solve these problems by modeling wa-
ter movement using a lighter data-driven approach based on ma-
chine learning techniques. The implicit advantage of this approach
is that it is based on moisture data measured locally, being able to
cope with heterogeneous conditions like soil type, topography, and
solar exposures that vary across the field. To reduce the computa-
tional complexity of the model-based optimization problem to min-
imize water consumption subject to quality constraints, we chose
to use a two-model approach, each of which represent one of the
distinct time horizons. The long-term model, which learns how wa-
ter tends to be lost between irrigation cycles, is used to compute
an Goal State, the required moisture level that must be reached at
each location in the field so that moisture levels will not be de-
pleted below our minimum moisture threshold before the next ir-
rigation period. The short-term model is used by the Schedule Opti-
mization Module to determine the best schedules that will take ad-
vantage of runoff, overlapping sprinkler coverage, and other short-
term effects to compute schedules that bring moisture to the Goal
State while consuming minimal water. With a cleverly-chosen Goal
State, we will maintain adequate moisture levels across the full
24-hour cycle, while only requiring optimization during the few
hours of irrigation time, allowing optimization to be run on very
computationally-weak machines.

4.1 Weather Forecasting

A large portion of losses on the 24-hour cycle is expected to be
caused from the effects of evapotranspiration [24], which combines
losses caused by solar irradiance, wind, plant transpiration, and
other effects due to weather conditions. However, as future weather
conditions aren’t necessarily similar to past weather trends, we de-
couple weather effects from the rest of the long-term model by per-
forming separate evapotranspiration prediction. In our research,
we found forecasts readily available for standard weather metrics
such as temperature, humidity, and rainfall, but were unable to find
data sources providing future ET estimates. To enable this feature,
we implement our own weather forecasting module.

The four weather variables required to perfectly compute evap-
otranspiration [17] are solar radiation, temperature, humidity, and
wind. In our locale, solar radiation and wind prediction were not
available, but temperature and humidity forecasting were avail-
able at hourly measurement intervals from a local weather sta-
tion in our city. With 15 years of historical weather data at hourly
intervals[1], we set up a k-nearest-neighbors regression based on
similarities of the hourly temperature and humidity vectors. Choos-
ing a k-value of 5, this method will find the 5 days with the most
similar hourly weather trend, and find an evapotranspiration value
based on the weighted distance from the current day’s weather
trend. Note that in this work, for simplification, we combine fore-
casted precipitation and evapotranspiration. In the case of precipi-
tation, the evapotranspiration, rather than being a net loss, would
be a net gain, and units remain unchanged.

Figure 3 shows the ground-truth evapotranspiration values as
measured by our local weather station, alongside the predicted
value from the day before using just forecasted temperature and
humidity. Also depicted is a moving average for each, which shows
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how the two trends vary across the 4 months of weather collec-
tion. In all, our prediction is found to have a normalized root mean
squared error (NRMSE) value of .164, with 90% of predictions hav-
ing less than 20% relative error. Outlier values occur when cloud
cover or extreme wind affect the solar radiation or wind terms, nei-
ther of which we have available for prediction.

4.2 Short-term Model

For later use in optimization in Section 5, we must understand
how the actuation of the sprinklers in the system will influence
the moisture in the soil as shown in Figure 2. For this task, we em-
ploy a Short-Term Model which captures the moisture movement
effects during irrigation. An example irrigated space is shown in
Figure 4; differences in sprinkler overlap affect the amount of water
that lands on the surface of the soil, surface topography affects how
quickly runoff will occur, and heterogeneous soil composition and
depth will affect the rate of infiltration. As it is difficult and error-
prone to manually measure these effects, we wish to learn them
in an automated, data-driven way. These short-term factors are in-
fluenced by sprinkler positions, slope of the land, and other char-
acteristics that do not change over time, so this model is trained
once automatically when the system is set up. It may be desirable
to trigger for the model to be re-trained if the root mean square er-
ror of the model against ground truth is seen to exceed a selected
threshold, but we leave this to future work.

We choose to use a linear regressor to model these effects using
values shown in Table 1. As input, we provide the current VWC at
each of the K sensor locations as vector s; , and the current binary
actuation of each of the K sprinklers as vector f; . The output of
the linear model is the predicted VWC for each of the K sensor
locations at some time At in the future, as vector s;4a;. In prac-
tice, as this model will be later used to compute optimal irrigation
schedules, the length of At is chosen to be the same as the control
actuation period, 1 minute in our experiments. The linear function
g defines the following relationship:

8(se. f1) = srenr @)

To train the short-term model, we run a training cycle of irriga-
tion after installation that triggers each sprinkler one-by-one for
a fixed time to identify how moisture levels change in all sensor
locations. Moisture levels during our training cycle can be seen for
4 selected devices in Figure 5 with rises caused by the activation of
the nearest sprinkler, and although each sprinkler is active for the
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Figure 5: Sensor data from selected nodes during Short-term
model training period

Table 1: Short-Term Model Variables

Variable | Description

t Temporal index € {0, ..., T}

K Number of sensing/actuating nodes in system

Sy Vector of moisture levels at time ¢, size K

f; Vector of binary sprinkler actuation at time ¢, size K

same amount of time, it can be seen that the amounts of increase
are different for each device due to spatial heterogeneity of runoff,
sprinkler coverage, and soil characteristics. Furthermore, as sprin-
kler overlap would cause multiple sensors to rise simultaneously
as a single sprinkler is active, it can be seen that this irrigation sys-
tem has minimal sprinkler overlap, as only one sensor rises at a
time. In a system with more sprinkler overlap, the methods of data
collection and processing would be identical.

The data from our deployment training period is parsed into
~850 training pairs of [s;, f;] vectors as inputs, and [s;4a;] vec-
tors as outputs, and the regressor is trained. At the end of our
deployment, we use this regressor to perform single-step predic-
tion across our 25 days of experimentation and compute the Root
Mean Squared Error (RMSE) between the vector of predicted VWC
against the measured ground truth; by then normalizing to the
range between minimum and maximum values of s;, we get a Nor-
malized RMSE of just 0.2%. By analyzing the predictions for indi-
vidual sprinklers, we find that the range of errors among our K
individual sprinklers falls between 0.08% and 0.25%.

As sensor data is inevitably noisy it is important to choose a
At that is not too big, which would result in high predictive error
or too small, where noise dominates the state signal. Our choice
of one minute seemed to work well in practice, but in future work
we will analyze so see how this choice impacts prediction accuracy
and robustness.

4.3 Long-term Model

To guarantee a high quality of control, we must compute a Goal
State for each node in the space as a target volumetric water con-
tent (VWC) for the Schedule Optimization Module to reach as shown
in Figure 2. In order to choose a useful Goal State, we must consider
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both future predicted losses due to weather patterns (evapotranspi-
ration) as discussed in Section 4.1 and loss data trends from previ-
ous data for each individual node.

Once irrigation is complete and the irrigated moisture has in-
filtrated into the soil, it begins to move more slowly through the
processes of diffusion, leaching, and weather patterns as shown in
Figure 6. Diffusion is the tendency of moisture in the soil to move
from areas of higher to lower concentration due to differences in
hydrostatic pressure caused by intermolecular forces in the soil,
and leaching is the tendency of water to eventually move beyond
the root zone of the plant due to the force of gravity. Movement
under either of these forces tends to be very slow, as hydraulic con-
ductivity of water through soil can be on the order of 1072 — 1073
cm/s [18]. Losses due to evapotranspiration (ET) occur slowly as
well, as they are primarily caused by solar radiation and high air
temperature which occur during daylight hours.

Figure 7 shows how moisture losses occur at one selected sen-
sor site across three consecutive days. In this figure, t = 0 is time-
aligned to the end of irrigation where moisture losses start to oc-
cur, and ¢t = 21 hours corresponds to the beginning of irrigation
on the following day. By tracking these losses using our deployed
VWC sensors, we found that the discharge of water from the soil
medium tends to occur as an exponential decay when irrigation
ends as shown in the figure. In our system, we use these histor-
ical loss trends to fit an exponential decay curve as our “LTM”,
or Long-term model, as shown in Figure 7. In addition, for each
dayd € {1,..., D}, we record the measured evapotranspiration on
each day the system is run as ET;. With this fitted model, the ex-
pected loss of this node is computed by taking the difference of the
curveatt = 0and at t = t; 441 — tf, 4, the expected delay between
irrigation of today and tomorrow, e.g. 21 hours. This computed
loss is finally offset by the average of the daily evapotranspiration
levels measured during the training period.

D
1
Expected Loss = Opwp + (LTM(0) ~ LTM(f5, a1 ~ tr.0) =~ 5 D ET, (3)
d=1

We perform this weather offset to ensure that the weather ex-
perienced when the training trends were recorded do not impact
the expected losses for future irrigation. Before use as the Goal
State for optimization, the predicted ET for the following day will

+  Raw
—— Fitted decay

VWC decay (%)
|
[}

0 3 6 9 12 15 18 21
Time since irrigation (Hours)

Figure 7: Sample moisture decay fit between irrigation

Table 2: Optimization Variables

Variable | Description

t Temporal index € {0, ..., T}

k Sprinkler location index € {1, ..., K}

Sy Vector of moisture levels at time ¢, size K

f; Vector of binary sprinkler actuation at time ¢, size K

Tt Sprinkler k actuation at time ¢, € {0, 1}

Skt Volumetric water content (VWC) of location k at time #

Ck Consumption of sprinkler k (Constant, known beforehand)
O Measured VWC of sensor k (Constant, known beforehand)

be re-added. We decouple these weather effects to prevent learn-
ing past weather trends into our model. In a climate where the
weather changes very little from day-to-day, it may be reasonable
to assume that past weather trends will continue into the future,
but to allow PICS to be more generalizable and reactive we choose
to utilize local weather forecasting.

When the system is first turned on, the model has no under-
standing of expected losses. It is not until after the first day of irri-
gation, in our case a fixed schedule to train the short-term model
as discussed in Section 4.2, that the long-term model can be trained.
In our experiments, the model is retrained each day before irriga-
tion using the loss data from all of the preceding days. That is to
say, on day d, we re-train the model using d — 1 days of data. This
worked well in our experiment, but in a very long-term installation,
re-training the model on just the most recent N days of data may
allow the system to be more responsive to changing seasonal con-
ditions. In this work we have not investigated the optimal choice
of N, and we leave this for future work.

5 OPTIMIZATION OVER THE SCHEDULE

We wish to use our models as described in Section 4 to compute
irrigation schedules that will allow us to reach our goal volumetric
water content (VWC) on each sensor/actuator node while minimiz-
ing system water consumption. With a goal state, 00,1 ¢ and mea-
sured VWC 0. for each node index k € {1,...,K}, we construct
the following optimization problem using optimization variables
as defined in Table 2. We define fi ; to be the binary actuation
of sprinkler k at discrete time index ¢t € {0, ..., T}. The objective
function is the sum of f ; forall k € {1,...,K},t € {0,...,T},
weighted by the water consumption rate of each sprinkler k, i, a
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function of the sprinkler’s angle of coverage as defined in the sprin-
kler datasheet. With pressure-regulated sprinklers, this weighted
sum represents the total system water consumption under sched-
ule F. The VWC at each discrete sensor location k at temporal index
t is defined as sy ;. This state variable is assigned the most recently
measured sensor value 8 at starting time index ¢ = 0. This mois-
ture level is constrained to remain above the minimum acceptable
moisture threshold, Gpwp at all times, and above the goal state at
final time index t = T. Changes in moisture level as a result of
sprinkler actuation is modeled by the linear function g, represent-
ing our Short-term Model as defined in Section 4.

K T
{fk,t’sf::f]lfi[:o ];;)Ckfk,r s.t. (4a)
0<fr:=<1 k=1,...,K t=0,...,T (4b)
Skt = Opwp k=1,...,K t=0,...,T—1 (4c)
Sk, T = Ogoal k k=1,....K (4d)
Sk, t=0 = Ok k=1,....K (4e)
st = g(ss-1,1-1) t=1,...,T (4f)

As sprinkler valves can physically be either on or off, sprin-
kler actuation fj ; is a binary variable in practice. This makes
the defined problem an integer linear program (ILP), which is NP-
Complete. We have found that solving this problem with reason-
able values of K and T can take as long as several minutes on our
computationally-weak basestation. As this optimization may be re-
quired to run as often as once per control timestep, chosen in our
system to be 1 minute, we find an approximated solution more
quickly by treating fi ; as a real number within [0, 1], and then
rounding the computed optimal value to the closest binary value.
This simplification makes the resulting problem a linear program
(LP), which are much simpler to solve in practice. In our 4 weeks of
deployment, we find that the resulting schedules tend to lie on the
0/1 integer boundary, and that fewer than 1% of actuations require
rounding. Figure 8 shows how the amount of irrigation deviates
each day due to this rounding, and we can see that the worst day
(day 17) has a resulting deviation of just over 1 second, negligible
when the total irrigation is on the order of an hour.

We found that our irrigated space generally requires 30-60 min-
utes of irrigation to be sufficiently watered. To give our optimiza-
tion time to find schedules that are as efficient as possible, we
give the optimizer an irrigation window of 2 hours, well above the
required time of a simple schedule. With a control timestep of 1
minute, this 2 hour irrigation window is converted to T = 120. By
allowing a larger irrigation window, the optimizer may find sched-
ules that are more efficient, but due to University water pressure
limitations, irrigation in different regions of the campus must op-
erate within slots, making very large time windows impractical.

We chose to use the Julia programming language [19] as an in-
terface to the GNU Linear Programming Kit (GLPK) [5] solver. We
chose these tools for their ease of use and sufficient performance.
Our linear program has 2 X K X T Variables and 2K X (T + 1)
Constraints. In our deployment, solving for a schedule with a se-
lected setup of K = 9 and T = 120 takes less than a second on our
computationally-weak basestation.

6 CASE STUDY: LIVE DEPLOYMENT

To perform a fair comparison of our PICS system against a baseline,
we installed an irrigation system that allows us to run two control
strategies side-by-side. As our campus greenskeepers were unwill-
ing for us to debug an operational campus irrigation system, we
were required to officially request a plot of land, design, and in-
stall our own system. The approval process took between 2 and 3
months, and system design and installation required hundreds of
man-hours. One technique to ensure fair comparison between two
control strategies would be to periodically alternate the strategies
between the two irrigation systems to ensure results aren’t skewed
by environmental variations. However, this would require us to
wait for soil moisture to settle between each alternation, causing
all experimentation to take much longer. Instead, we chose to in-
stall the two systems directly side-by-side, where each would have
as homogeneous solar exposure, slope characteristic, and soil char-
acteristics as possible.

6.1 Environmental Description

The two irrigation systems were installed side-by-side, and were
designed to be identical in hardware, sprinkler coverage, etc. Each
irrigation system measured 60'x60’, with sprinklers arranged in a
3x3 grid, each 30’ from the next. The sprinklers chosen were MP
Rotators by Hunter Industries [7], which are currently considered
state-of-the-art in sprinkler technology. In these devices, the water
pressure is focused through many rotating nozzles on the sprinkler
head which allow much greater range at lower water flow rates,
applying water more efficiently than their rotor counterparts. The
MP Rotators can be adjusted to a range of 15°-30°, making them
ideally suited for our system.

The deployment area was located on a sloped area that drops
3’ from the highest to the lowest point. During installation of the
sprinkler system, we noted that the topsoil was a “Clay Loam” type,
approximately 10” deep. Beneath this layer sat a thick clay layer
that went beyond 3’ deep. The grass growing in the installation
area is a natural field grass and not the type found on a sports field
or in university landscaping, but the goal of irrigation is identical;
providing a satisfactory amount of moisture to sustain healthy turf.



Figure 9: Sensing and actuation node

6.2 Hardware Description

The hardware used in our experiments stemmed from the design
introduced in [32], with battery life and system safety as primary
concerns. Control was provided by a latching solenoid, which re-
quires a 50ms pulse of power in either the positive or negative
direction to open or close the valve. The sensor chosen was the
Decagon EC-5 [2], commonly used in research for its high accuracy
of +3% and power consumption of just 10mA for 10ms. Although
the EC-5 outputs a raw voltage, Decagon provides a linear func-
tion that maps this voltage to Volumetric Water Content (VWC)
for our use. Each sensor is inserted into the soil at the expected
depth of the root zone for the turf on site. A standalone board
was developed to sit on the General Purpose Input/Output (GPIO)
pins of the Tmote Sky, whose purpose was to route power from
the attached 4xAA battery source to the peripheral devices. With
these peripherals installed, our devices could communicate with
eachother, monitor the local soil moisture conditions, and control
the flow of water to the attached sprinkler. These primary hard-
ware components in their waterproof case can be seen in Figure 9.

Collocated with the irrigation system was a basestation mod-
ule, consisting of a Raspberry pi with a Tmote Sky attached via
USB, and a wifi hotspot to allow the system to be accessible re-
motely. The data processing pipeline as described in Section 3 and
the optimization as described in Section 5 was all run on this device.
Schedules computed by the Schedule Optimization Module were for-
warded over USB to the Tmote Sky for wireless distribution, and
incoming data was pushed by the Raspberry Pi to an off-site data-
base for remote monitoring and analysis. Later explained in Sec-
tion 7, the only equipment failure that occurred in our deployment
was a failed USB connection between the Tmote and the Raspberry
Pi, possibly due to environmental factors. However, firmware run-
ning on the sensing/actuation devices is designed to handle such
a failure by automatically returning to the default “Off” state, pre-
venting massive water loss.

6.3 Baseline Strategies

To allow two side-by-side irrigation systems to operate indepen-
dently, all sprinklers are installed with a sensing/actuation node.
In this way, the only difference between the two systems are the
schedules sent to the sensing/actuation nodes. In this work, we

compared the PICS system to two baseline systems, an Evapotran-
spiration control strategy, the current industry leader in system ef-
ficiency, and MAGIC [32], the current state-of-the-art in academia.
As the University irrigation systems operate on a daily schedule,
all baseline systems and PICS was configured to irrigate daily as
well. The PICS system would operate identically on a different ir-
rigation cycle with no reconfiguration necessary.

6.3.1 Evapotranspiration. Evapotranspiration is an estimate of
moisture lost from soil, subject to weather factors. In the current
standard, computing evapotranspiration requires wind, tempera-
ture, humidity, and solar irradiance measurements. Many weather
stations are available to the public that calculate and provide evap-
otranspiration data based on measurements of the other weather
factors. To mimic an evapotranspiration controller, we query a lo-
cal weather station for the previous day’s ET losses, which is pro-
vided in units of surface water height. With this information, we
can simply use our sprinkler datasheet for surface application rate
to compute exactly how many minutes the system should be acti-
vated to directly replace the previous day’s losses. In a commercial
evapotranspiration controller, this amount is then the amount irri-
gated, plus a safety margin of water. However, despite contacting
two of the largest providers of ET controllers, Hunter [6] and Rain
Bird [12], we were unable to find the safety margin they use in
practice, so we assumed NO safety margin. This means two things
- it means a commercial system using a safety margin may provide
better quality of service than what we see in our deployment, but
at the cost of increased water consumption. Please note that the
PICS system is able to achieve both goals, water savings and im-
proved quality of service.

6.3.2 MAGIC. The MAGIC control framework requires that the
installer pre-defines key irrigation and field characteristics before
use. The irrigation system characteristics including coverage of
sprinklers, application rates, angles, and positions are defined as
described in Section 6.1 to match the physical deployment. Like-
wise, the topography was modeled to reflect the 3’ elevation drop
of the field, and the estimated soil type was chosen as observed to
be a “Clay Loam” of depth 107, sitting atop a deep clay layer. To al-
low fair comparison to the PICS system, the MAGIC optimization
was defined with a 2-hour irrigation evening window, to match
the campus’ irrigation scheduling policy to avoid over-use of the
system pressure.

6.4 Performance Metrics

The fields of plant physiology and soil physics make it clear that to
cultivate healthy plants, turf must be in an environment with an
abundance of necessary minerals (fertilized, kept in healthy soil),
must receive adequate solar exposure, and must be within roots’-
reach of an adequate supply of water. If soil is kept too dry, the
plant will be unable to suck the necessary moisture out of the soil.
This level of moisture is known as the permanent wilting point
(pwp) [14, 26, 28], and keeping soil below this threshold of mois-
ture for an extended period of time will cause the plant to even-
tually wilt and die. Although the irrigation system has no control
over solar exposure and soil nutrients, it has direct control over the
moisture levels in the soil. For this reason, our primary metric for
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irrigation quality is the system’s ability to maintain a soil moisture
above this threshold at all times at all of our measured locations.
By doing so, we are guaranteeing that the plant has sufficient mois-
ture to be healthy. In this paper, we call this the quality of service
of the irrigation system.

Although we must maintain moisture above a minimum thresh-
old, it is also detrimental to over-water the space. In addition to
the environmental and financial impact, an over-abundance of wa-
ter in the soil can, over time, lead to the rotting of the plant roots,
discoloration of the plant (aesthetic penalty), and in extreme cases
excess irrigation has been linked to the leaching of fertilizer chem-
icals into human drinking water supplies. As each sprinkler uses a
pressure-regulated water supply and we directly control the times
at which each sprinkler is active, we can monitor the amount of
water consumed by both systems at all times to determine the effi-
ciency of each system. Thus another metric that is relevant is the
water consumption, which we would like to minimize subject to
the quality of service constraints.

Finally, an aesthetic side-effect of uneven moisture distribution
is the appearance of “hotspots” where not enough water is received
and oversaturated regions where standing water remains on the
surface. These can be identified by a difference in color, and de-
tract from the appearance of the space. Although they can take
a long time to develop, with our sensing/actuation platform, we
can investigate the long-term moisture trends under our compara-
tive control strategies; a more even moisture distribution prevents
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Figure 12: MAGIC vs PICS quality of service results

these localized effects from happening, and uniformity can be mon-
itored through the deployment’s sensor data.

7 EXPERIMENTAL RESULTS

In this section, we discuss the experimental results of PICS when
compared to both the ET and the MAGIC systems side-by-side.
These tests are performed under the same conditions as explained
in Section 6.1, analyzing the quality of service, water consumption,
and moisture uniformity metrics discussed in Section 6.4.

7.1 Quality of Service

Irrigation systems are installed to maintain health in the planted
turf. However, these systems often fall short of their quality goals.
As such, a potential replacement system must either maintain or
improve the quality of service. Figure 10 shows the raw moisture
data for each sprinkler in the field for both ET and PICS. The cen-
ter line shows the permanent wilting point (pwp). We can see that
the ET system spends more time and in some cases it is well be-
low that mininum threshold for many of the moisture sensors. In
order to quantify how much below the minimum moisture thresh-
old (pwp) each system spends over time, we plot the sum of the
squared amount below the minimum moisture level over time in
Figures 11 and 12 for the experiments comparing PICS with ET and
MAGIC respectively. We used the squared amount to emphasize
that the larger the amount below the pwp, the worst the quality of
service provided.
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In our deployment of PICS against the evapotranspiration con-
trol strategy in Figure 10, we see that one node in the control sys-
tem is well below the threshold we wish to hit. This emphasizes
the limitations of ET and the core of our work. The irrigated re-
gions don’t receive moisture the same way, and without learning
these eccentricities, it’s very difficult to provide the best quality of
service. It should be noted that before the PICS system was turned
on, the ET control strategy was used to irrigate both irrigation sys-
tems. This can be seen in day 1 in Figure 10, where several sensors
have moisture levels below our threshold. However, in the first 4
days, the PICS system learns these increased needs and applies tai-
lored moisture to raise them above the threshold. This is a common
problem in irrigation systems, as uniform irrigation across the field,
without understanding local variations results in moistures that
can vary wildly. In order to make this uniformly-irrigating system
provide perfect quality, we would have to irrigate all sprinklers
enough to raise the driest area above our threshold. This would
be a significant waste of water, as the rest of the space would be
severely over-watered. In the comparison against MAGIC in Fig-
ure 12, we can see that several days are spent with a poorer quality
of service in comparison to PICS. On days 1 and 4 in particular, it’s
clear that MAGIC’s model believes it can afford to reduce water
consumption, causing decreased quality of service on the follow-
ing days. Likewise, although the MAGIC system attempts to send
increased water on day 2, the mismatch between the model and
the physical deployment does not send enough to reach this goal.

Overall, PICS spends an average of 4.04 times less than the ET
system, and ignoring the first day, we average 24.7 times less below
the threshold. When compared to MAGIC, PICS spends an average
of 2.47 times less than MAGIC. Our system provides significant im-
provements with respect to quality of service than the other irri-
gation systems.

7.2 Water Consumption

When a decision must be made to switch to a new landscape irriga-
tion control system, a primary concern is the efficiency of the pro-
posed system. The system’s ability to return its investment based
on increased efficiency will often dictate the acceptance of the tech-
nology. In addition, the environmental benefits of reduced freshwa-
ter consumption are clear and help promote system adoption.

In our experimental setup, the water source providing for each
sprinkler is pressure-regulated to the industry standard, 40psi. A
pressure-regulated sprinkler head distributing water at a known
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angle uses a clearly-defined amount of water per unit time, as de-
scribed in the sprinkler documentation. By tracking exactly when
each sprinkler is actuated by the system, we can determine very
accurately how much water has been consumed. In this way, we
compute the daily system consumptions for the ET vs PICS and
MAGIC vs PICS, as shown in Figures 13 and 14 respectively.

As discussed in Section 7.1, the experimental system started
with moisture levels significantly beneath our desired threshold.
For this reason, the first 5 days of PICS control had steadily improv-
ing quality of service as it learned its models and raised moisture
to satisfactory levels, but on days 2 and 4 this resulted in slightly
higher water consumption than the ET system. Day 8 saw slightly
higher consumption than the ET system as well, but these were
some of the ET system’s worst days in terms of quality of service.

Day 11 of our first deployment saw increased water consump-
tion as well, caused by a hardware malfunction. A command telling
4 of the 9 PICS nodes to “Stop irrigation” was lost due to a faulty
USB connection to the basestation mote, causing unintentional irri-
gation that was not corrected until failsafes in the node’s firmware
automatically disabled irrigation. This caused the PICS system to
consumed more water than intended, as shown on day 11 in Fig-
ure 10. We can also see PICS’s ability to recover from such mistakes
on days 5 and 12, where significantly less water is required due to
the residual moisture from the day before.

The water consumption of PICS when compared to MAGIC as
seen in Figure 14 was much closer, with some days using slightly
less and others slightly more water. However, on days 1 and 4, it is
particularly evident that although MAGIC saves significant water,
the quality of service suffers immensely.

Across the two deployments, the PICS system reduced water
consumption by an average of 11.99% compared to the ET system,
and 3.28% compared to the MAGIC system.

7.3 Moisture Uniformity

Moisture uniformity is a good side-effect, but is not considered a
primary goal. In particular, with our learning model, a core assump-
tion is that as losses occur at different rates at different spatial loca-
tions, we are required to apply different amounts of water across
the space. However, if we apply the appropriate amount of mois-
ture across the space, the water in all sensing locations will settle
towards a uniform distribution as the moisture levels approach the
uniform minimum moisture just before irrigation.
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Figure 16: Energy profile of the sensor node

Figure 15 shows the average volumetric water content (VWC)
colormap of the three compared systems as periodically sampled
across the entire deployment. For ease of visualization, a bilinear
interpolation is used to produce the figure (a more complex in-
terpolation such as cubic may create artifacts between sampling
points). We see that the ET has the least uniform coverage, with
a heavy over-irrigated area around the center of the field, and an
under-irrigated area close to the lower right corner of the field.
In contrast, both MAGIC and PICS had a more uniform moisture
distribution, with MAGIC being slightly above the minimum in a
cross-like pattern, and PICS being slightly above the minimum in
the upper right and lower left corners.

7.4 Energy Consumption

In our devices, the three peripherals that consume significant en-
ergy are the sensor, solenoid, and the radio. However, through
clever use of these peripherals, this system can achieve a substan-
tial system lifetime using our current power source of 4xAAs [3].
Each sensor sample requires 10mA of power for 10ms, and each flip
of the latching solenoid requires 400-450mA of power for 50ms. In
our system, to ensure we don’t cut power too early, we add a safety
band of 50% on the timing on both of these devices, triggering for
15ms and 75ms for the sensor and solenoid, respectively. The tmote
sky [15] radio consumes 23mA max when in transmitting mode.
In our 25 day deployment, we found that on average our control
strategy flips the solenoid of a node 12 times per day. Assuming
we sample our sensor 1 time per minute, flip the solenoid 12 times
per day, and utilize a 1% duty cycle ratio across the full 24 hours
for communication using techniques such as Low Power Listen-
ing [30], even with our conservative timing of the peripherals, our
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Table 3: Sprinkler Node Manufacture Cost

Component Price
Mote $37.57
Moisture Sensor $110
Batteries $4
Solenoid $15
Waterproof Enclosure $10
Manufacture & Assembly | $10
$186.57

system lifetime is estimated to be 1.7 years, with 95% of this energy
consumed by the radio. However, as fresh data is only required less
than 3 hours per day during irrigation, by simply leaving the radio
off the other 21 hours each day while continue sampling the data
and storing it in memory to be sent at the beginning of the irriga-
tion cycle, this lifetime is easily extended to ~11.9 years.

8 RETURN ON INVESTMENT ANALYSIS

There are social and political motivations behind a project like this,
but a primary consideration before the purchase and installation
of a replacement control system is the return on investment, or the
time it takes a system to save enough money to cover the cost of
installation and usage. To calculate the return on investment, we
must take into account the initial cost of the replacement system
and the monetary savings expected from the increased efficiency
of the replacement system. In Table 3, we list the cost of production
for one of our irrigation control devices. Other than screwing these
devices under each sprinkler head, the original infrastructure does
not need to be modified in any way.

Financial savings stem from the system’s ability to save water. In
Figure 17, we show how PICS will return its own investment based
on water savings alone. As the return on investment will differ de-
pending on the sprinkler heads used, we consider PICS’s installa-
tion on a representative University sprinkler head with 11.99% wa-
ter efficiency improvement compared to industry best, and the fact
that our University pays $5.60 per thousand gallons for irrigation.
Additionally shown in Figure 17 is a +10% band in water pricing,
to take variation of water pricing into account. In this way, each
unit device is estimated to return its investment in 14-17 months.



PICS’s improved efficiency and reduced need for a powerful com-
putation machine makes it even more financially attractive than
MAGIC, especially due to MAGIC’s additional setup costs that we
are not including, as discussed in Section 2.

9 LIMITATIONS AND FUTURE WORK

As shown in Section 8, the unit cost of our control devices is domi-
nated by our soil moisture sensor, which was chosen in our exper-
iments due to its very high accuracy (+3%[2]). As the size of the
system scales up, the initial cost of the system may become imprac-
tically high. To scale to very large systems, then, we must consider
the use of significantly cheaper soil moisture sensors at the price
of slightly less accurate measurements [31].

When setting up our system, we chose to use a control timestep
of 1 minute, and continued to use this to learn our short-term
model through our experiments. In future work, we will perform
a more in-depth analysis to see how the choice of this timestep
affects predictive power and practicality in irrigation control.

As PICS is designed for turf irrigation, it is unlikely to provide
benefit in shrubbery or tree irrigation, where much simpler drip ir-
rigation systems can be used. In addition, some very different turf
species may require varying minimum moisture levels to main-
tain health. Therefore, in turf irrigation systems where the sys-
tem covers multiple turf species such as a golf course irrigation
system, minimal configuration will be required beforehand to tell
PICS where each grass type is located. For instance, “Sprinklers
1-90 irrigate turf species A, Sprinklers 91-100 irrigate turf species
B, so that differing minimum moisture constraints can be spatially
assigned based on the species. Assigning heterogenous minimum
moisture constraints will not require any modification to our pro-
cessing pipeline.

PICS can guarantee optimal moisture levels at the sensing lo-
cations, but due to uncertainty on environmental conditions such
as objects occluding the sprinklers and other localized features, it
is possible that perfect irrigation is not achieved in between sen-
sors. A future step may be the addition of an emerging plant health
imaging technology [11, 21] to provide supplemental long-term
feedback to ensure these locations are also satisfied at all times.

10 CONCLUSIONS

Turf is the largest crop by surface area in North America, and us-
ing fresh water for irrigation puts significant pressure to make this
process efficient for such a delicate resource. In this work, we seek
to improve the efficiency of turf irrigation systems by designing,
implementing and evaluating PICS, a data-driven control strategy
that automatically adapts to local conditions and weather patterns,
requiring virtually no human input in both setup and maintenance.
Our system reduces the water consumption by an average of 12.0%
against the industry best and 3.3% against state-of-the-art research.
Despite this reduced water use, PICS was found to reduce turf ex-
posure to unhealthy levels of moisture by a factor of 4.0x and 2.5x
with respect to the two systems mentioned above. The PICS sys-
tem is expected to return its investment in 14-17 months based on
water savings alone.

11 ACKNOWLEDGEMENTS

We would like to thank our referees and our shepherd Xiaofan
(Fred) Jiang for their feedback and assistance. This material is based
upon work partially supported by the National Science Foundation
under grants #CNS-1254192 and #CNS-1430351.

REFERENCES

[1] CIMIS weather data. http://www.cimis.water.ca.gov/.

[2] Decagon devices. http://www.decagon.com/products/soils/.

[3] Energizer ultimate lithium. http://data.energizer.com/pdfs/191.pdf.

[4] Freshwater crisis. http://environment.nationalgeographic.com/environment/
freshwater/freshwater-crisis/.

GNU linear programming kit. https://www.gnu.org/software/glpk/.

Hunter: Advanced evapotranspiration weather control.
https://www.hunterindustries.com/en-metric/irrigation-product/sensors/et-
system.

Hunter MP rotator. hunterindustries.com/irrigation-product/nozzles/
mp-rotator.

Hunter rain-clik rain detection.
hunterindustries.com/irrigation-product/sensors/rain-clikr.

Looking for lawns.
http://earthobservatory.nasa.gov/Features/Lawn/printall.php.

Measuring hydraulic conductivity for use in soil survey.
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053204.pdf.
Photonics - plant health imaging filters.
https://www.photonics.com/Product.aspx?PRID=60994.

Rain bird evapotranspiration manager.
https://www.rainbird.com/documents/turf/bro_ETManager.pdf.

Raspberry pi. https://www.raspberrypi.org/.

Soil quality indicators.
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053288.pdf.
Tmote sky. http://www.snm.ethz.ch/Projects/TmoteSky.

UGMO irrigation. http://www.ugmo.com/.

R. G. Allen, L. S. Pereira, D. Raes, M. Smith, et al. Crop
evapotranspiration-guidelines for computing crop water requirements-FAO
irrigation and drainage paper 56. FAO, Rome, 300(9):D05109, 1998.

J. Bear. Dynamics of Fluids in Porous Media. Dover Civil and Mechanical
Engineering Series. Dover, 1972.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach
to numerical computing. CoRR, 2014.

J. Cai, Y. Liu, T. Lei, and L. S. Pereira. Estimating reference evapotranspiration
with the FAO penmanaASmonteith equation using daily weather forecast
messages. Agricultural and Forest Meteorology, 145(1):22-35, 2007.

L. Chaerle and D. V. D. Straeten. Seeing is believing: imaging techniques to
monitor plant health. Biochimica et Biophysica Acta (BBA) - Gene Structure and
Expression, 1519(3):153 - 166, 2001.

E. C. Childs. An introduction to the physical basis of soil water phenomena. A
Wiley Intercience Publication John Wiley And Sons Ltd,; London; New York;
Sydney; Toronto, 1969.

T. Harter and J. R. Lund. Addressing nitrate in california’s drinking water.
Technical report, University of California, Davis, 2012.

M. E. Jensen, R. D. Burman, and R. G. Allen. Evapotranspiration and irrigation
water requirements. ASCE, 1990.

Y. Kim, R. G. Evans, and W. M. Iversen. Remote sensing and control of an
irrigation system using a distributed wireless sensor network. IEEE
Transactions on Instrumentation and Measurement, 57(7):1379-1387, July 2008.
M. Kirkham. Principles of Soil and Plant Water Relations. Elsevier Science, 2004.
M. A. Maupin, J. F. Kenny, S. S. Hutson, J. K. Lovelace, N. L. Barber, and K. S.
Linsey. Estimated use of water in the United States in 2010. U.S. Geological
Survey Circular 1405, 2014.

S. McCreath and R. Delgoda. Pharmacognosy: Fundamentals, Applications and
Strategies. Elsevier Science, 2017.

M. J. Oliver. Evapotranspiration forecasting irrigation control system, Dec.
1997. US Patent 5,696,671.

J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless
sensor networks. In Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 95-107. ACM, 2004.

E. A. Spaans and J. Baker. Calibration of watermark soil moisture sensors for
soil matric potential and temperature. Plant and Soil, 143(2):213-217, 1992.

D. A. Winkler, R. Wang, F. Blanchette, M. Carreira-Perpinan, and A. E. Cerpa.
MAGIC: Model-based actuation for ground irrigation control. In 2016 15th
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), Apr. 2016.

[22]

[23]
[24]
[25]

[26
[27]

[28]
[29]

[30]

[31]

[32]



