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Abstract—Lawns make up the largest irrigated crop by surface
area in North America, and carries with it a demand for
over 9 billion gallons of freshwater each day. Despite recent
developments in irrigation control and sprinkler technology,
state-of-the-art irrigation systems do nothing to compensate for
areas of turf with heterogeneous water needs. In this work, we
overcome the physical limitations of the traditional irrigation
system with the development of a sprinkler node that can sense
the local soil moisture, communicate wirelessly, and actuate
its own sprinkler based on a centrally-computed schedule. A
model is then developed to compute moisture movement from
runoff, absorption, and diffusion. Integrated with an optimization
framework, optimal valve scheduling can be found for each
node in the space. In a turf area covering over 10,000ft2,
two separate deployments spanning a total of 7 weeks show
that MAGIC can reduce water consumption by 23.4% over
traditional campus scheduling, and by 12.3% over state-of-the-
art evapotranspiration systems, while substantially improving
conditions for plant health. In addition to environmental, social,
and health benefits, MAGIC is shown to return its investment in
16-18 months based on water consumption alone.

Index Terms—Irrigation, Monitoring, Decentralized Control.

I. INTRODUCTION

Only 1% of Earth’s water is fresh and available for use [4].

Due to its scarcity, there is high incentive to reduce its usage

across the board. In North America, turf, also known as lawn,

is the largest irrigated crop by surface area, covering over

128,000 km2 [8] and was estimated in 2015 to consume in

excess of 9 billion gallons of freshwater each day [13]. With a

historic drought afflicting the western United States following

a similar shortage in the south-east United States, improved

irrigation efficiency at this massive scale can help reduce the

strain on our limited freshwater reserves.

Although we wish to reduce water consumption as much

as possible, the primary goal of these irrigation systems is to

maintain plant health. To keep turf healthy, a proper amount of

water must be periodically applied. Providing too little water

to the turf will cause it to turn brown and die. Although

traditional irrigation control strategies often over-irrigate to be

safe, this can cause its own problems. Excess surface water

can cause further waste due to evaporation and runoff and can

cause root rot, killing the plant. Furthermore, over-watering

can cause erosion of the surrounding soil and even leech unsafe

fertilizer chemicals beyond the root zone and into the ground

water, as occurred in California’s Salinas Valley and Tulare

Lake Basin, investigated by [22].

Improper irrigation is the cause of these issues. Great

improvements in irrigation system design have been made

recently; new sprinkler heads apply water much more slowly

to avoid runoff and leeching [5], and new irrigation controllers

schedule irrigation using weather data to take into account the

water lost each day due to evaporation and plant transpiration,

known coupled as evapotranspiration. Even the best control

strategies still behave as though all turf requires the same

amount of water, when in fact there often exist large variations

in soil type and depth, topography, and direct sunlight. If

this information were utilized, every location throughout the

irrigated space could be given the amount of water it needs.

However, as the infrastructure of traditional irrigation systems

is usually configured for each valve to actuate many sprinklers,

such a system could not even make proper use of fine-

grained water requirement information as all sprinklers must

be actuated for the same amount of time.

Our contributions addresses both of these limitations. First,

we develop a computationally-light model that uses charac-

teristics of the irrigated space to analyze the fundamental

causes of fluid movement. This model is then integrated into an

optimization framework to allow for optimal valve scheduling

to be computed. The second contribution is the development

of the MAGIC sprinkler node, capable of actuating its attached

sprinkler, sensing local soil moisture, and communicating

wirelessly with its sister nodes in the environment. Through

a large-scale deployment lasting 7 weeks, we demonstrate

that the model-based MAGIC system can help provide more

precise irrigation to turf areas, reducing water usage and

substantially improving the quality of service over common-

practice and state-of-the-art control strategies.

II. RELATED WORK

To accomplish the minimization later described in Sec-

tion 10, we must know how fluid moves across and through

soil. This is well-studied in the field of soil physics; very ac-

curate models including Hydrus [7] and Comsol Multiphysics’

Subsurface Flow Module [1] exist, which solve PDEs for

pressures that exist between soil and water particles in the

porous media. Although very accurate, these models compute

water flow and absorption on a much smaller scale than what



Fig. 1. MAGIC System Architecture

is necessary for irrigation control. As such, they require heavy

processing, and take a tremendous amount of time to complete.

An overly-complicated fluid model makes optimization un-

reasonable, so alternative methods are considered for system

simplification. For example, observations of an accepted fluid

flow model can be incorporated into a simplified model using

Data Assimilation. Used to predict states of advanced systems

given a particular input such as weather forecasting [24] and

large-scale hydrological patterns from satellite images [27],

data assimilation is often used to create approximated system

models, which can then be used for optimization. However, the

immense size and discontinuity of the solution space can lead

to an approximated model that is unable to reasonably predict

outcomes of the system. Another option, called Lumped

Element Modeling, is a method of breaking complex problems

into simpler “lumped” sub-components. This method has been

used to create a simplified model of fluid jets for prototype

analysis [19], and to model aortic blood flow from arterial

pressure in humans [30] among other applications. Although

such simplifications sacrifice accuracy, the approximation can

be evaluated in a short amount of time.

Researchers in [18] build a one-dimensional soil water

balance model to simulate the vertical movement of moisture

in an irrigated space based on soil characteristics, irrigation

schedule, real-time weather data, and irrigation infrastructure.

In addition, an interactive tool was designed for homeowners

and landscapists to quickly evaluate an installed system. This

system provides some key insight on moisture changes, such

as evapotranspiration that take place on a daily timescale, but

over-simplify short-term effects like runoff, that can provide

key insight into the movement of water across the surface.

Although it provides evaluation of a particular schedule, no

strategies are offered for schedule improvement.

In [31], a model was created using a cellular automata

approach that incorporated irrigation, surface, and sub-surface

flow. By analyzing this model using an optimization frame-

work, it was determined in simulation that system efficiency

can be improved by increasing the granularity of control.

However, due to model complexity and problem size, the op-

timization framework had difficulty finding a globally optimal

solution with large numbers of timesteps and sprinklers.

Irrigation controllers exist that utilize one or more soil

moisture sensors spread throughout the turf [12], [15], [25]

to gauge need for irrigation. However, whereas systems that

model the space can infer and utilize moisture status between

sensor points to create schedules, these systems can only

utilize the limited data from the sensor points. Furthermore,

these systems still have the same physical constraints as a

traditional irrigation system; they can not provide irrigation to

specific regions that need more or less.

The authors of [26] identify potential improvements to agri-

culture irrigation systems. On-site and remote control systems

are discussed, as well as their learning curves, which may

prevent unskilled farmers from adopting them. Bottlenecks

are recognized in system development, standardization of

technology, and business models, that must advance before

control system alternatives become accepted. Although a con-

trol system is not introduced, this work makes clear that

control strategy improvements are highly sought-after.

Becoming more prevalently used in modern irrigation con-

trollers, evapotranspiration technologies [14], [23] use weather

stations to monitor air temperature, humidity, and other factors

to estimate water lost to the environment throughout the day.

Using this information, irrigation systems can use knowledge

of their sprinklers’ coverage to compute required on-time for

water replacement. As this has become widely-adopted, it will

be used as side-by-side comparison with the MAGIC system.

III. SYSTEM OVERVIEW

Figure 1 shows an overview of the MAGIC system archi-

tecture. Our irrigation control system uses multiple modules

to provide control to the space. To explain how these modules

work together, we first describe their roles. They are described

at irrigation time, when schedule generation occurs.

The MAGIC system consists of a distributed network of

sensing and actuation (MAGIC) nodes, installed into the

existing plumbing infrastructure of the irrigation system. Each

MAGIC node is equipped with a soil moisture sensor, a

solenoid to control the flow of water, and a mote to provide

radio communication. The attached volumetric water content

(VWC) sensor is periodically sampled from the environment

by each sprinkler node in the space. This collected data

is then routed through the wireless sensor network to the

Basestation, interfacing between the 802.15.4 network and

another communication medium such as an ethernet or 4G

network. Once received, this data is then incorporated with

the sensor readings collected from other nodes to create a

“snapshot” of the soil moisture across the entire space.

The Moisture Model, described in Section IV, contains a

mathematical formulation modeling soil and irrigation system

characteristics, providing means to calculate moisture move-

ment through and across the soil. After the current VWC from

the irrigation system is integrated, the model is passed to the

Irrigation Schedule Optimizer for schedule creation.

The Irrigation Schedule Optimizer sets up and solves the

following constrained optimization problem. The fluid flow

model is incorporated as equality constraints at each spatial

location and time, which must be satisfied for an optimal

solution to result in a valid flow. A goal water saturation level

provides inequality constraints at each spatial location at the

end of irrigation. Although in principle the PDEs defining the
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Fig. 2. Sample Retention & Hydraulic Conductivity

Fig. 3. Physical Model Unit Diagram

model are nonlinear, we linearize them in order to simplify

the optimization (which, due to discretization, involves many

variables). The final result is a linear program that, although

large, can be solved accurately in a reasonable time. As the

objective function minimizes the total water consumption of

the irrigation system, the solution provides optimal activation

schedules for each MAGIC node in the space.

Once the schedules are received by the Basestation, they

are disseminated through the wireless sensor network to

their respective MAGIC node. Upon reception of a schedule,

the Distributed Control System routes power to the attached

solenoid following the received schedule, allowing water to

flow to the sprinkler.

IV. MODEL DEVELOPMENT

We wish to model a particular irrigation system, and use

this information to find improved control techniques. This two-

dimensional model incorporates the movement of water from

the sprinkler heads, water movement across the surface, the

absorption into the soil, and the movement of water through

the sub-surface. Although many models exist that describe one

or more of these components, we present here the first model

that efficiently combines them together.

A. Soil Characteristics

We first emphasize the differences between soil and typical

porous media. Generally, a porous medium maintains constant

characteristics across its entire range of saturation. However,

in soils, two functional relationships govern the retention and

movement of water through soil. First, an attraction exists

between water and the soil particles, known as matric suction.

When the soil is very dry, the matrix exerts a strong suction,

TABLE I
MODEL VARIABLE REFERENCE

Variable Usage
fk Actuation function of sprinkler k
ck Coverage of sprinkler k
θ Volumetric soil moisture content
h Surface fluid height
~u Velocity of water in soil
~v Velocity of water on surface
κ Soil permeability
κg Grass permeability
η Fluid viscosity
ρ Fluid density
ζ Sub-surface boundary constant
µ Surface boundary constant
αh Surface flow parameter
K(θ) Hydraulic conductivity
ψ(θ) Matric suction
Fs Fluid from sprinklers
~τ Tangential component of gravity
θpwp Minimum θ for healthy plants

trying to pull water from the surrounding environment. The

relationship between matric suction and volumetric water con-

tent is known as the “water retention curve”, a characteristic

equation of the soil as defined in [20]. This relationship, shown

on the left axis of Figure 2, strongly impacts the movement

of water through the soil, as dry soil will prevent flow

until increased saturation is reached. Second, the hydraulic

conductivity of soil is dependent on the local volumetric water

content. Due to the matric suction, the soil will increasingly

resist the movement of moisture as the volumetric water

content decreases. The hydraulic conductivity relationship is

also defined in [20] and is shown on the right axis of Figure 2.

B. Fluid Flow Model

We model water displacement above the soil surface and

through the subsurface of the soil as flow through two different

porous media. Fluid flow through porous media is well-

studied, dating back to the work of Henry Darcy [17], now

known as Darcy’s Law. To model the movement through the

soil we use Darcy’s Law for isotropic porous media (Eq. 1),

~u =
κ

η
(−∇P + ~τ) (1)

where P is the pressure, ~τ is the tangential component of

gravity along the surface of the porous media, and other

quantities as defined in Table I. This model assumes that the

porous media everywhere has the same dependence on water

content. As our model tracks soil moisture at small scales,

such a simplification is more practical than the alternative of

collecting and analyzing samples across the entire space.

Darcy’s Equation requires the determination of the pressure,

which is generally linearly related to the amount of water

above the point in question. In our model, we compute the

depth-averaged subsurface flow by considering a soil depth

L. In this case the mean pressure driving flow includes the

weight of water in the subsurface above a point, ρgLθ, the

weight of water on the surface, ρgh where h is the height



of water above the soil surface, and the matric suction of the

soil ρgψ(θ). We thus express the mean pressure in soil as

P = ρg(h+ Lθ + ψ(θ)). We can therefore express the liquid

velocity in the subsurface as

~u = −K(θ)∇h+K(θ)~τ −K(θ)(L+ ψ
′(θ))∇θ (2)

as depicted in Figure 3, where we defined the hydraulic

conductivity as K(θ) = ρgκ(θ)/η.

To track the time-rate of change of the volumetric soil

moisture content, θ, we use the divergence of the moisture

flux, ~uθ, and the inflow from surface water, ζhK(θ), where

ζ = 1/L2φs is a proportionality constant mapping surface

water height to volumetric content in the subsurface based on

soil porosity and depth, calculated by balancing the pressure

gradient with the soil permeability. We thus have

∂θ

∂t
= −∇ · (θ~u) + ζhK(θ) (3)

As the velocity, ~u, is itself the gradient of the volumetric

soil moisture content, the movement of water will behave

as a diffusive process, moving sub-surface moisture towards

areas of lower concentration. With the inclusion of a gravity

term, ~τ , in the velocity equation, water will tend to move in

the direction of steepest descent. Lastly, by allowing water

to move through the boundary from the surface into the

sub-surface, we allow irrigation on the surface of the soil

to positively affect the amount of water moving through

the sub-surface. Together, these terms result in sub-surface

water movement that realistically depends on volumetric water

content, local topography, and surface conditions.

In addition to tracking the soil moisture, we need to de-

termine the height of the surface water, h. Depending on the

species of lawn chosen to model, a square inch of turf can have

tens to hundreds of blades of grass, each of which will impede

the movement of water across the surface of the soil. By

comparing the inertia of the fluid and the drag forces caused by

the blades of turf, we find that for surface water velocities less

than 1cm/s, the surface flow through the turf can be modeled

as fluid flow through a (very) porous medium. Additional

information and the calculations that support this approach

can be found in Appendix A. The velocity of water through

the turf, ~v, is therefore computed using Darcy’s Equation

for isotropic porous media, as was done for the sub-surface

velocity in Equation 2:

~v =
κg

η
(−ρg∇h− ~τ) = −αh∇h−

κg

η
~τ (4)

where the fluid density, permeability, and gravity terms have

been absorbed into αh. Similarly to sub-surface movement,

the velocity through the layer of grass is dependent on the

orientation of the surrounding topography, as well as the

viscosity and density of the fluid.

The permeability used in Equation 4, κg, is not as well-

constrained as that of the sub-surface fluid flow. The shape,

size, and density of the grass layer is dependent on the

species of grass, as well as its health. Research has been

conducted [16], [28] for the application of filter design that

defines the permeability of a fibrous media based on its

overall porosity and the size of the fibers. Using the proposed

method, we find an approximate permeability of 10−5m , a

value similar to that of well-sorted gravel. This completes the

description of the velocity of surface water, and we may use

this velocity to keep track of the height of water on the surface:

∂h

∂t
= −∇ · (h~v) + Fs − µhK(θ)

Fs =

K
∑

k=1

ckfk(t)
(5)

where Fs is the rate of irrigation, determined using the

activation fk(t) of sprinkler k at time t and coverage ck of

sprinkler k. The amount of water lost to soil is the same

as that added to soil moisture, converted from soil moisture

to pure water, where µ = ζLφs/φg , with φs, φg as the

porosities of soil and grass and L as the soil depth. We note

that evaporation and leeching terms were not included in our

formulation, due to the way our case study was conducted. At

the request of campus authorities, all irrigation was performed

in late evening, providing ample time to absorb into the

soil, and allowing only minimal evaporation to occur. As for

leeching, our deployment soil sat on top of a thick layer

of clay, measured [20] to have a hydraulic conductivity 60–

3700× smaller than the soil found at our deployment, making

leeching terms negligible. Although these terms are omitted

in the present study, they could easily be introduced for an

application that requires them.

C. Boundary and Initial Conditions

To complete our PDE-based model, we specify boundary

conditions describing moisture movement in and out of our

domain on the sides and bottom. In many irrigated spaces,

the turf is bordered by natural boudaries (i.e. sidewalk) that

prevents all flow, making modeling very simple. As our

deployment does not border any such features, we model the

boundaries on the sides of our space using a “fixed” boundary

condition. On the surface, the boundary value is 0 so that water

can not move in from other locations, and on the sub-surface

the boundary value is θpwp, the minimum volumetric content to

maintain turf health. For larger regions, an infinite domain can

be modeled by enforcing the condition that all quantities have

zero flux (zero normal derivatives) at the boundary. Due to

the slow moisture movement through the soil, an approximate

boundary condition should only have minor effects near the

boundary of the domain. As the thick clay layer beneath our

deployment greatly hinders moisture movement, we consider

the loss through the bottom of our system to be negligible,

and thus omitted.

As irrigation occurs at most once-daily, we assume that all

surface moisture has had ample time to fully absorb into the

soil, so the initial condition for surface moisture is set to zero.

As the MAGIC node periodically samples the soil moisture

sensors to monitor the state of the soil, this data is readily

available for use as sub-surface initial conditions to the model.

As the sensors are coarsely-distributed spatially throughout the



area, the data is upsampled to the same granularity as the

optimization problem using a bilinear interpolation.

D. Fluid Flow Model Simplification

We simplify the model in two ways for computational

reasons. Firstly, we linearize the model PDEs. Although this is

not necessary if one only wants to solve the PDEs to obtain the

flow over time given a schedule, it considerably facilitates the

numerical optimization over the schedule. Nonlinear equality

constraints make the feasible set nonconvex and give rise

to local optima, which complicate finding a good optimum.

They also require nonlinear optimization, which is slower.

Second, we discretize the spatial and temporal domains and

approximate the derivatives using finite differences. With these

simplifications, since the objective function and inequalities

are already linear in our application, the resulting optimization

problem is a linear program, for which efficient solvers are

available that can handle millions of variables and constraints.

As seen later, this allows us to obtain a valid schedule in a

relatively small amount of time.

1) Fluid Flow Model Linearization: The goal of lineariza-

tion is to characterize each model equation as a linear com-

bination of optimization variables. To remove non-linearities

arising from optimization variables multiplied together, we

make reasonable assumptions about the behavior of the system

to substitute these non-linearities with linear counterparts.

We break each optimization variable into a base value, with

subindex 0, and a small deviation, denoted with a hat. For

example, the volumetric moisture content, θ, is rewritten in

the form θ = θ0 + θ̂. Each occurrence of the original four op-

timization variables is replaced with a similar representation,

and simplified to achieve the following four linear equations,

where we define a function ϕ(θ) = K(θ)(L + ψ′(θ)) to

simplify notation:

∂h

∂t
=−∇ · (ĥ~v0 + h0~̂v) + Fs (6)

− η
(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) + ĥK

′(θ0)θ̂
)

∂θ

∂t
=−∇ · (θ̂~u0 + θ0~̂u) + ζ

(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) (7)

+ ĥK
′(θ0)θ̂

)

~u =−K(θ0)∇ĥ−K(θ0)∇h0 −K
′(θ0)θ̂∇h0 −K

′(θ0)θ̂∇ĥ (8)

+K(θ)~τ − ϕ(θ0)∇θ0 − ϕ(θ0)∇θ̂ − ϕ
′(θ0)θ̂∇θ0 − ϕ

′(θ0)θ̂∇θ̂

~v =− αh∇h+ ~τ (9)

As we assume that the deviations are small relative to the

base value, the underlined terms should be much smaller than

other terms appearing in the equations, and are ignored.

2) Fluid Flow Model Discretization: The derivatives ap-

pearing in our modeling equations are approximated with finite

differences. We use forward differences for the time derivatives

for θ and h, for example dθ/dt ≈
θi,j,t+1−θi,j,t

∆t
, where ∆t

is the time interval size and t is the temporal index, with t =

0,...,Nt. We use centered differences for the spatial derivatives

for θ and h, for example dθ/dx ≈
θi+1,j,t−θi−1,j,t

2∆x
, where ∆x

is the spatial grid size and i,j are the indices of a spatial cell,

for i=0,...,Nx and j=0,...,Ny . Consider the discretization on a

TABLE II
OPTIMIZATION VARIABLES

Variable Description
i, j Spatial index ∈ 0 : Nx, 0 : Ny

t Temporal index ∈ 0 : Nt

k Sprinkler location index ∈ 1 : K
fkt Sprinkler k actuation at time t ∈ {0, 1}
h(ijt) Height of water on surface
θ(ijt) Soil volumetric water content
ux
(ijt) u

y

(ijt) Soil water velocity, x, y direction

vx(ijt) v
y

(ijt) Surface water velocity, x, y direction

continuous range [0, Nx] in the x direction. The entire range

is broken into Nx segments of length ∆x. As the range is

inclusive and contains both 0 and Nx, the number of discrete

variables is Nx + 1, corresponding to x0,x1,. . . ,xNx
. This

discretization is performed on all variables of our linear model

equations, resulting in the 6 equations found in Appendix B.

V. OPTIMIZATION OVER THE SCHEDULE

An irrigation system that is capable of sprinkler-level ac-

tuation must be tested to see if it is a viable option as a

control system. To test its capabilities, we require the ability

to produce optimal sprinkler scheduling for the system. The

objective of this optimization is to produce a schedule that

provides enough moisture at all points in the space to maintain

health, while minimizing system water consumption.

Our optimization problem is the following linear program

(LP): The objective function is total water spent over a period

Nt of time. We define fk(t) as a binary function that equals 0

if sprinkler k is off at time t and 1 otherwise, then the water

spending is proportional to
∑K

k=1

∫ Nt

0
fk(t)dt. Discretizing

over time gives as objective function
∑K,Nt

k,t=0
fkt, where fkt

are K ×Nt optimization variables (the sprinklers’ schedule).

We have as additional optimization variables the val-

ues of h, θ, ux, uy, vx, vy , (6 variables) at each spatiotem-

poral cell, with a total of Nt × Nx × Ny × 6 vari-

ables. So the complete set of optimization variables is

{fkt, hijt, θijt, u
x
ijt, u

y
ijt, v

x
ijt, v

y
ijt}

Nx,Ny,Nt

i,j,t=0
.

The equality constraints arise from the necessity of the

joint values of these variables to satisfy the fluid flow PDEs

everywhere in time and space. There are 6 PDEs, hence we

have 6 equality constraints for each spatiotemporal cell. They

are given by the linearized, discretized PDEs of Appendix B.

As each constraint involves only 4 variables because of the

spatial neighborhood relation induced by the finite differences,

the matrix of equality constraints is sparse.

The inequality constraints define the goal state of the

system, namely a schedule must provide volumetric water

content in the soil exceeding the minimum water content plants

need, θpwp, and be within prescribed lower and upper limits

θl and θu. These constraints are of the bound type, i.e., they

have the form “variable ≤ constant” for each variable.

The optimization variables fkt are binary, which makes

the problem an integer linear program (ILP). ILPs are NP-

complete and must be approximated in practice. Here, we

simply relax them to the continuous LP by letting each variable



Fig. 4. MAGIC sprinkler and sensor locations

be real in [0,1]. Although other approaches exist that can give

better approximations (such as branch-and-bound), they are

impractical for the size of our problem.

The discretization in space and time results in a large num-

ber of variables and constraints. For example, using a coarse

spatial grid of 10×10 with 100 timesteps results in 10000 cells

and so 60000 variables (plus 100×K schedule variables for

K sprinklers), 60000 equality constraints and 10000 inequality

constraints. Fortunately, the equality constraints are sparse and

the inequality constraints are simple bounds.

We currently use Stanford’s CVX convex optimization li-

brary [21] to solve the LP. CVX is convenient for our project

because of its flexibility in the choice of LP solvers and its

programmatic interface.

min
{fkt,hijt,θijt,u

x
ijt

,u
y

ijt
,vx

ijt
,v

y

ijt
}
Nx,Ny,Nt
i,j,t=0

K∑

k=1

Nt∑

t=0

fkt s.t. (10)

0 ≤ fkt ≤ 1 k=1,...,K
t=0,...,Nt

(11)

θl ≤ θijt ≤ θu

i=0,...,Nx

j=0,...,Ny

t=0,...,Nt

(12)

θpwp ≤ θijNt

i=0,...,Nx

j=0,...,Ny
(13)

PDE model equations (16)–(21) (14)

The PDE model equations are as calculated in Sec-

tion IV-D2, and can be found in Appendix B.

VI. PROOF-OF-CONCEPT SIMULATION

As the model is integrated into the optimization framework,

we can perform a proof-of-concept experiment to ensure

optimization produces schedules that follow intuition. Figure 4

shows the topography and node locations tested, made to

resemble the hillside used in our case study shown in Figure 6.

The hillside was modeled with soil characteristics as would be

found in the deployment location, and the optimization was

performed. The schedule produced can be seen in Figure 5a,

where the dark blocks correspond to active sprinklers as time

progresses on the x axis. As this is an example problem, the

time is purposefully unitless as it does not represent a real

scenario. This schedule can be observed to favor irrigation at

the top of the hill, and favor Nodes 1 and 7 least, as they are
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Fig. 5. Example Optimized Schedules

located in the bottom corners. This follows intuition, as any

unused water at the top of the hill will move away as runoff,

and benefit the downhill turf.

The soil was then adjusted to mimic a less-absorbant clay,

and its thickness was reduced. The thin soil requires less

water, but as the clay is less absorbant, watering all at once

would cause most water to be lost as runoff. The schedule

produced in response to this environmental change is shown

in Figure 5b where the dark blocks correspond to active

sprinklers. The optimizer finds a solution that causes actuation

to occur intermittently, making irrigation non-continuous. As

the less-absorbant soil causes runoff to occur much more

dramatically, the optimal solution prevents the lower sprinklers

from actuating at all, allowing the runoff from above to provide

adequate moisture to the region below.

VII. CASE STUDY: LIVE DEPLOYMENT

In many applications, it is possible to compare a newly-

developed model to other accepted models. However, as an all-

inclusive model for our application does not exist, we compare

to reality by evaluating the performance of an irrigation system

using the control modifications we have proposed.

We chose to deploy two systems side-by-side once a suitable

location is found. Ideally, the two systems will cover similar

soil and turf, face the same direction so that sun exposure will

be equivalent, and have completely independent irrigation to

avoid cross-contamination. In addition, to ensure all sprinkler

coverage is the same, the same water source is used to power

both systems, and actuation is provided to both sides with the

installation of our MAGIC nodes. The only difference between

the systems are the control schedules sent to each side.

In the beginning of our project, we intended to use an

existing irrigation system to perform our deployment. In

looking for a suitable location, we came to realize that the

granularity of irrigation control on our University’s campus

was less than ideal. Locations spanning more than ten thousand

square feet across heterogeneous terrain were actuated by a

single control valve. Although MAGIC can simply be screwed

into place at each sprinkler to retrofit an existing irrigation



Fig. 6. Deployment side-view

system, University officials preferred that the existing system

not be touched. For this reason, we designed and deployed our

own parallel irrigation system.

A. Seeking a Suitable Location

With the help of University personnel, a suitable location

was found on a stepped hillside (see Figure 6) far away

from the nearest foot-traffic. The hill, rising about 9 feet

over a distance of 70 feet, acted as an elevated surround

for a University soccer field, the hill stretching more than

200 feet. To take advantage of this topography, two irrigation

systems were placed side by side, each spanning a 70’x70’

area along the hillside. Between the two systems were 5 feet

of nonirrigated space, to prevent any spray from one system

to enter the other side. As a whole, the two irrigation systems

spanned an area of 70’x145’, approximately 10,150ft2.

B. System Development and Deployment

The underground irrigation system used by groundskeep-

ers to maintain the hillside was plumbed with high-flow

water lines leading to each of their sprinklers. As campus

greenskeepers preferred us not to manipulate their system,

our system drew its water from nearby hose spigots. Flow

limitations of the hose spigots did not allow actuation of

both systems at the same time, so the two irrigation systems

are irrigated sequentially during our case study. Although a

commercialized version of MAGIC would be installed in the

ground, our temporary system was placed on the surface for

ease of access to our prototype. The nodes themselves were

placed on the ground just next to the sprinklers, while the

solenoid providing actuation was fixed to the sprinkler riser.

To choose the sprinkler configuration for our side-by-side

deployment, we consulted sprinkler manufacturer specifica-

tions; a rule of thumb for system planning is that the coverage

of one sprinkler should reach 75-100% of the distance to

the next closest sprinkler, to avoid uncovered areas on the

diagonal. To cover one of the two 70’×70’, we would require

9 sprinklers in a 3×3 grid, each reaching more than 26’. It was

found that the low-flow MP-Rotator 3000 sprinkler [5], a new

rotor that is known to be remarkably efficient, could reach up

to 30’, 9 of which can be powered by our water source. As the

MP-Rotator is quickly replacing older sprinkler technologies at

our University for their slow-application and minimum runoff,

we decided they would be the best choice for our deployment.

Fig. 7. Example solenoid safety mechanism

Fig. 8. Sensing/actuation (MAGIC) node

Lastly, our deployment included a central basestation fitted

with power, a small plug computer, an elevated 802.15.4 mote

to receive data from the sensing nodes, and a 4G hotspot,

to allow us to communicate with the wireless sensor network

from a remote location. Although our basestation was overbuilt

to facilitate ease of debugging and close monitoring of the

prototype system, a commercialized system may have only the

mote to interface with the sensor network, and an interface to

any external service (local, cloud, etc).

C. Node Development

A standard solenoid requires constant power to allow water

to flow, making it a poor choice for a battery-powered system.

However, one benefit is that a power failure on the control

node will cause the solenoid to close, preventing continued

irrigation and potentially serious flooding. To extend node

lifetime, we chose to use a latching solenoid for sprinkler

actuation, requiring only a 50ms pulse of positive (to open)

or negative (to close) voltage. To prevent over-irrigation in the

event of a power failure, a simple circuit can be built into the

MAGIC board that sends a closing pulse to the solenoid if

a loss of power is detected. As shown in Figure 7, a pin is

maintained on the microcontroller that changes from 0 to 1

in event of failure (or from 1 to 0, a NOT gate can be used

to invert it). Once this pin is active it immediately brings the

top pin of an XOR logic gate to 1, allowing current to flow

through the circuit. Once the capacitor charges, the second

pin of the XOR logic gate activates, terminating the current.

This solenoid-terminating pulse, generated while the capacitor

charges, is for a period tp ∝ CR, where C and R are the

capacitance and resistance values used in the circuit. With this



Fig. 9. Daily soil moisture cycle

configuration, the control node will benefit from the low-power

operation of a latching solenoid without sacrificing safety.
To allow the MAGIC node to manage the input/output

connections from the mote, we manufactured a printed circuit

board to interface with these peripherals. This interface board,

shown in Figure 8, has connections for battery power, sensor

(right) and solenoid (left). The different voltages required by

the mote and solenoid were provided by voltage regulators

built into the board. As the chosen latching solenoid requires

the board to produce a positive (opening) and negative (clos-

ing) voltage for operation, the board was equipped with an

h-bridge, allowing us to easily produce bi-directional current.
A key feature of the MAGIC node is the ability to measure

the volumetric water content in the surrounding soil. We

opted to purchase research-quality Decagon EC-5 [2] sensors,

with a reported accuracy of ±3%. The Decagon sensors cost

roughly $110, but data fidelity in our model verification was

paramount. Raw sensor readings collected over a period of

one day with a high sampling frequency can be seen in

Figure 9. The sensors report the dielectric constant of the

soil, an electrical property highly dependent on the volumetric

water content. A linear calibration function provided by the

sensor manufacturer is used to convert the raw readings to

volumetric water content. An attentive reader will notice the

sharp increase in the late afternoon due to irrigation, stable

readings throughout the night, with sensor fall beginning as

the sun comes up at 7:45am. This decrease steepens as the sun

rises and faces the deployment directly after 10am. In a sensor-

dense environment, a more economical alternative to the EC-5

may be chosen, such as the 35$ Watermark sensor [29], which

can be calibrated to ±5% accuracy.

D. System Comparison

In this study, we compare the operation of the MAGIC

system against two baseline control systems. The first baseline,

evaluated in a 5-week deployment, employs a trial-and-error

control strategy used widely in practice (including our cam-

pus). A greenskeeper will monitor an irrigation system for

days or weeks; if an excess of runoff provides evidence of

over-watering, or if brown patches provide evidence of under-

watering, they will adjust the system accordingly. This irri-

gation scheduling, often remaining unchanged through entire

seasons, leads to a misuse of water as it does not account

for changing weather or soil requirements. We emulate this

strategy by matching exactly the amount of water coverage as

would be provided by the greenskeepers of our campus.

The second baseline control strategy, evaluated in a 2-week

deployment, employs a state-of-the-art evapotranspiration (ET)

control strategy. As described in Section II, these systems use

weather forecasting to estimate the amount of water lost by

the soil due to evaporation and plant transpiration. Irrigation

controllers that use ET technology typically irrigate every 1-3

days, replacing water lost over that period. To emulate an ET

system, we query a local weather station that computes hourly

ET loss, and compute the previous day’s water losses. With

our sprinklers’ surface coverage rate, we create daily valve

schedules to do exact replacement of these losses.

VIII. EXPERIMENTAL RESULTS

Through 7 weeks of deployment, we ran two irrigation

systems side-by-side on identical patches of turf, periodically

collecting soil moisture data from each. For the first 5 week

deployment, our campus’ control strategy was tested and for

the second 2 week deployment, state-of-the-art evapotranspi-

ration (ET) control was used. In both deployments, these

systems were compared against schedules computed by our

model-based optimization, actuated using our independent ac-

tuation/sensing (MAGIC) nodes. We focus our analysis on the

comparison between MAGIC and state-of-the-art ET system,

hereby named “Control”. The goal of these case-studies was

to determine if the MAGIC system could reduce the amount

of water used without sacrificing quality of irrigation.

A. Quality of Service

The primary objective of an irrigation system is to maintain

plant health. A very efficient system that is unable to meet

this objective will be replaced with a less-efficient system

that provides satisfactory water coverage to the turf. To re-

duce water consumption during irrigation, we must know the

minimum level of soil moisture that is still able to keep the

plant healthy. This level of volumetric water content (VWC)

is known in hydrology as the permanent wilting point (θpwp),

a soil characteristic where the matric suction forces binding

the water to soil particles are equal to the suction exhibited by

the plant. Prolonged residence in a soil with moisture beneath

θpwp will cause wilting and eventual death to the plant, so we

make the assumption that less time spent below this threshold

will help maintain long-term plant health.

To prevent poor plant health, we want to minimize the

amount of time spent with soil VWC under θpwp. The per-

manent wilting point for loamy soils like that found in our

deployment is typically between 10-15% [9], so we assume

the worst case and assign θpwp to be 15%. We expect that

if MAGIC were to distribute moisture in a smarter way by

targeting areas that would otherwise receive inadequate water,

the MAGIC sensor readings will spend less time underneath

the θpwp threshold than the Control system (ET).

The sensor data from each MAGIC node during the de-

ployment and the minimum healthy saturation θpwp=.15 are

shown in Figure 10. It can be observed that the Control

system (left) spends much more time with readings underneath

θpwp. An exception is seen during day 11, where seasonal
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Fig. 10. Data snapshot for RMSE calculation for Control (left) and MAGIC (right) systems
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Fig. 11. Water Consumption of Parallel Systems

rain occurred. The following two days showed higher-than-

average moisture for both systems. In spite of this, the Control

side spends a combined 68.1 hours beneath the θpwp across

the entire deployment, over 4x more than the 16.7 hours

experienced by the MAGIC system. Similarly, comparison

between MAGIC and our campus’ irrigation control revealed

a 3.23x improvement in quality. Although this shows that

MAGIC is not perfect, it also demonstrates that more precise

watering strategies can provide an improved quality of service,

despite using less water.

B. Water Consumption Analysis

Throughout the deployment, the total on-time for each

sprinkler was recorded in both systems. This actuation time

is used to calculate each system’s total water consumption,

based on each sprinkler’s regulated flow rate and coverage. A

side-by-side comparison of each system’s water consumption

is shown for the two weeks of deployment in Figure 11. The

variation of water consumption of the Control system indicates

changes in local weather. Low water consumption of both

systems on days 9, 10, and 11 is due to cooler local weather,

where the Control side consumed significantly less water. Rain

on the 12th day caused both systems to cease irrigation until

two days later, when the soil became dry enough to require it.

Across the entire deployment, the MAGIC system consumed

12.3% less water than the Control (ET) system, and 23.4%

less in comparison to our campus’ control strategy. Schedules

created by the MAGIC system were shown to consume as

much as 513 gallons and as little as 280 gallons, a 233

gallon variation in response to the state of soil moisture. The

reason our system is able to save water while providing a

higher quality of service to the space is due to our ability

to pinpoint regions within the irrigated space with varying

moisture requirements. Through our model-driven approach,
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we can optimize actuation to send more water to areas that

would otherwise receive insufficient moisture, while sending

less water to the areas that would otherwise be over-watered.

Sensor readings through rain during the deployment can be

seen in Figure 12. To respond to such weather events, the

weather stations used for evapotranspiration monitoring are

generally equipped with a precipitation sensor which deacti-

vates the irrigation system when rain is first experienced [6],

or when a measured amount of rain has fallen. In the case

where rain is sufficient to irrigate the turf, this is satisfactory,

but if the rain is very light, MAGIC might choose to provide

additional irrigation.

C. Moisture Uniformity

An interesting pattern recognized throughout the deploy-

ments was the emergence of moisture uniformity. The op-

timization performed by MAGIC will create schedules that

compensate for areas of high or low moisture levels using

soil moisture information. However, due to lack of moisture

information and the physical limitations of the irrigation

system (inability to actuate individual sprinklers), the ET and

our campus’ systems are unable to correct for uneven moisture.

These artifacts can be seen in Figure 13, generated from

data collected during both the 5-week Spring deployment,

and the 2-week Fall deployment. In this figure, the top of
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the image aligns with the uphill region depicted in Figure 4.

Although variation in weather patterns between these two

separate deployments makes a true side-by-side comparison

difficult to make, these results demonstrate MAGIC’s ability

to produce schedules that correct for heterogeneities to provide

homogeneous water coverage.

D. Energy Consumption Analysis

From a wireless sensor network standpoint, the ability of

a system to operate for a long period of time without user

intervention is fundamental. Irrigation control nodes are no

different, especially if they are meant to be buried in the

ground. For this reason, our prototype hardware and software

were designed to consume as little energy as possible. To this

end, the MAGIC nodes were fitted with a latching solenoid,

allowing the flow of water to be turned on or off with a short

pulse of power, rather than a constant supply. For additional

energy savings, the radio in each node is duty-cycled, acti-

vating for only a 10 second period every 10 minutes. It was

computed that using this duty-cycle, the 4 D cell batteries

providing power to our nodes could run for over 2 years

without requiring change. By performing more aggressive duty

cycling, reducing radio activation to only one minute each

day, our prototype irrigation system could run uninterrupted

in excess of 14 years, while still performing its daily irrigation

and data collection. A sample energy trace of our prototype

can be seen in Figure 14, where radio, solenoid, and sensor

consumption is shown over background cpu usage.

IX. RETURN ON INVESTMENT ANALYSIS

A primary consideration before the purchase and installation

of a replacement control system is the return on investment,

or the time it takes a system to save enough money to cover

the cost of installation and usage. To calculate the return on

investment, we must take into account the initial cost of the

replacement system and the monetary savings expected from

the increased efficiency of the replacement system.

Here we consider the cost to develop a single MAGIC

node in bulk for return on investment analysis. The primary

components can be readily found; the sensor, solenoid, bat-

teries, and waterproof enclosure are all possible to purchase

from other manufacturers. In our prototype the communication

module used was a tmote sky [11]. However, as our application
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TABLE III
SPRINKLER NODE MANUFACTURE COST

Component Price
Mote $37.57
Moisture Sensor $110
Batteries $4
Solenoid $15
Waterproof Enclosure $10
Manufacture & Assembly $10

$186.57

requires very specific circuitry to provide power to the various

modules, commercialization of MAGIC would involve the

manufacture of a stripped-down communication module, with

the inclusion of the additional components described in Sec-

tion VII-C. The pricing of a barebones tmote sky replacement

and other MAGIC components are listed in Table III.

To evaluate the expected return of investment, we compute

the cost of the system and calculated the net investment as

time progresses. The factor that most influences system pay-

back is price of water. As this value is constantly changing, we

perform the analysis using the current price for our campus,

$5.60 per thousand gallons, and incorporate a deviation of 10%

to account for changing water market prices. Although the unit

itself carries a high initial cost, return of investment can be

expected to occur in 16-18 months, as shown in Figure 15.

Considering the immense political pressure for irrigation water

to be more expensive [3], [10], it is a good bet that the savings

from the MAGIC system will be on the rise in the near future.

Even with the addition of a 20% business markup, return of

investment can still be expected in 18-23 months.

It is difficult to directly extend the savings seen in our

prototype to all irrigated space on a University’s campus

due to the heterogeneity of the installed system architectures.

However, the MAGIC system can be easily upgraded to control

sprinklers of any type, delivering site-specific actuation for

systems at any scale. For example, on a campus such as

ours, the majority of irrigated spaces use rotor sprinklers. As

the rotors use substantially more water, independent actuation

could provide an even greater positive environmental and

financial impact, to be investigated in future work.

X. DISCUSSION

Weather during the deployment were mainly hot and sunny,

interrupted by 3 cool but sunny days and a day of rain,



indicative of a changing season. During the 3 days of cooler

weather, the Control (ET) system is seen in Figure 11 to

consume significantly less water than MAGIC. Shown in

Figure 10, these 3 days are also when the Control system

spends the most time underneath a healthy level of moisture,

the period of worst service quality. In contrast, the MAGIC

system manages to maintain a healthy level of moisture.

This shows that the Control system’s use of weather only

ignores the specific water needs across the space. If these

shoulder weather days are omitted from our analysis, MAGIC

reduces water consumption by 20%, and quality of service is

improved by a factor of 2.4 (in comparison to 12% reduction

and over 4x quality improvement). This shows that although

the evapotranspiration system is capable of saving water by

correcting for weather patterns, it is not always able to do so

in a way that maintains plant health.

One key benefit of the MAGIC system is its ease of instal-

lation and modification. Development of a new sprinkler like

the MP Rotator, which claims a 30% efficiency improvement

can easily be installed to the MAGIC node, and will benefit

from MAGIC’s actuation decisions.

XI. LIMITATIONS AND FUTURE WORK

The MAGIC system is best suited in any irrigated space

where water is expected to move due to slope (downhill

movement) or a soil layer deeper than the root zone (leeching).

In cases where the soil is flat and bounded below by an

inpenetrable layer, MAGIC may not be substantially more

efficient than ET-based systems. As soil conditions are influ-

enced directly by recent weather effects, we expect MAGIC to

perform at least as efficiently as an ET system in all scenarios.

Evaluation of MAGIC effectiveness in these conditions is

planned for future work.

Although MAGIC can respond to recent weather events

detected by the soil moisture sensors, explicit weather fore-

casting would alow predictive measures to be taken, for

example disabling irrigation if rain is expected in the next

48 hours. Incorporating this input into the model can be done

by providing a weather term to the surface water in Eq. 5,

similarly to sprinkler input Fs.

In our deployment, schedule optimization took several min-

utes, with the number of optimization variables growing as

a function of spatial and temporal discretization, Nt ×Nx ×
Ny×6. In the future, we intend to evaluate MAGIC operation

in truly large-scale irrigation systems and investigate methods

of improving system performance. One way to speed up the

linear program solver is by finding a good initialization for

the optimization variables (not to be confused with the initial

conditions of the PDE model). In our case this could be

provided by a multiscale approach, where we first solve a LP

using a coarse grid (spatial and/or temporal), extrapolate this

solution to a finer grid, and use this as initial point for the

iterative LP optimizer. This reduces the number of iterations

spent solving the fine grid and thus the overall runtime.

To simplify the placement of irrigation infrastructure, sprin-

klers are almost always installed in a grid pattern. However,

it might be possible to use the developed model to compute

ideal sprinkler locations to compensate for natural topological

characteristics for a system that has not yet been installed.

In future work, we hope to evaluate the potential for water

savings by also allowing variation in sprinkler positioning.

For MAGIC to estimate water movement, it must understand

the spatial characteristics of the irrigated turf. This includes

the topography of the terrain and estimates of soil type and

depth. Topography measurement of advanced terrain can be

performed by various imaging methods by satellite, drone, or

other emerging technologies, and soil characteristics may be

estimated by the system installer, but they remain a burden. To

lessen these requirements, future work may be directed to data-

driven system identification, where soil moisture measure-

ments throughout the space and knowledge of fluid movement

can be used to build the model over time.

XII. CONCLUSIONS

Fresh water is a delicate resource, and we must find ways to

use it sustainably. The largest irrigated crop by surface area in

North America, turf has a demand for an estimated 9 billion

gallons each day. Due to current shortages, there is strong

social, environmental, and monetary incentive to shrink this

enormous consumer. In this work, we seek to improve the ef-

ficiency of turf irrigation systems by analyzing heterogeneous

water needs across a span of turf. To this end, we develop

a computationally-light moisture movement model within an

optimization framework to produce optimal valve scheduling

within an irrigation system. To test its effectiveness we pro-

duce the MAGIC sprinkler node, with the ability to actuate,

sense local soil conditions, and communicate wirelessly with

sister nodes in the network. Through two separate deployments

spanning a total of 7 weeks, we find that the MAGIC system

can reduce system water consumption by 23.4% over our

campus’ control strategy, and by 12.3% over a state-of-the-art

evapotranspiration system. Despite this reduced water usage,

MAGIC was also found to reduce turf exposure to unhealthy

levels of moisture by a factor of 3.23 over the campus’ control,

and a factor of 4.08 over the evapotranspiration control. The

MAGIC system is expected to return its investment in 16-18

months based on water savings alone.
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APPENDIX A

GRASS AS POROUS MEDIA

Darcy’s law [17] is applicable to systems where the drag

due to the multiple obstructions is the dominant fluid force.

To determine when flow through turf may be modeled as

flow through a porous medium, we estimate and compare



the drag, viscous force, and inertial force per unit volume.

Denoting a typical flow velocity scale as U , a typical grass

blade size as a, viscosity as µ, density as ρ, the thickness of

the liquid layer as h, and the porosity as φ, we estimate the

drag per volume, based on the low Reynolds number drag of

an elongated obstruction of length h and lateral size a, as

D ∼
4πµUh(1− φ)

ha2
=

4πµU(1− φ)

a2
. (15)

Within the liquid, the viscous force per volume is estimated

from the viscous term in the Navier-Stokes equations, as Fv ∼
µU/h2. Finally, the inertial force per volume is estimated, also

from the Navier-Stokes equations, as Fi ∼ ρU2/h.

As typical values for water and grass blades, we use ρ =
1g/cm3, µ = 0.01g/cm s, a = 0.1cm, h = 1cm, and φ = 0.9,

and find Fv

D
∼ a2

4πh2

1

1−φ
∼ 1/100 showing that the drag is

dominant over viscous forces for any velocity of the flow.

The ratio of inertial forces to drag is Fi

D
∼ a2ρU

4πµh
1

1−φ
∼ U .

The applicability of our model is therefore limited to systems

where the water flows at velocities U < 1cm/s, which

corresponds to most intermittent irrigation regimes.

APPENDIX B

DISCRETIZED MODEL FORMULATION

The following 6 equations hold at each spatiotemporal cell

(i, j, t) and represent the discretized, linearized flow motion of

Equations (6)–(9) over the variables u and v (velocity of water

in soil and surface, respectively, both horizontal components x

and y for each), h (surface fluid height) and theta (volumetric

moisture content). They also represent the equality constraints

in our optimization problem.

hi,j,t+1−hi,j,t

∆t
= − 1

2∆x

(

(ĥvx0 + h0v̂
x)i+1,j,t − (ĥvx0 + h0v̂

x)i−1,j,t

+(ĥvy0 + h0v̂
y)i,j+1,t − (ĥvy0 + h0v̂

y)i,j−1,t

)

+ Fs

−η
(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) + ĥK

′(θ0)θ̂
)

(16)

θi,j,t+1−θi,j,t
∆t

= − 1
2∆x

(

(θ̂ux
0 + θ0û

x)i+1,j,t − (θ̂ux
0 + θ0û

x)i−1,j,t

+(θ̂uy
0 + θ0û

y)i,j+1,t − (θ̂uy
0 + θ0û

y)i,j−1,t

)

+ζ
(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) + ĥK

′(θ0)θ̂
)

(17)

u
x
i,j,t =−

K(θ0i,j,t)

2∆x
(ĥi+1,j,t − ĥi−1,j,t + h0i+1,j,t − h0i−1,j,t)

−K′(θ0i,j,t)θ̂i,j,t(h0i+1,j,t − h0i−1,j,t) +K(θi,j,t)τ
x

−
ϕ(θ0i,j,t)

2∆x
(θ0i+1,j,t − θ0i−1,j,t + θ̂i+1,j,t − θ̂i−1,j,t)

− ϕ′(θ0i,j,t)(θ0i+1,j,t − θ0i−1,j,t)θ̂i,j,t (18)

u
y
i,j,t =−

K(θ0i,j,t)

2∆x
(ĥi,j+1,t − ĥi,j−1,t + h0i,j+1,t − h0i,j−1,t)

−K′(θ0i,j,t)θ̂i,j,t(h0i,j+1,t − h0i,j−1,t) +K(θi,j,t)τ
y

−
ϕ(θ0i,j,t)

2∆x
(θ0i,j+1,t − θ0i,j−1,t + θ̂i,j+1,t − θ̂i,j−1,t)

− ϕ′(θ0i,j,t)(θ0i,j+1,t − θ0i,j−1,t)θ̂i,j,t (19)

v
x
i,j,t =− αh

(

hi+1,j,t−hi−1,j,t

2∆x

)

+ τx (20)

v
y
i,j,t =− αh

(

hi,j+1,t−hi,j−1,t

2∆x

)

+ τy (21)
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