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Abstract

Although many algorithms have been proposed for articu-
latory inversion, they are often tested on synthetic models, or
on real data that shows very small proportions of nonunique-
ness. We focus on data from the Wisconsin X-ray microbeam
database for the American English/ô/ displaying multiple, very
different articulations (retroflex and bunched). We propose a
method based on recovering the set of all possible vocal tract
shapes as the modes of a conditional density of articulators
given acoustics, and then selecting feasible trajectoriesfrom
this set. This method accurately recovers the correct/ô/ shape,
while a neural network has errors twice as large.
Index Terms: acoustic-to-articulatory mapping, density mod-
els, neural networks, dynamic programming.

1. Introduction
Articulatory inversion, the problem of recovering the sequence
of vocal tract shapes that produce a given utterance, is difficult
because the mapping from articulators to acoustics is very non-
linear, and because some acoustics can be produced by multiple,
different vocal tract shapes (see reviews in [1, 2, 3]). Although
many different approaches have been proposed for articulatory
inversion, the problem is still not generally solved. In this pa-
per, we focus on two aspects of the problem: we propose an
algorithm that directly addresses the multivalued nature of the
inverse mapping, and we demonstrate it with real articulatory
data for a well-known case that clearly display multiple articula-
tions, the American English/ô/ (see [4] and references therein).

Much of the early evidence on multiple articulations comes
from synthetic models (e.g. [5]) or unnatural conditions (e.g.
bite-block experiments), with less actual evidence from normal,
real speech. Our recent work [6, 7], based on large-scale artic-
ulatory databases (Wisconsin XRMB [8], MOCHA [9]), shows
that only a small portion (around 15%) of all acoustic frames
correspond to more than one vocal tract shape. One such case is
the American English/ô/. The performance of inversion algo-
rithms has been often evaluated with synthetic datasets [5], or
with real datasets for which nonuniqueness is of lesser or noim-
portance (for example, with vowels). Other work (e.g. [10])has
used a large, real articulatory dataset (MOCHA) but the perfor-
mance with the small proportion of it that shows nonuniqueness
was not quantified. In section 3 we focus exclusively on utter-
ance subsequences containing/ô/, thus with a large proportion
of nonuniqueness.

Many of the existing inversion algorithms estimate unival-
ued mappings that provide a single vocal tract shape by apply-
ing a nonlinear mapping (such as a neural network) to a given
acoustic frame [1, 10]. Asymptotically this is equivalent to es-
timating the distribution of vocal tract shapes conditioned on
the acoustic frame and taking its mean. These methods es-

sentially ignore the existence of multiple articulations;conse-
quently, when multiple, different shapes exist (as for/ô/), they
return an average shape that is incorrect (see our experiments).
However, when applied to a dataset containing little nonunique-
ness, this problem is masked, as they do perform well with
uniquely determined shapes. In section 2, we propose a method
(based on [11, 2]) that directly addresses the nonuniqueness by
explicitly estimating all the modes (rather than the mean) of this
conditional distribution. If the density model is estimated using
acoustic and articulatory data from normal speech, these can-
didate shapes are (in principle) bothfeasible and typical: they
satisfy physical limitations (such as the tongue not penetrating
the palate) and correspond to the patterns and idiosyncrasies of
normal speech (unlike, say, bite-block speech). The reasonis
that the modes of a distribution are located on high-densityar-
eas of the space—unlike the mean, which can sit in infeasible
or atypical areas in between modes. The sequence of vocal tract
shapes is finally determined among all the candidates at each
frame by minimising a smoothness constraint (inspired by the
economy of skilled movements) by dynamic programming.

Related work. There exist several methods that address the
nonuniqueness more directly by considering some type of tem-
poral constraints [1, 12, 13]. The closest approach to ours are
codebook methods [1, 12]. These create a very large code-
book (105+ entries) of articulatory and acoustic shapes by
finely sampling the articulatory input of a synthetic vocal tract
model and computing its acoustic output. This codebook is then
searched using each acoustic frame as index, and dynamic pro-
gramming is used to return a smooth articulatory trajectory. The
fundamental problem of this approach is the difficulty of con-
structing the codebook and the slowness of its search. It is diffi-
cult to generate a comprehensive set of feasible, realisticshapes
typical of normal speech by sampling a synthetic model—by its
very nature it is an approximation. In order to represent well the
very nonlinear articulatory-acoustic manifold, many codebook
vectors are required. Quantising this (e.g. withk-means) often
produces infeasible shapes that require a complex postprocess-
ing, and the final result suffers from quantisation error. One ap-
proach to reduce the time and space complexity is to cluster the
codebook into regions where the articulatory-acoustic mapping
is a bijection and fit a neural net in each such region [12], but
doing this reliably this is very difficult. Our approach of learn-
ing a continuous density model from real articulatory-acoustic
vector pairs eliminates some of these problems: high density is
naturally assigned to feasible, typical areas of the articulatory-
acoustic manifold (as defined by the dataset); and the density
model can be characterised with a relatively small number of
parameters, yet quantisation error is eliminated. In fact,the
codebook can be seen as a coarse, nonparametric density esti-
mate (a multidimensional histogram), and the codebook search
corresponds to finding the modes of our conditional density.



2. Inversion by conditional density modes
The method of [11, 2] offers a general framework for miss-
ing data problems. We specialise this inverse problems as fol-
lows. In a first stage performed offline, given a training set
of articulatory-acoustic vector pairs{(xn, yn)} (obtained from
the Wisconsin XRMB), we learn a Gaussian-mixture density
model for this data. This can be done with the EM algorithm,
or we can use a kernel density estimate if the dataset is not large
(our case for the American English/ô/). We will use this joint
density model to derive conditional densitiesp(x|yn) given an
acoustic frameyn. For Gaussian mixtures with diagonal covari-
ances, this is a trivial computation. It is also possible to learn
directly a conditional density modelp(x|y), for example with
a mixture density model [10].

To invert a given acoustic sequencey1, . . . ,yT , we first
find for each frame all the modes of the conditional density
p(x|yt). We do this with the mean-shift algorithm of [14],
where a fixed-point iteration is initialised from each centroid
of the conditional mixture. Each mode represents a candidate
vocal tract shape for the acoustic frameyt. Then, we minimise
the following objective function over the set of all modes ateach
frame:

C(x1, . . . ,xT ) =
P

T−1

t=1
‖xt+1 − xt‖. (1)

This is a shortest-path problem that can be solved inO(Tν2)
with dynamic programming (whereν is the average number
of modes at each frame). The articulatory trajectory returned
represents a minimum-energy sequence of motions and repre-
sents the fact that physical articulators move slowly. If a for-
ward, acoustic-to-articulatory mappingf is available (this could
be learned from the training set{(xn,yn)}), a second term
λ

P

T

t=1
‖f(xt) − yt‖ (with a weightλ > 0) can be added to

the objective (1) to eliminate spurious density modesxt that do
not map near the target acoustic vector.

The computational bottleneck of the method is the mode-
finding step (depending on the number of components in the
mixture). This can be drastically accelerated (at a small ap-
proximation error) by thresholding out mixture componentsfar
from the acoustic vectoryt, and by accelerated variations of
mean-shift [15].

By the nature of Gaussian mixtures, the number of modes
returned at each frame is finite. With redundant systems, in
which excess degrees of freedom result in a continuous set of
inverses, the modes will be a quantised version of this.

In the experiments, we will refer to this algorithm as
dpmode, and compare it to: (1) the conditional mean (cmean)
of the density (which reconstructsxt with E {x|yt} indepen-
dently for each frame); (2) a neural network (rbf), which
is asymptotically equivalent tocmean; and (3) to an oracle
methodcmode where the dynamic programming picks the op-
timal mode at each frame (i.e., the one closest to the truext);
this provides a lower bound in the error achievable bydpmode.

3. Experiments

Dataset. We use data from the American English/ô/ from
speakerjw11 in XRMB. /ô/ is a sound with well-documented
nonuniqueness both within and across speakers, where the
tongue shapes have traditionally been divided into contrasting
categories of retroflex (tongue tip raised, tongue dorsum low-
ered) and bunched (tongue dorsum raised, tongue tip lowered),
though there really seems to exist a continuum between them
[4, 17] (see fig. 1). Since there are no phonetic labels available
in the XRMB, we manually choose frames corresponding to/ô/

from the entire database containing45 760 paired articulatory-
acoustic frames (as in [6], we use 20-order LPC as acoustic fea-
tures). We validate them by listening to the acoustics. Most
frames in this dataset correspond to initial/ô/, e.g. “right” and
“row”; some correspond to middle/ô/, e.g. “program”, which
last shortly. The final dataset of/ô/ (fig. 1 shows the various
tongue shapes it can adopt) contains a training set of 402 frames
and 6 test trajectories from different utterances. Among the lat-
ter, 3 are retroflex (e.g. “right” in tp099, “roll” in tp096) and
the other 3 bunched (e.g. “rag” in tp017, “row” in tp050).
Each trajectory contains a small stretch of/ô/ and possibly its
neighboring sounds. Given the low relative frequency of/ô/
among all sounds, our dataset must necessarily be small. The
dataset is available from the authors.

Methods. We comparedpmode with cmean, rbf, and
cmode. We use a Gaussian kernel density estimate for the joint
density, from which we derive the conditional densityp(x|y).
The bandwidth was set toσ = 11 in pilot experiments.

Modes of the conditional density. Figs. 4–5 (upper panel)
show the conditional modes over time for all testing trajecto-
ries. The middle frames in each test trajectory clearly showa
multimodal conditional density, and the modes reliably identify
both retroflex and bunched shapes, though occasionally addi-
tional, spurious modes exist. In these middle frames,cmean
is the average of the two canonical shapes, which is gener-
ally an invalid shape. The start and end frames tend to show a
unimodal distribution, which implies the neighbouring sounds
have little nonuniqueness. In these cases, the conditionalmodes
still identify the correct shape, butcmean performs well. This
demonstrates that the density method is effective at identifying
the multiple articulations that correspond to a given acoustics.

Inversion results. Figs. 4–5 (lower panel) show the recon-
structions at each frame.dpmode significantly outperforms
cmean andrbf and picks the correct shapes (either retroflex
or bunched but not in between). Fig. 3 plots the aggregated in-
version errors on all test trajectories with each methods. On
average,dpmode achieves an RMSE of less than 1.3 mm while
cmean or rbf have an RMSE of over 1.9 mm. The ad-
vantage ofdpmode is strongest in reconstructing the tongue
coils. The RMSE values bydpmode in the presence of per-
vasive nonuniqueness are comparable with other methods that
achieved RMSE of 1.6 to 1.9 mm in tasks with little nonunique-
ness [16, 10]. The correlation values for some articulators(UL,
MNI, MNM) are remarkably low for all methods; the reason is
that in our short utterances those articulators barely move. The
average RMSE (correlation) for the tongue and all coils are as
follows:

rbf cmean cmode dpmode
Tongue 2.66 (0.67) 3.08 (0.55) 1.19 (0.94) 1.20 (0.94)
All 2.07 (0.52) 2.26 (0.48) 1.27 (0.72) 1.30 (0.71)

The dpmode value is very close to thecmode one, indicat-
ing the dynamic programming is effective at selecting the right
modes from the ones provided by the density model.

4. Conclusions
We have proposed an articulatory inversion algorithm that uses
a density model to predict (possibly multiple) feasible, typical
vocal tract shapes for a given acoustics, and disambiguatesa
sequence by choosing the smoothest path among these shapes.
The algorithm correctly recovers either a retroflex or a bunched
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Fig. 1. Left: datasets in the articulatory space (2D position in mm of each coil, with tongue coilsT1 toT4 connected by line segments).
Right: datasets in the acoustic space (spectral envelopes). Onlya subset of frames shown to avoid clutter.
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Fig. 2. Temporal true trajectories (blue) and their reconstructions withdpmode (red) andcmean (magenta) for the bunched/ô/ in
utterancetp050 “row” (for coils T1 to T4). rbf (not shown to avoid clutter) performs similarly tocmean.
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Fig. 3. Inversion error (RMSE in mm) and correlation (in
[−1, 1]) per articulator channel for each method.

shape for the American English/ô/, while a neural network re-
covers an incorrect average of both. Since the algorithm is com-
putationally more costly than a neural network, but nonunique
articulations are overall infrequent in speech, a practical strat-
egy may be to apply the algorithm selectively by detecting first
the presence of nonuniqueness from the acoustics.
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features for articulatory inversion,” inProc. Interspeech, 2007.

[17] J. R. Westbury, M. Hashi, and M. J. Lindstrom, “Differences
among speakers in lingual articulation for American English /ô/,”
Speech Communication, vol. 26, no. 3, pp. 203–226, Nov. 1998.



−60 −40 −20 0 20
−20

0

20

F1 (nmodes = 5)

−60 −40 −20 0 20
−20

0

20

F2 (nmodes = 5)

−60 −40 −20 0 20
−20

0

20

F3 (nmodes = 5)

−60 −40 −20 0 20
−20

0

20

F4 (nmodes = 5)

−60 −40 −20 0 20
−20

0

20

F5 (nmodes = 4)

−60 −40 −20 0 20
−20

0

20

F6 (nmodes = 4)

−60 −40 −20 0 20
−20

0

20

F7 (nmodes = 3)

−60 −40 −20 0 20
−20

0

20

F8 (nmodes = 3)

−60 −40 −20 0 20
−20

0

20

F9 (nmodes = 3)

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

−60 −40 −20 0 20
−20

0

20

Fig. 4. Sequence of reconstructions for the retroflex/ô/ in utterancetp096 “roll”. Top panels: plots of the conditional modes (cyan;
number of modes above each plot),cmean (magenta) and true value (blue) of all articulators. TonguecoilsT1–T4 are connected by
segments.Bottom panels: plots of the reconstructions by all methods at each time frame: dpmode (red),cmean (magenta),rbf
(green), and true (blue).
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Fig. 5. Like fig. 4 but for the bunched/ô/ in the utterancetp040 “rag”.


