Articulatory inversion of American English /1/ by conditional density modes
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Abstract

Although many algorithms have been proposed for articu-
latory inversion, they are often tested on synthetic modals
on real data that shows very small proportions of nonunique-
ness. We focus on data from the Wisconsin X-ray microbeam
database for the American Engligly displaying multiple, very
different articulations (retroflex and bunched). We pr@pas
method based on recovering the set of all possible vocal trac
shapes as the modes of a conditional density of articulators
given acoustics, and then selecting feasible trajectdrasa
this set. This method accurately recovers the corfegcshape,
while a neural network has errors twice as large.
Index Terms. acoustic-to-articulatory mapping, density mod-
els, neural networks, dynamic programming.

1. Introduction

Articulatory inversion, the problem of recovering the seqce

of vocal tract shapes that produce a given utterance, isuliffi
because the mapping from articulators to acoustics is vany n
linear, and because some acoustics can be produced byleultip
different vocal tract shapes (see reviews in [1, 2, 3]). éltth
many different approaches have been proposed for articylat
inversion, the problem is still not generally solved. Irsthia-
per, we focus on two aspects of the problem: we propose an
algorithm that directly addresses the multivalued nattirtn®
inverse mapping, and we demonstrate it with real articajato
data for a well-known case that clearly display multiplécaia-
tions, the American Englisfx/ (see [4] and references therein).

Much of the early evidence on multiple articulations comes
from synthetic models (e.g. [5]) or unnatural conditiongy(e
bite-block experiments), with less actual evidence frommrad,
real speech. Our recent work [6, 7], based on large-scate art
ulatory databases (Wisconsin XRMB [8], MOCHA [9]), shows
that only a small portion (around 15%) of all acoustic frames
correspond to more than one vocal tract shape. One suchscase i
the American Englisiiz/. The performance of inversion algo-
rithms has been often evaluated with synthetic datasetof5]
with real datasets for which nonuniqueness is of lesser amno
portance (for example, with vowels). Other work (e.g. [145
used a large, real articulatory dataset (MOCHA) but theguerf
mance with the small proportion of it that shows nonunigssne
was not quantified. In section 3 we focus exclusively on utter
ance subsequences containjng, thus with a large proportion
of nonuniqueness.

Many of the existing inversion algorithms estimate unival-
ued mappings that provide a single vocal tract shape by apply
ing a nonlinear mapping (such as a neural network) to a given
acoustic frame [1, 10]. Asymptotically this is equivaleotets-
timating the distribution of vocal tract shapes conditidron

the acoustic frame and taking its mean. These methods es-

sentially ignore the existence of multiple articulatioesnse-
quently, when multiple, different shapes exist (as/igh), they
return an average shape that is incorrect (see our expdgmen
However, when applied to a dataset containing little noquex
ness, this problem is masked, as they do perform well with
uniquely determined shapes. In section 2, we propose a thetho
(based on [11, 2]) that directly addresses the nonunigsenes
explicitly estimating all the modes (rather than the medihis
conditional distribution. If the density model is estintesing
acoustic and articulatory data from normal speech, these ca
didate shapes are (in principle) bdtasible and typicalthey
satisfy physical limitations (such as the tongue not petiety

the palate) and correspond to the patterns and idiosyesrasi
normal speech (unlike, say, bite-block speech). The reason
that the modes of a distribution are located on high-derssity
eas of the space—unlike the mean, which can sit in infeasible
or atypical areas in between modes. The sequence of voctl tra
shapes is finally determined among all the candidates at each
frame by minimising a smoothness constraint (inspired gy th
economy of skilled movements) by dynamic programming.

Related work. There exist several methods that address the
nonuniqueness more directly by considering some type of tem
poral constraints [1, 12, 13]. The closest approach to ougs a
codebook methods [1, 12]. These create a very large code-
book (10°+ entries) of articulatory and acoustic shapes by
finely sampling the articulatory input of a synthetic voaailct
model and computing its acoustic output. This codebookes th
searched using each acoustic frame as index, and dynamic pro
gramming is used to return a smooth articulatory trajectohe
fundamental problem of this approach is the difficulty of con
structing the codebook and the slowness of its search. ifffiis d
cult to generate a comprehensive set of feasible, reatistipes
typical of normal speech by sampling a synthetic model—y it
very nature itis an approximation. In order to represent thel
very nonlinear articulatory-acoustic manifold, many doalek
vectors are required. Quantising this (e.g. witmeans) often
produces infeasible shapes that require a complex posgsoc
ing, and the final result suffers from quantisation errore@p-
proach to reduce the time and space complexity is to cluseer t
codebook into regions where the articulatory-acousticpirap

is a bijection and fit a neural net in each such region [12], but
doing this reliably this is very difficult. Our approach ofla-

ing a continuous density model from real articulatory-atimu
vector pairs eliminates some of these problems: high deissit
naturally assigned to feasible, typical areas of the dettony-
acoustic manifold (as defined by the dataset); and the gensit
model can be characterised with a relatively small number of
parameters, yet quantisation error is eliminated. In faw,
codebook can be seen as a coarse, nonparametric density esti
mate (a multidimensional histogram), and the codeboolckear
corresponds to finding the modes of our conditional density.



2. Inversion by conditional density modes

The method of [11, 2] offers a general framework for miss-
ing data problems. We specialise this inverse problemslas fo
lows. In a first stage performed offline, given a training set
of articulatory-acoustic vector pai{$x.,, y»)} (obtained from
the Wisconsin XRMB), we learn a Gaussian-mixture density
model for this data. This can be done with the EM algorithm,
or we can use a kernel density estimate if the dataset is gt la
(our case for the American Engligh/). We will use this joint
density model to derive conditional densitjgs|y) given an
acoustic framer,,. For Gaussian mixtures with diagonal covari-
ances, this is a trivial computation. It is also possibleeiarh
directly a conditional density modelx|y), for example with

a mixture density model [10].

To invert a given acoustic sequenge, ...,yr, we first
find for each frame all the modes of the conditional density
p(x|y:). We do this with the mean-shift algorithm of [14],
where a fixed-point iteration is initialised from each ceidr
of the conditional mixture. Each mode represents a carslidat
vocal tract shape for the acoustic fragne Then, we minimise
the following objective function over the set of all modesath
frame:

C(xt,n oy xr) = 3o Ixepn — x| 1)
This is a shortest-path problem that can be solve@®{@»?)
with dynamic programming (where is the average number
of modes at each frame). The articulatory trajectory regdrn
represents a minimum-energy sequence of motions and repre-
sents the fact that physical articulators move slowly. 1ba f
ward, acoustic-to-articulatory mappitigs available (this could
be learned from the training s¢{x.,y.)}), @ second term
AT If(xe) — ye|| (with a weightA > 0) can be added to
the objective (1) to eliminate spurious density mogeshat do
not map near the target acoustic vector.

The computational bottleneck of the method is the mode-
finding step (depending on the number of components in the
mixture). This can be drastically accelerated (at a small ap
proximation error) by thresholding out mixture componefats
from the acoustic vectay:, and by accelerated variations of
mean-shift [15].

By the nature of Gaussian mixtures, the number of modes
returned at each frame is finite. With redundant systems, in
which excess degrees of freedom result in a continuous set of
inverses, the modes will be a quantised version of this.

In the experiments, we will refer to this algorithm as
dpnode, and compare it to: (1) the conditional meaméan)
of the density (which reconstructs with E {x|y.} indepen-
dently for each frame); (2) a neural networkbf ), which
is asymptotically equivalent tarmean; and (3) to an oracle
methodcmode where the dynamic programming picks the op-
timal mode at each frame (i.e., the one closest to thestg)ie
this provides a lower bound in the error achievablelpyrode.

3. Experiments

Dataset. We use data from the American Englighy/ from
speakej wll in XRMB. /1/ is a sound with well-documented
nonunigueness both within and across speakers, where the
tongue shapes have traditionally been divided into cotitigs
categories of retroflex (tongue tip raised, tongue dorsum lo
ered) and bunched (tongue dorsum raised, tongue tip loyvered
though there really seems to exist a continuum between them
[4, 17] (see fig. 1). Since there are no phonetic labels dvaila

in the XRMB, we manually choose frames correspondingito

from the entire database containitg 760 paired articulatory-
acoustic frames (as in [6], we use 20-order LPC as acoustic fe
tures). We validate them by listening to the acoustics. Most
frames in this dataset correspond to initial, e.g. “ight” and
“row”; some correspond to middlg/, e.g. “pogram”, which
last shortly. The final dataset ¢f/ (fig. 1 shows the various
tongue shapes it can adopt) contains a training set of 46&ka
and 6 test trajectories from different utterances. Amoregailr

ter, 3 are retroflex (e.g.ight” in t p099, “roll” in t p096) and

the other 3 bunched (e.g.dg” int p017, “row” in t p050).
Each trajectory contains a small stretch/of and possibly its
neighboring sounds. Given the low relative frequency/gf
among all sounds, our dataset must necessarily be small. The
dataset is available from the authors.

Methods. We comparedpnode with crmean, rbf, and
crode. We use a Gaussian kernel density estimate for the joint
density, from which we derive the conditional densifik|y).

The bandwidth was set to = 11 in pilot experiments.

Modes of the conditional density. Figs. 4-5 (upper panel)
show the conditional modes over time for all testing traject
ries. The middle frames in each test trajectory clearly show
multimodal conditional density, and the modes reliablyniifg

both retroflex and bunched shapes, though occasionally addi
tional, spurious modes exist. In these middle frantesan

is the average of the two canonical shapes, which is gener-
ally an invalid shape. The start and end frames tend to show a
unimodal distribution, which implies the neighbouring sda
have little nonuniqueness. In these cases, the conditibodés

still identify the correct shape, batean performs well. This
demonstrates that the density method is effective at ityémgi

the multiple articulations that correspond to a given atiosis

Inversion results. Figs. 4-5 (lower panel) show the recon-
structions at each framedpnode significantly outperforms
crrean andr bf and picks the correct shapes (either retroflex
or bunched but not in between). Fig. 3 plots the aggregated in
version errors on all test trajectories with each methods. O
averagedpnode achieves an RMSE of less than 1.3 mm while
cmrean or r bf have an RMSE of over 1.9 mm. The ad-
vantage ofdpnode is strongest in reconstructing the tongue
coils. The RMSE values bgpnode in the presence of per-
vasive nonuniqueness are comparable with other methotls tha
achieved RMSE of 1.6 to 1.9 mm in tasks with little nonunique-
ness [16, 10]. The correlation values for some articulatdcs

MNI , MNM) are remarkably low for all methods; the reason is
that in our short utterances those articulators barely mdte
average RMSE (correlation) for the tongue and all coils are a
follows:

r bf crrean cnode dpnode
Tongue 2.66(0.67) 3.08(0.55) 1.19(0.94) 1.20(0.94)
All 2.07(0.52) 2.26(0.48) 1.27(0.72) 1.30(0.71)

The dpnode value is very close to thenode one, indicat-
ing the dynamic programming is effective at selecting tigatri
modes from the ones provided by the density model.

4. Conclusions

We have proposed an articulatory inversion algorithm tisasu

a density model to predict (possibly multiple) feasibleital
vocal tract shapes for a given acoustics, and disambigiates
sequence by choosing the smoothest path among these shapes.
The algorithm correctly recovers either a retroflex or a ieac
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Fig. 1. Left datasets in the articulatory space (2D position in mm ohead, with tongue coild'1 to T4 connected by line segments).
Right datasets in the acoustic space (spectral envelopes).aGulgset of frames shown to avoid clutter.
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Fig. 2. Temporal true trajectories (blue) and their reconstamstiwithdprnode (red) andcnmean (magenta) for the bunched/ in
utterance p050 “row” (for coils T1 to T4). r bf (not shown to avoid clutter) performs similarly ¢corean.
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Fig. 4. Sequence of reconstructions for the retroflekin utterancet p096 “roll”. Top panels plots of the conditional modes (cyan;
number of modes above each platjrean (magenta) and true value (blue) of all articulators. Tongpiés T1-T4 are connected by
segments.Bottom panels plots of the reconstructions by all methods at each timmétadpnode (red), cnean (magenta)y bf
(green), and true (blue).
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Fig. 5. Like fig. 4 but for the bunched:/ in the utterancé p040 “rag”.



