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Abstract

Techniques for recording the vocal tract shape during speech
such as X-ray microbeam or EMA track the spatial loca-
tion of pellets attached to several articulators. Limitations
of the recording technology result in most utterances having
sequences of frames where one or more pellets are missing.
Rather than discarding such sequences, we seek to reconstruct
them. We use an algorithm for recovering missing data based on
learning a density model of the vocal tract shapes, and predict-
ing missing articulator values using conditional distributions de-
rived from this density. Our results with the Wisconsin X-ray
microbeam database show we can recover long, heavily oscilla-
tory trajectories with errors of 1 to 1.5 mm for all articulators.
Index Terms: articulatory databases, X-ray microbeam, miss-
ing data.

1. Introduction
Articulatory recording techniques such as X-rays, X-ray mi-
crobeam, electromagnetic articulography (EMA), ultrasound
and magnetic resonance imaging (MRI) record a representation
of part of the vocal tract during speech, and provide essential in-
formation for speech production research, speech therapy, and
speech training, as well as for speech processing in the articula-
tory domain (e.g. for speech recognition, speech coding, speech
synthesis and articulatory inversion) [1, 2, 3]. Publicly available
databases such as the Wisconsin X-ray microbeam database [1]
and the MOCHA database [2] have enabled much work in these
areas. However, at present, obtaining good-quality recordings
is expensive and difficult. The different recording technologies
suffer from several problems: synchronisation with the acous-
tic wave, various types of interference, noise, risk to the sub-
ject, partial representation of the vocal tract, etc. The raw data
recorded usually needs a heavy post-processing, some of it done
manually at great cost. Since so much effort and resources are
required to obtain this data, it is imperative to make the best
possible use of every recording made even if it contains errors,
rather than discard it and re-record it.

We focus here on one particular problem, mistracked or
missing pellets, that affects techniques (such as X-ray mi-
crobeam or EMA) that are based on tracking over time the 2D
or 3D positions of pellets attached to the tongue, lips and other
articulators (see fig. 1). Mistracks happen for various reasons,
from pellets unattaching to sensor malfunction [1, 4]. Some
of the reasons depend on the recording technology. With X-
ray microbeam [1], on which we focus in this paper, mistracks
can happen because the microbeam looks for a pellet but is not
able to find it, or because it follows the wrong pellet. This may
be caused by the pellet accelerating too quickly; by shadowing
from tissue, bone, teeth and fillings; or by pellets coming into
close proximity. Mistracks can often be detected by the record-
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Fig. 1. Example of typical mistracks for one pellet in the Wis-
consin XRMB database (pellet schematic at right). The mis-
track duration is around 0.5 sec. The pellet can move drastically
over this period, so one cannot simply interpolate it linearly.

ing technology (e.g. when losing a pellet) or a posteriori (e.g.
if following the wrong pellet, the values for two pellets will be
nearly identical over time); but sometimes they are not detected
at all. We will focus here on detected mistracks, and assume that
the recording system provides a binary label indicating whether
each component of the vector containing the coordinates of all
pellets is present or not.

With X-ray microbeam, mistracks of a given pellet occur
more commonly in subsequences of 50 to 500 ms, often near
the beginning of a record, after which the pellet is recaptured
(a record is defined as a single continuous task interval, e.g.
an utterance or an isolated word recording). Mistrack propor-
tions in the XRMB database are small (around 1.9%), but the
proportion of records containing mistracks is at least 35% [1,
p. 65]. Since recording is expensive, cumbersome and (with
X-ray microbeam) risky, this means that one cannot just dis-
card records and re-record them again until they are perfectly
tracked. Reconstructing the mistracks becomes a necessity. At
present, the XRMB database indicates which frames are miss-
ing in each record, but provides no reconstruction.

The fundamental approach we follow is based on the fol-
lowing question: given that say only the tongue dorsum pellet
is missing, can we reconstruct it from the location of the rest
of the pellets? More generally, is there enough information in
the present components of the data to predict the missing com-
ponents? If the answer is yes—which it largely is in our prob-
lem, at least if not too much data is missing—then we can apply
machine learning algorithms to estimate the missing data quite
accurately. In addition, the method must handle time-varying
missing data patterns in a transparent way. We describe such an
algorithm in section 2, and report very successful experimental
results with the XRMB database in section 3.

Related work. From previous work [5, 6, 7] we know that
it is possible to reconstruct the entire midsagittal tongue con-
tour with submillimetric accuracy from the positions of just 3–4
points on it. However, those papers assumed that some compo-
nents were always present (the 3–4 pellets) and the rest always



missing, so the problem reduces to fitting a single mapping from
the present to the missing components. This is unsatisfactory
in our case because which components are present and which
are missing varies from frame to frame; thus, the number of
combinations of (present,missing) variables (such as missing
= {tongue tip, lower lip} and present= {rest}) grows expo-
nentially, and there is neither enough data nor enough compu-
tation available to fit all those mappings. Roweis [8] proposed
to learn a low-dimensional manifold to represent the data and
then intersect this with the constraints provided by the present
values. This geometric approach is only efficient with (locally)
linear manifolds.

2. Deriving mappings with varying sets of
inputs and outputs from a density model

Our goal is to obtain a flexible, efficient way to construct map-
pings “on demand” between an arbitrary set of input and output
variables. Our approach is based on [9, 10]. Call the articu-
latory variablesx = (x1, . . . , xD) (in our problem,D = 16
for the 2D positions of 8 pellets). At framext in the utterance,
let Pt andMt be two sets of indices withPt ∩ Mt = ∅

andPt ∪ Mt = {1, . . . , D}, indicating the present and miss-
ing variables at that frame, respectively. The idea is to en-
code all possible input-output relations in a master joint density
p(x1, . . . , xD), and derive from it a mappingxP → xM as
the mean of the conditional distributionp(xM|xP). The condi-
tional distribution answers the question “what can we say about
the values ofxM given I know the values ofxP?”.

For this to be useful, computing the conditional distribu-
tions must be done efficiently, yet they must be able to repre-
sent arbitrary nonlinear mappings. We can satisfy both needs by
defining the joint density to be a Gaussian mixture withM com-
ponentsp(x) =

PM

m=1
πm N (x; µm,Σm). The conditional

distribution can be obtained asp(xM|xP) = p(x)/p(xP) in
terms of the joint and marginal distributions, all of which are
Gaussian mixtures, and they equal (the indices assume we ex-
tract the corresponding block matrices, e.g. the marginalised
variables are simply removed):

p(xP) =
PM

m=1
πm N (xP ; µm,P ,Σm,PP)

p(xM|xP) =
PM

m=1
πm,M|P N (xM; µm,M|P ,Σm,M|P)

πm,M|P = πm N (xP ; µm,P ,Σm,PP)/p(xP)

µm,M|P = µm,M + Σ
T
m,PMΣ

−1

m,PP(xP − µm,P)

Σm,M|P = Σm,MM − Σ
T
m,PMΣ

−1

m,PPΣm,PM

f(xP) = E {xM|xP} =
PM

m=1
πm,M|P(xP) µm,M|P(xP)

where the last equation gives the desired mapping. We also get
errorbars for the prediction from the corresponding covariance.
For diagonal componentsΣm,PM = 0 andΣm,PP is diago-
nal, so the distribution of each component is obtained by sim-
ply crossing out rows and columns, without matrix inversions.
However, a full-covariance mixture requires fewer components.

In summary, the method is as follows. The joint density
model is learnt offline using a complete data set{xn} using
the EM algorithm (note that EM can also deal with incomplete
datasets). At each framext we determine which components
Mt are missing, and reconstruct them asE {xMt

|xPt
}. Note

each frame in the utterance is reconstructed independently of
the others, i.e., we apply no temporal smoothing.

If the conditional distributions are unimodal for each frame,
using the conditional mean gives a good reconstruction for the
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Fig. 2. Histogram of the number of missing articulators.

missing values. If at some frame there were many missing val-
ues, the latter would be poorly constrained and their distribution
would likely be multimodal, but this is not the case in our data.

3. Experimental results
We use the Wisconsin X-ray microbeam database (XRMB [1]),
which records, simultaneously with the acoustic wave, the po-
sitions of 8 pellets in the midsaggital plane of the vocal tract
(fig. 1), sampled at147 Hz. We use articulatory data from
two speakers,jw11 andjw45, with mistrack percentages of
11.32% and3.55%, respectively. Mistracks occur most often
on one articulator at a time and very rarely on multiple articu-
lators (fig. 2). In this paper we focus on the reconstruction of
single missing articulator, but our method is generally applica-
ble to cases of multiple missing articulators.

We partition the data for each speaker into training and
the testing sets. They contain50 000 frames randomly sam-
pled from 49 utterances and10 000+ frames from 14 utter-
ances, respectively. All utterances are normal speech. To es-
timate the joint densityp(x), we explore two types of models.
(1) Nonparametric Gaussian kernel density estimate (KDE).
We try isotropic (KDEi) and full-covariance matrices (KDEF).
In KDEi, the user supplies a bandwidthσ so each covariance
is σ2

I. In KDEF, we estimate a full covariance matrix for
each mixture componentm from its 100 nearest neighbours in
the training set, and multiply this by a user bandwidthσF so
each covariance isσ2

F Σm. (2) Parametric density estimate by
Gaussian mixtures (GM). We try GM with M = 32, 64 and
128 components and each with a full-covariance matrix (this
gave better results than using isotropic or diagonal covariances).
Each GM is trained with EM from 10 random initialisations.

Reconstruction of artificially blacked-out data. Our goal
here is to quantify the reconstruction accuracy with ground
truth. Given an utterance with complete articulatory measure-
ments, we black out two channels of one articulator over the
entire utterance, and then infer their positions given the remain-
ing 7 articulators, and compare with the ground truth. We repeat
this for each articulator and for several utterances.

First, we study the choice of model parameters. Although
many rules exist to set the bandwidth of a KDE in an unsuper-
vised setting, here we can set it to minimise our reconstruction
error. Fig. 3 plots the effect of the KDE bandwidth. For each
blacked-out articulator, we compute the RMSE by averaging
over a subset of the testing set for the givenσ or σF . Each ar-
ticulator favours a slightly differentσ. On average, we found
σ = 1.75 (jw11) and 1 (jw45), andσF = 1 (jw11, jw45)
to be optimal, and use these values for the rest of the exper-
iments. The reconstruction error also varies among different
articulators. In general, it is easier to reconstruct the dorsum
tongue pelletsT2,T3,T4 (around1 mm RMSE) thanT1 (the
tongue tip) and the lips (1.5+ mm RMSE). This agrees with the
observation that the latter tend to be more variable and harder
to predict (T1) or less coupled from other articulators (lips).
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Fig. 3. Effect of the bandwidthσ on reconstructing missing
articulators.Top: KDEi. Bottom: KDEF. The “Avg” curve is
a weighted sum of the reconstruction error of each articulator,
with weights inversely proportional to the respective error.
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Fig. 4. Reconstruction error for each missing articulator. For
the Gaussian mixtures, the (tiny) errorbars are over 10 random
initialisations of EM.

However, the relative difficulty in the reconstruction does differ
among the speakers, as does the absolute reconstruction error
(the average RMSE differs by0.5 mm among both speakers).

Next, we quantify the reconstruction error for individual
missing articulators with each density model. Fig. 4 plots the
averaged RMSE over the test set for individual missing articu-
lators. Although by little, the GMs consistently outperform the
KDEs by an average0.2 mm. KDEF beats KDEi but requires
considerably more computation. Among all GMs, the one with
M = 32 components beats all others. All these results hold for
both speakers and they are consistent with fig. 3. For example,
they confirm that the lower lip forjw11 andT1 for jw45 are
the hardest to be reconstructed. On average, the reconstruction
for all articulators is1 to1.5 mm forjw11 (except for the lower
lip, with a RMSE of2.0 mm) and0.5 to 1 mm for jw45 (ex-
cept forT1, with a RMSE of1.4 mm). Thus, we conclude that a
highly parsimonious Gaussian mixture (just 32 full-covariance
components) can achieve a very accurate reconstruction. Recall
that the measurement error in XRMB is around0.5 mm.

Fig. 5 shows typical reconstructions of tongue pellets’ tra-
jectories for missing periods of 5 sec. The reconstructed tra-
jectories are very close and correlated with the true ones even
though the latter heavily oscillate over the missing period. This
holds for all density models, although as mentioned the GM
provides the best reconstruction (lowest reconstruction error
and also smoothest reconstructions). KDEF is again better than
KDEi and occasionally beats GM (e.g. the reconstruction ofT1
between 3.2 and 3.4 seconds). Even though we use no tempo-
ral information, discontinuous or jagged reconstructions happen
only very rarely.T1 is often more difficult to reconstruct than
other tongue pellets since its motion is less coupled with them.
On the other hand, it is very easy to reconstructT2 from T3 or
vice versa. The results are consistent among both speakers.
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Fig. 6. Reconstruction of truly missing data with a GM (red);
rest of the articulatory trajectory in blue, and phonetic labels.

Reconstruction of truly missing data. Fig. 6 shows the re-
constructions of truly missing articulators (for which we have
no ground truth) using the GM withM = 32 components; we
show the phonetic labels (which are available from the synchro-
nised speech) to help validate the reconstruction. Overall, the
reconstructed articulatory trajectories are quite smooth, and the
endpoints of the reconstructed data typically match very well
with the present data, even though this was not enforced (each
frame is reconstructed independently). Small discontinuities do
occur, likely caused by the transition from one mixture com-
ponent to another. This may be improved by a better density
model, or by using temporal information. Visually, the trajec-
tories look realistic, particularly if comparing with the corre-
sponding phonetic label of the missing data, and if we compare
the same phonetic context in a case where it is missing with a
case where it is present. This happens in the reconstruction of
mistracks ofT4 for tp12 jw11: note the context grandfather,
especially forT4y.
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Fig. 5. Reconstruction of artificially blacked-out articulatorsT1,T1,T3,T4 (top to bottom) for the utterancetp011.

4. Conclusion
We have extended an algorithm for missing data reconstruc-
tion and applied it to recovering missing pellet tracks in X-ray
microbeam recordings, where the pellets are missing over ex-
tended periods, and the subset of missing pellets changes over
time. A surprisingly parsimonious density model was sufficient
to produce very accurate reconstructions for most pellets, even
when the trajectory oscillates drastically over the period where
it is missing. One limitation of the approach is that it relies on
estimating a density model of the data ahead of time using a
complete dataset (with no missing values). While this is not a
problem with existing, large articulatory databases, future work
should address reconstruction in more challenging situations,
such as (near) real-time, or where little or no complete data are
available for training.
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