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Abstract

Reconstructing the full contour of the tongue from the po-
sition of 3 to 4 landmarks on it is useful in articulatory speech
work. This can be done with submillimetric accuracy using
nonlinear predictive mappings trained on hundreds or thousands
of contours extracted from ultrasound images. Collecting and
segmenting this amount of data from a speaker is difficult, so a
more practical solution is to adapt a well-trained model from a
reference speaker to a new speaker using a small amount of data
from the latter. Previous work proposed an adaptation model
with only 6 parameters and demonstrated fast, accurate results
using data from one speaker only. However, the estimates of this
model are biased, and we show that, when adapting to a differ-
ent speaker, its performance stagnates quickly with the amount
of adaptation data. We then propose an unbiased adaptation ap-
proach, based on local transformations at each contour point,
that achieves a significantly lower reconstruction error with a
moderate amount of adaptation data.
Index Terms: tongue model, speaker adaptation, ultrasound,
radial basis functions.

1. Introduction
Reconstructing the full tongue shape from a few landmarks has
applications in articulatory models, articulatory inversion, visu-
alization, speech production studies, and in tracking the tongue
in ultrasound images. Highly accurate (0.2–0.3 mm per point
on the tongue) reconstruction for one speaker can be achieved
by training a nonlinear predictive mapping from 3–4 landmarks
to contours given a dataset with a large (hundreds to thou-
sands) number of contours extracted from ultrasound images
[1, 2, 3] (the measurement error is about 0.4 mm per tongue
point). Recording and accurately segmenting the ultrasound
images is currently a cumbersome, lengthy process involving
much intervention by an expert user (since automatic methods
are unreliable). Quick, automatic adaptation of an existing well-
trained model for a reference speaker given a small number of
segmented contours from the new speaker becomes attractive.

Previously, we proposed a simple but effective adaptation
algorithm for reconstructing 2D tongue shapes [4], based on a
feature normalization approach related to that used in acous-
tic HMM adaptation [5, 6]. The algorithm uses the adaptation
data to learn an invertible linear transformation between the full
tongue shape of both speakers. The adapted model maps the
new speaker’s landmarks to the old speaker’s, then applies the
old predictive mapping, and finally maps back (with the inverse
transformation) the full contour to the new speaker space. The
algorithm’s results were very good, achieving an accuracy close
to the one from the reference model in just seconds of CPU, but
it was only tested with data from a single speaker and synthetic
transformations. The algorithm was later extended to adapt a

full-contour model given only partial contours [7] and was able
to reconstruct the tongue shapes in articulatory databases (Wis-
consin XRMB [8] and MOCHA [9]) even though the latter pro-
vide not a single full contour.

As we show later, the accuracy of this algorithm dete-
riorates somewhat when adapting to a completely different
speaker; specifically, the prediction error stagnates quickly
(with just 5 to 10 adaptation contours) and far from the opti-
mal one that we would achieve if training with abundant data
(0.3 to 0.7 mm more, which is over twice that error). There are
two basic reasons for this. The algorithm uses aglobal feature
transformationin that every 2D point in the contour (includ-
ing the landmarks) undergoes exactly the same linear transfor-
mation, resulting in only 6 adaptation parameters. While this
works perfectly under translation, rotation, scaling and global
shearing, it does not allow for different transformations in dif-
ferent points of the tongue. This is very restrictive, because we
should expect more complex variations arising from anatomical
factors, sex and age (for example, the new speaker might have a
longer tip but a shorter dorsum than the old one) as well as other
factors such as speaking style, language, etc. A second problem
with the global feature transformation in [4] is that, in order to
simplify the optimization, a proxy objective function was used
that introduces a (small) bias in the transformation.

We propose an extension of this algorithm that eliminates
the bias and mitigates the stagnation problem. The idea is to
uselocal, linear feature transformationsat each landmark and
at each contour point. This increases the number of parameters
and thus the flexibility of the adaptation, which can take ad-
vantage of a larger number of adaptation contours and achieve
an error much close to the optimal one (0.1 to 0.3 mm more);
besides, we optimize the real reconstruction error without bias.
In addition, we use a regularization term from [7] that reduces
variance if using very few contours. We describe the predic-
tive method, the new adaptation method, and the experiments
in sections 2–4.

2. The predictive model of tongue shapes
We want to predict the full tongue contoury = (yT

1 , . . . , yT
P )T

∈ R
2P consisting ofP pointsyi ∈ R

2 given only the posi-
tionsx = (xT

1 , . . . , xT
K)T ∈ R

2K of K landmarksxi ∈ R
2

(fig. 1). The approach proposed in [1] forlinear mappings
and in [4] for radial basis function (RBF) networksfits a pre-
dictive mappingf by minimizing the predictive square error
E(f) =

PN
n=1 ‖yn − f(xn)‖2 (plus a regularization term for

RBFs) given a sufficiently large training set, andf(x) = Wx+
w (linear) orf(x) = WΦ(x) + w (RBF) with M basis func-
tionsφm(x) = exp (− 1

2
‖(x − µm)/σ‖2). The RBF is trained

in an efficient but slightly suboptimal way (as commonly done)
by fixing the centersµm by k–means and cross-validating the
width σ and the regularization parameterλ.
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Fig. 1. The prediction problem: given the 2D locations ofK
landmarks located on the tongue midsagittal contour (x), re-
construct the entire contour (y), represented byP 2D points.

3. Adaptation with local transformations
Given a smallN–contour adaptation dataset{(xn,yn)}N

n=1,
we adapt an existing predictive mappingf by estimating two in-
vertible linear mappingsgx andgy (with few parameters) that
map new data to old data in the landmark (x) and contour (y)
spaces, respectively. Each mappingg is defined as a concate-
nation of separate, local linear mappings that map a 2D point to
another 2D point:
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The adapted predictive mapping is given byg−1
y ◦ f ◦ gx and

requires estimating6(K + P ) parameters that we write collec-
tively as(Ax,bx,Ay,by). The adapted model is linear iff
was linear, and a basis function network where the basis func-
tions are non-radial iff was a radial basis function network. In
the global transformation method of [4],Ax

i = A
y
j = A and

bx
i = b

y
j = b, so there were only 6 parameters.

Objective function. To estimate(Ax,bx,Ay,by), we mini-
mize the predictive squared errorE(Ax,bx,Cy,dy):

min E(Ax,bx,Cy,dy) =
PN
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where we introduce new parametersC
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instead ofgy, simplifying the optimization (no matrix appears
as an inverse). In [4], we optimized a proxy functionF (A,b):

minA,b F (A,b) =
PN

n=1 ‖gy(yn) − f(gx(xn))‖2

becauseE(A,b) must contain bothA andA−1 and its gradi-
ent and optimization are more complicated. Our new approach
has several advantages over this (apart from being more flexi-
ble): (1) As mentioned in [4], the(A,b) that minimizeF differ
somewhat from those optimizingE and are thus suboptimal. (2)
OptimizingE in the new approach is quite simpler because the
parameters ofgx andgy are decoupled (see gradients below),
in factE separates over each(Cy

j ,dy
j ) for fixed(Ax,bx). Be-

sides, the functionF is not useful with the new parameters be-
cause it has a trivial solution: settingAx, bx andCy to zero
then each term inF is a constant thatdy can pick up, soF = 0.
However, the local transformation approach does not carry over
to the case where the adaptation data contains only partial con-
tours [7] because then we have no data to fit(Cy

j ,dy
j ).

Optimizing E. The gradients ofE are (vec (·) concatenates the
columns of its argument into a single column vector)
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wherern(Ax,bx,Cy,dy) = yn − diag (Cy
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P ) zn −
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linear mapping function we obtain (⊗ is the Kronecker product)
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and for the RBF mapping we obtain (notation as in [4])
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and the same formulas for(Cy,dy). The solution for both lin-
ear and RBF cases requires nonlinear optimization ofE using
these gradient equations. As in [4], we found BFGS to be ef-
fective and reliable.E has local optima and we initialize BFGS
from the solution obtained by the global adaptation method.

BFGS constructs approximate inverse Hessian matrices of
order6(P +K), so it will not work if P is large (consider a de-
tailed 2D tongue shape representation ofP = 100×100 = 104

points in 3D). The fact thatE decouples over each(Cy
j ,dy

j ) for
fixed (Ax,bx) suggests alternating minimization ofE:

1. Fix (Ax,bx) (thus fixingf(gx(xn))) and minimizeE
over each(Cy

j ,dy
j ). SinceE is linear over the latter, the

unique solution is given byP linear systems of6 × 6.

2. Fix(Cy,dy) and minimizeE over(Ax,bx) with BFGS.
This requires matrices of order6K only.

A disadvantage of the alternating optimization is that it con-
verges very slowly. We use the full BFGS in our experiments.

Regularizing E. As in [7], we can penalizeAx andCy with
large condition numbers by adding the following term toE:

λC(Ax,Cy) = λ
“

PK
i=1 C(Ax

i ) +
PP

i=1 C(Cy
i )

”

λ > 0, C(A) = tr (AT
A) − D(det (AT

A))1/D.

With very little adaptation data (N = 10), this increases robust-
ness to misspecification of landmarks and reduces overfitting.

4. Experiments
Using data from two speakers (male and female) with signifi-
cantly different shapes, our experiments show the global method
gives a reasonable adaptation but stagnates with as few as 5 to
10 contours. The local method keeps reducing the error with
more contours and stagnation happens only with many more
contours, producing reconstruction results close to retraining
the predictive model for the new speaker on abundant data. With
very few contours (N < 10), the local method needs regulariza-
tion to reduce its variance, and performs worse than the global
one. With more than 50 contours, retraining is the better op-
tion. Thus, the user has options to guide data collection and
achieve the best result in each application. All these statements
hold for various numbers of landmarksK. The local adaptation
method takes 3 (linear) and 10 (RBF) minutes of CPU time in a
workstation forN = 50 andK = 3.

Datasets. We use the ultrasound database [3] created at Queen
Margaret University and the University of Edinburgh. It con-
tains two speakers (one male,maaw0, and one female,feal0)
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Fig. 2. Left 3 plots: speaker datasets. Right plots:maaw0 aligned tofeal0 (K = 3). Only a subset of contours plotted to avoid clutter.

with different Scottish accents. Each speaker recorded a set of
20 British TIMIT sentences designed to be phonetically bal-
anced. Recordings formaaw0 andfeal0 were done in two
and one session. respectively. Each tongue contour contains
P = 24 points for both speakers. Fig. 2 shows the contour
datasets from both speakers, which display significant differ-
ences in shape. (Some differences in the tongue root offeal0
are due to its being poorly visible in the ultrasound; this poses
an additional challenge for the adaptation algorithms.)

Adaptation task. We adapt a predictive model formaaw0
(learned on2 236 tongue contours from its first session) tofeal0.
We use up to500 contours fromfeal0 for adaptation/retraining
and the remaining2 409 contours for testing.

Predictive models. As in [4], we use (1) an RBF mapping with
M = 500 basis functions, widthσ = 55 mm and regulariza-
tion parameterλ = 10−4, trained by cross-validation; and (2)
a linear mapping, given as a baseline (as it is consistently out-
performed by the RBF mapping); we also use it to obtain initial
(A,b) for the RBF. TheK landmarks were chosen optimally
from theP contour points as in [3].

Comparison methods. We compare adaptation with the global
and the local transformations. We initialize the local method
with the parameters of the global one. We also compare with re-
training the predictive mapping from scratch on the adaptation
data, and with PCA alignment using neither correspondences
nor predictive mapping as in [4]; it finds a global(A,b) by
matching the mean and covariance of the original and the adap-
tation datasets, each considered as a collection of 2D points
(i.e., all the points from all the contours). The optimal baseline
is achieved by retraining the predictive model with abundant
data. All the error values we quote are RMSE predictive errors
E per contour point in mm on the test data.

Results. Figs. 3–4 plot the errors after adaptation/retraining as a
function of the number of adaptation contoursN , and the num-
ber of landmarksK. Using the predictive model ofmaaw0
directly onfeal0 without adaptation would incur an error> 2
mm. With global adaptation, the RBF beats the linearf consis-
tently by over0.4 mm as in [4]. With just one contour, the RBF
achieves an error of0.9 mm robustly (note the tight errorbars).
However, while the error decreases withN , it stagnates when
N = 10 far from reaching the optimal value (retraining with
abundant data). The performance gap is around0.3 mm. With
local adaptation, both the linear and RBFf work very well with
N ≥ 20 contours, consistently and significantly outperforming
the global adaptation. Surprisingly, the adaptation error of the
linear and RBF cases are now comparable. WithN < 7 to 20
contours, the local adaptation is less stable and has an average
error larger than the global one. This is likely an overfitting
effect, since the local method has now more parameters. The
error decreases withN , stagnating aroundN = 50 but very
close to the ground truth (less than0.1 mm worse). PCA align-
ment (not shown in the figures) is consistently worse than both

global and local adaptation and with a larger variance even for
largerN . Retraining catches up local adaptation forN ≈ 50 to
90 contours and is essentially useless forN < 20.

From fig. 4, asK increases, the predictive error decreases
(it is easier to reconstruct the contour given more landmarks),
and the adaptation error closely tracks it. The local adaptation
consistently beats the global one by40% acrossK if usingN >
20 contours. The articulatory databases useK = 3 (MOCHA)
andK = 4 (Wisconsin XRMB), and the advantage of the local
adaptation over the global one is strongest in this region.

Suitable amounts of regularization (linear:λ = 10, RBF:
λ = 104) reduce the error for the local adaptation (RBF in par-
ticular) if using very few contours. Global adaptation benefits
marginally from regularization.

5. Conclusions
We have introduced a new method for fast adaptation of a tongue
model based on local transformations that align each contour
point separately. This is more flexible than the global method of
[4] and eliminates its estimation bias. The local method asymp-
totes close to retraining with abundant data, and distinctly out-
performs retraining and the global method when the number of
adaptation contours is not very small (10 to 50). Thus the user
should use the global, local, or retraining methods with less than
10, 10 to 50, and more than 50 contours, respectively.
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Fig. 3. Predictive errorE (as RMSE per contour point in mm) after adaptation as a function of the number of adaptation contoursN
(for given(K, λ)). Errorbars over 10 random choices of theN adaptation contours. Note the crosspoints with the retraining curve.
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Fig. 4. As fig. 3 but as a function of the number of landmarksK (for given(N, λ)).


