
Improved Multiclass AdaBoost Using

Sparse Oblique Decision Trees

Magzhan Gabidolla, Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán
Dept. of Computer Science and Engineering, University of California, Merced, CA, USA

Email: {mgabidolla,azharmagambetov,mcarreira-perpinan}@ucmerced.edu

Abstract—Boosting, one of the most effective machine learning
frameworks, has attracted an enduring interest since its intro-
duction 30 years ago. The majority of boosting methods use trees
as base learner and, while much work has focused on theoretical
and empirical variations of boosting, there has been surprisingly
little progress on the tree learning procedure itself. To this day,
each individual tree is typically axis-aligned (which is ill-suited
to model correlations and results in relatively weak classifiers),
and is learned using a greedy divide-and-conquer approach such
as CART or C5.0, which produces suboptimal trees. We show
we can improve boosted forests drastically by making each tree
a much stronger classifier. We do this by using sparse oblique
trees, which are far more powerful than axis-aligned ones, and
by optimizing them using “tree alternating optimization” (TAO),
suitably modified to handle the base learner optimization problem
dictated by the boosting framework. Focusing on two versions
of AdaBoost, we show that the resulting forests not only are
consistently and considerably more accurate than random forests
or gradient boosting, but that they use a very small number of
trees and a comparable number of parameters.

Index Terms—supervised learning, AdaBoost, decision trees

I. INTRODUCTION

Ensembles of decision trees (decision forests), such as

Random Forests (RF) [1] and boosted decision trees [2],

[3], often achieve state-of-the-art performance and have long

been widely used in many applications, such as large scale

classification [4], learning to rank [5], computer vision [6],

[7], and many others. We focus on boosted forests, for which

over 30 years of research have created a huge literature [8]–

[10], exploring many variations of the boosting framework,

base learner and other topics. At present, it is fair to say that

there is no clear winner among the basic boosting frameworks

(say, gradient boosting vs AdaBoost) and their variations

[8], [11]. Some recent, highly scalable toolkits have become

widely used, such as XGBoost [5] or LightGBM [4], but

their merits rely more on their highly optimized systems-

level implementation rather than on algorithmic issues. Can

we improve boosted forests at a more fundamental level?

To this end, we focus on what we think is a glaring

deficiency in nearly all established versions of boosted forests,

namely that they use trees that have limited modeling power

and that are poorly optimized. Let us see this in detail. At

a basic level, boosting consists of a definition of how the

next tree in the ensemble should be learned. Specifically,

what the weight of each training point is, and what loss

function the tree should optimize. The weights are initially

equal and then are updated using a formula based on the

training error obtained by the last learner which emphasizes

misclassified points. The loss function can take many forms

(0/1 loss, exponential loss, etc.). Using this procedure, one

repeatedly adds trees to the ensemble until a stopping criterion

is satisfied, usually based on a validation set and a limit on

the number of trees (overfitting is rarely observed but does

occur with boosting). Importantly, notice that each boosting

framework defines the base learner optimization precisely.

But this tree optimization is then solved in an approximate

way, using a divide-and-conquer algorithm such as CART [12]

or C5.0 [13]. Although many variations exist of this topic

(such as the choice of purity criterion, stopping criterion,

minimum number of points in a node to be split, etc.), the

tree learning consists of a greedy procedure where nodes are

recursively split by locally optimizing a purity criterion (after

which the node parameters are fixed henceforth). As is well

known [8], such algorithms produce suboptimal trees. This is

not just because they fix nodes in a greedy (and sometimes

approximate) way. CART-type algorithms largely ignore the

actual optimization problem defined by boosting: the purity

criterion is different from the loss function. (An exception is

tree stumps, where the optimization can actually be exact, but

they are extremely weak classifiers.) Also, the points’ weights

are typically approximated by resampling. The reason for this

suboptimal procedure is the difficulty of learning decision

trees, which are non-differentiable functions. This has also

limited the trees to be axis-aligned (where each node tests a

single feature), because then the purity at each split can be op-

timized exactly (by trying all feature/threshold combinations);

the purity optimization is much harder for oblique nodes.

However, axis-aligned trees have trouble modeling correlated

features and usually grow enormously, particularly with high-

dimensional features.

As we will see, this gap in the tree learning is critical in

boosting. We address it as follows. 1) We use oblique trees

(having hyperplane decision nodes), which are more powerful

and much smaller (in depth and number of nodes). 2) We use

a sparsity penalty on the hyperplane parameters, so we can

still find good partitions but using just a subset of features

(hence fewer parameters per node). And 3) we use a recently

proposed algorithm, TAO, that (suitably modified to handle the

AdaBoost optimization problem) is very effective in training

individual trees. (TAO also improves over CART with axis-

aligned trees [14], but oblique trees are much better.) A reader

familiar with ensemble learning may object that a better tree



optimization could result in worse boosted forests, because 1)

boosting was originally motivated to work with weak learners,

and 2) lack of diversity will kill any ensemble. We will show

that, while TAO indeed produces individual sparse oblique

trees which are much more accurate than axis-aligned CART

trees, the boosting framework is still able to inject sufficient

diversity so the resulting ensemble is much better than a single

tree—and much better than state-of-the-art boosted forests. In

addition, the resulting forests contain very few trees and a

comparable number of parameters. Although previous attempts

at using oblique trees in boosting exist, we believe ours is the

first one that succeeds at making them clearly effective. As

an additional advantage over many boosted forest frameworks

for K-class classification, we can use a single K-class tree

as base learner rather than K trees, which greatly reduces the

number of trees and promotes parameter sharing.

In the rest of the paper, we review related work (section II),

the boosting algorithms we use (section III) and the TAO

algorithm including our modifications (section IV). We then

evaluate our approach experimentally (section V) and analyze

it from different perspectives (section VI).

II. RELATED WORK

Since the introduction of the first practical boosting algo-

rithm (AdaBoost) [15], much has been written to explain its

theory and many more boosting algorithms were developed.

The book by [2] provides a comprehensive overview of the

theory of boosting. Statistical treatments of the subject can

be found in [8], [16]. We briefly review some of the notable

boosting algorithms and decision tree learning algorithms.

a) Boosting algorithms: The first AdaBoost algorithm

was designed only for binary classification, and since then

many multiclass extensions have been developed. The most

straightforward of these is AdaBoost.M1 [2]. From the

perspective of stagewise additive modeling, [17] proposed

SAMME, which has a close resemblance to AdaBoost.M1,

and we will describe those in detail later. AdaBoost.MH [18]

is a multiclass, multilabel boosting algorithm designed to

minimize the Hamming loss. AdaBoost.MR [18] solves the

ranking problem, and under certain assumptions it simplifies to

AdaBoost.M2. Most of the implementations of AdaBoost.MH

and AdaBoost.MR are based on one-vs-all or one-vs-one

binary reductions. LogitBoost [19] is derived from minimizing

the logistic loss using stagewise additive modeling, and at each

boosting step it uses K regression base learners (where K is

the number of classes). [20] give a game-theoretic perspective

of multiclass boosting and introduce AdaBoost.MM, where

base learners just need to minimize a cost matrix. [21] pro-

pose a new formulation of multiclass boosting using margin

enforcing loss functions and an optimal set of codewords, and

present two generic boosting procedures: CD-MCBoost and

GD-MCBoost. Finally, gradient boosting [3] fits approximate

functional gradient descent in stagewise additive modeling,

and with several efficient variations and optimized implemen-

tations [4], [5], [22], they are now widely used as state-of-the-

art off-the-shelf classifiers.

b) Optimizing a single tree: Although boosting can use

many types of base learner, axis-aligned trees are by far

the most common choice, because of their relatively good

performance when ensembled, and their speed of training

(e.g. in the widely used XGBoost and LightGBM toolkits).

We briefly overview the large literature about decision tree

learning. The most widely used algorithms are based on greedy

top-down induction, which is suboptimal, as mentioned in the

introduction. By recursively splitting a node to minimize some

impurity measure (e.g. Gini index or entropy), these algorithms

partition the input space to have nodes as pure as possible

(receiving instances of the same class). This usually results in

large trees that significantly overfit, so nodes are pruned based

on some cost-complexity measure. Widespread decision tree

algorithms such as CART [12], ID3 [23] or C4.5 and C5.0 [13]

are based on slight variations of this basic procedure. Note that

none of these algorithms use a well-defined objective function,

rather they apply an (essentially arbitrary) impurity criterion

to split nodes. When used for boosting, the procedure is the

same, possibly with small modifications (e.g. in the impurity

measure); the training points’ weights are often simulated by

resampling [2], [18], [19]. Most of the research literature and

software packages on decision trees, and especially those used

in boosting, consider only axis-aligned partitions of the input

space. Oblique tree optimization was considered early on [12],

[24], and some works have proposed boosting oblique trees

[25], [26], but the accuracy of either single or boosted oblique

trees has not been found to improve consistently over that of

axis-aligned trees, while the number of parameters is much

bigger. This situation has changed with the recently proposed

TAO algorithm, described later, which is able to do a much

better, global (rather than greedy) optimization of trees of the

axis-aligned, oblique, or other types [14], [27], [28]. TAO

has also been successfully combined with bagging [29], [30],

gradient boosting [31] and others [32], [33].

III. DECISION TREE BOOSTING: ADABOOST

As just reviewed, there exists a huge variety of boosting

frameworks and, while we believe that all of them will benefit

from better optimized oblique trees, we can only evaluate

a few in this paper. We focus on the oldest and widely

adopted framework, AdaBoost, of which we consider two of

its most popular variations: AdaBoost.M1 and SAMME. As

our experiments will show, we are able to improve them so

they outperform the most recent and efficient implementations

of boosting, in particular XGBoost.

The pseudocode of SAMME is presented in Algorithm 1. In

both AdaBoost.M1 and SAMME, each boosting step involves

training a base learner (a tree in our case) to minimize the

weighted misclassification loss (I is an indicator function):

E =

N∑

n=1

wn I(yn 6= Tt(xn)) (1)

where Tt(·) is the prediction of the current (tth) tree and wn

is the weight per input instance (initially equal to wn = 1

N



Algorithm 1 SAMME pseudocode using TAO trees. The

pseudocode for AdaBoost.M1 has minor modifications.

input: training set {(xn, yn)}
N

n=1 where yn ∈ {1, . . . ,K};
base learner T; number of boosting steps T ;
shrinkage factor η;
initial weights (per instance): {wn = 1

N
}Nn=1;

for t = 1 to T do
Train a TAO tree (Tt) on the training set with the current
weights and loss function (2) (see Algorithm 2);
Obtain predictions: {ŷn}

N

n=1 ← Tt({xn}
N

n=1);
Compute weighted misclassification loss E in eq. (1);
if E ≥ 1− 1

K
then

set T = t− 1; exit loop;
end if
Compute αt = η · (log 1−E

E
+ log (K − 1));

Set wn ← wn · exp (αt · I(yn 6= ŷn));
renormalize w1, . . . , wN to sum to 1;

end for
return F (x) = argmax

k
ΣT

t=1αt · I(Tt(x) = k);

for n = 1, . . . , N ). We provide the details of training the tree

base learner in the next section. For boosting to proceed, the

training loss E (eq. (1)) must be lower than some threshold,

which differs in these two versions: in AdaBoost.M1 the

threshold is 1

2
, and in SAMME it is 1 − 1

K
(where K

is the number of classes). If this weak learning condition

is not met, the boosting procedure will terminate. In the

multiclass case (K > 2), AdaBoost.M1 has more stringent

requirement on base learners than SAMME, but with fairly

strong base learners this should not be an issue [2]. Once the

base learner is trained, both algorithms estimate the weight αt

(see Algorithm 1) of the current base learner. AdaBoost.M1

differs from SAMME here in that there is no log(K − 1)
term in the sum. The final step in a single boosting iteration

is to change the distribution of the instance weights for the

next base learner. Both algorithms increase the weights of

the misclassified instances and decrease the weights of the

correctly classified instances. The predictions from all base

learners are combined through a weighted majority vote to

produce the final prediction.

IV. OPTIMIZING A SINGLE TREE WITH TAO

Since each boosting step involves optimizing a single tree,

we now show how to apply the TAO algorithm, suitably

modified, to train it within the boosting framework. We con-

sider a binary decision tree for K-class classification having

a predetermined structure, usually a complete binary tree

of depth ∆ (although any other structure is possible, e.g.

random or obtained from a CART tree). Each decision (or

internal) node i has a thresholding function fi(x; θi) with

parameters θi which sends instance x to the corresponding

child (either left or right). Throughout this paper, we consider

trees with oblique splits only, i.e., the decision function is

linear, fi(x; θi) = w
T
i x+ wi0, so it sends x to the right

child if fi(x; θi) ≥ 0 and to the left otherwise. Each leaf

is a constant predictor which outputs the same class label

regardless of the input x. The prediction of a tree (denoted

by T(x;Θ)) for instance x is obtained by routing x from the

root to exactly one leaf and applying its prediction. Here, Θ

denotes the set of parameters of all tree nodes. Next, consider

the following optimization problem at each boosting step:

min
Θ

E(Θ) =

N∑

n=1

wn L(yn,T(xn;Θ)) + λ
∑

nodes i

φ(θi) (2)

where φ is a regularization term (with hyperparameter

λ ≥ 0) that penalizes the parameters θi of each node. In

this paper, we use a sparsity penalty φ(θi) = ‖θi‖1. L is a

classification loss for data point xn with ground-truth label

yn. Notice that in the case of 0/1 loss, L is identical to eq. (1)

(with wn as a weight per data point coming from the AdaBoost

algorithm) but having an extra regularization term. Therefore,

TAO directly attempts to minimize the boosting objective

function. Eq. (2) differs from the original TAO formulation due

to the AdaBoost weights and thus it requires a new derivation

of the TAO reduced problem, which we describe below (that is,

we do not resample the training set according to the weights).
TAO optimizes globally all node parameters rather than

greedily. It works in a way that is similar to how most

other machine learning models are trained: one first fixes the

model architecture (the tree structure, e.g. a complete binary

tree of given depth) and iteratively optimizes its parameters

by monotonically decreasing E(Θ). With most models this

is done via gradient-based methods, but this is not possible

with decision trees, which are nondifferentiable. Instead, TAO

applies alternating optimization (over the parameters at each

node) in a certain way, and this guarantees that after each

iteration E(Θ) decreases or stays constant. Besides, with an

ℓ1 penalty over the nodes’ parameters, nodes are automatically

pruned when all its weights become 0. Hence, it is convenient

to use a deep enough complete tree structure and let TAO

prune it as necessary.

TAO is based on two theorems which we describe briefly

(refer to [27], [28] for details) and adapt for the boosting

framework. Define the reduced set Ri ⊂ {1, . . . , N} of node

i (decision node or leaf) as the training instances that reach i

given the current tree parameters.
a) Separability condition: Consider any pair of nodes i

and j that are not descendants of each other. Since the tree

makes hard decisions, the reduced sets of i and j are disjoint.

Furthermore, we assume that the parameters are not shared

across nodes: θi ∩ θj = ∅ for all i, j such that i 6= j. Then

E separates over the parameters of nodes i and j: E(Θ) =
Ei(θi) +Ej(θj) +Erest(Θrest), where Θrest is the parameters

of all other nodes that do not include i and j.
b) Reduced problem: Given the separability condition,

we can optimize a non-descendant set of nodes independently.

Consider first optimizing eq. (2) over a leaf node i. This is

equivalent to training i’s parameters θi on its reduced set,

i.e., solving the original weighted classification problem on its

reduced set. With a constant-label leaf, this is solved exactly

by the weighted majority vote.

Optimizing over a decision node is more complicated.

Assume the parameter values of all nodes except i are fixed.



Algorithm 2 Training a base classifier using our modified TAO

algorithm.

input: training set {(xn, yn)}
N

n=1;
initial tree T(·;Θ) of depth ∆;
AdaBoost weights {wn}

N

n=1;
repeat

for depth d = 0 to ∆ do
for i ∈ nodes of T at depth d do

if i is a leaf then
yi ← weighted majority vote on reduced set Ri;

else
θi ← minimizer of weighted binary classification

problem (4) with current weights {wn}
N

n=1;
end if

end for
end for

until max # iterations or E decrease ¡ set tolerance
postprocess T: prune dead subtrees of T;
return T

Using the separability condition, we can rewrite eq. (2) for

decision node i equivalently as a function of θi:

min
θi

Ei(θi) = min
θi

∑

n∈Ri

wn l(fi(xn; θi)) + λφi(θi) (3)

where Ri is i’s reduced set. Since fi ∈ {right,left} can only

have two possible values, we define l(·) as the loss incurred

by choosing the right or left subtree. Hence, we can rewrite

eq. (3) as the following equivalent optimization problem:

min
θi

∑

n∈Ri

wn L(yn, fi(xn; θi)) + λφi(θi) (4)

where L is the same 0/1 classification loss mentioned before

and yn ∈ {right,left} is a “pseudolabel” indicating the child

which gives a lower value of E for instance xn under the

current tree. Problem (4) above is a weighted 0/1 loss binary

classification problem, unlike the traditional 0/1 loss reduced

problem in the original TAO paper. Optimizing eq. (4) is NP-

hard [34], [35], but we can approximate it with a convex surro-

gate loss such as the logistic loss. A number of efficient solvers

exist which can handle this problem. In our experiments, we

use LIBLINEAR [36], which can also handle weights per data

point.

TAO pseudocode is in Algorithm 2. Our TAO algorithm

processes the tree nodes in breadth-first order, and repeat-

edly trains a binary classifier (decision node) and a K-class

classifier (leaf). All the nodes at the same depth are trained

independently and in parallel due to the separability condition.

A single TAO iteration consists of one pass through all the

nodes in the tree. The main hyperparameters of a TAO tree

are the depth ∆ and the sparsity factor λ.

V. EXPERIMENTS: OVERALL PERFORMANCE OF THE

BOOSTED TAO TREES

We perform extensive comparison across standard machine

learning benchmarks to show effectiveness of our proposed

method. We tried to pick a diverse group of datasets (see

Table I) from various domains (e.g. computer vision, NLP),

TABLE I
DATASETS USED: NUMBER OF TRAIN AND TEST INSTANCES (NTRAIN ,

NTEST ), NUMBER OF FEATURES D, NUMBER OF CLASSES K .

Dataset Ntrain Ntest D K

Letter 16 000 4 000 16 26
MNIST 60 000 10 000 784 10
Char74k 66 707 7 400 64 62
R8 5 485 2 189 400 8
RCV1 15 564 518 571 47 236 53

with different sample sizes (N ), number of classes (K), feature

types (dense, sparse, etc.) and dimensions (D). We compare

against multiple forest-based methods: Random Forests (RF),

gradient boosting (XGBoost implementation) and conventional

AdaBoost (SAMME version). We denote AdaBoost.M1 as

“M1-CART” and SAMME as “S-CART”. We also compare

with published results of a few forest variations proposed in

the literature: Alternating Decision Forest (ADF) [37], shallow

Neural Decision Forest (sNDF) [38] and refined Random

Forests (rRF) [39]. Finally, we give the result of training a

single CART tree [12] for reference. As for the boosted TAO

trees, “S-TAO” uses SAMME as a boosting algorithm and

sparse oblique TAO trees as base learners, whereas “M1-TAO”

employs AdaBoost.M1 boosting algorithm.

A. Experiment details

Experiments were performed on Intel(R) Xeon(R) CPU

E5-2699 v3 @ 2.30GHz. For implementations that support

parallel processing, we set the number of threads to 8. For

the experiments that we perform, we repeat them 5 times,

and report the mean result (and standard deviation for the test

error).

a) Implementation: We implemented TAO in C++. As

an initial tree, we take an oblique complete tree of depth

∆ with random weights. For solving a reduced problem in

a decision (internal) node, we use an ℓ1-regularized logistic

regression solver in LIBLINEAR (v2.30 with support for

instance weights) [36]. We parallelize the training of nodes

at a given depth. We also implemented a Python interface for

TAO. We implemented both AdaBoost.M1 and SAMME in

Python.

For S-CART and RF, we use the Python implementation in

scikit-learn [40]. For M1-CART we implement the boosting

algorithm ourselves, but for the CART base learner we use

scikit-learn. The hyperparameters that we consider during

cross validation are learning_rate, n_estimators and

max_depth. We use XGBoost (v0.81, Python package) and

tune eta, max_depth and num_boost_round.

b) Reproducibility: ℓ1-regularized logistic regression in

LIBLINEAR has randomized behavior, but for the fixed

random seed it is deterministic. However, in TAO, when

we train nodes in parallel, we cannot control the order in

which the rand() function in LIBLINEAR is called, and, as

a consequence, our TAO implementation is not deterministic.

The difference one obtains on the test error from this random

behavior is not significant. Unless otherwise stated, the number

of TAO iterations I throughout the experiments is 20 and the



learning rate η is 0.1. There is no random behavior in both

AdaBoost.M1 and SAMME.

c) Datasets: Letter dataset is available in the UCI Ma-

chine Learning Repository [41]. We obtain the Char74k dataset

from [37]. R8 consists of top 8 classes of the Reuters-

21578 text categorization dataset. We train the Doc2Vec model

available from the gensim package [42] on all the document

collections and obtain 400-dimensional word-embedding fea-

tures. RCV1 dataset is obtained from the LIBSVM multiclass

data collection1.

d) Estimation of model size: We calculate the number

of parameters of the whole tree ensemble as the sum of the

number of parameters of each individual trees. We estimate

the number of parameters of a single tree as the sum of the

number of parameters of all the nodes in the tree. In axis-

aligned trees, the number of parameters of an internal node

is 2, and in oblique trees, this equals the number of nonzero

weights. In both types of trees, the number of parameters in a

constant leaf is 1. We estimate inference FLOPS for a single

tree as the number of parameters an input instance encounters

in the root-to-leaf path, and for the whole ensemble we just

take a sum of those. We calculate the inference FLOPS for

each instance in the training set, and report the average result.

B. Results

Tables II and III show the results (sorted by decreasing test

error). First of all, we compare a single TAO tree (T = 1 in

the tables) with the goal to demonstrate the better optimization

done by TAO. The results on MNIST and Letter convincingly

show that the accuracy of a TAO tree far beats that of a CART

tree. Moreover, it is remarkable that the performance of a

single TAO tree is often comparable to that of some baseline

forests such as RF. This can be clearly seen in R8 and RCV1

datasets. These results show that TAO is able to find good

approximate optima of the decision tree optimization problem

which makes the resulting tree a strong enough learner.

Let us now consider ensemble of trees (T > 1). Our results

for baselines (RF, conventional AdaBoost and XGBoost) gen-

erally coincide with previous works [37], [39]. Out of these

three methods, XGBoost seems to show the best performance,

although it depends on the dataset and sometimes, carefully

tuned RF can show similar results (e.g. Char74). It is worth to

mention that XGBoost (and most of other gradient boosting

methods) add K trees at each iteration [3] generating K times

more trees, and thus the resulting ensemble size can be large.

Next, let us focus on boosted TAO trees. We can observe

that both versions of the boosted TAO trees consistently

improve over RF, AdaBoost, XGBoost and other methods from

literature showing the lowest test error in all datasets. This is

extreme in Letter and R8 where the performance gap between

successor method is quite large. Moreover, the resulting forests

require fewer trees and they are shallower. However, each node

of a tree has D+1 parameters (weight vector and bias) since

we are using oblique splits. Whereas, an axis-aligned node has

1http://csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html

TABLE II
BOOSTED TAO TREES COMPARED WITH BASELINE AND

STATE-OF-THE-ART FOREST METHODS: RANDOM FORESTS (RF),
XGBOOST AND SAMME (S-CART); ADDITIONALLY, WE REPORT

PUBLISHED RESULTS FROM THE LITERATURE: ADF [37], SNDF [38] AND

RRF [39]. WE HAVE TWO VERSIONS OF THE BOOSTED TAO TREES:
“S-TAO” USES SAMME AND “M1-TAO” USES ADABOOST.M1. WE

REPORT THE TEST ERROR (%, AVG±STDEV OVER 5 REPEATS), NUMBER OF

PARAMETERS, NUMBER OF TREES T AND MAX DEPTH OF THE FOREST ∆.

Forest Etest (%) #parameters T ∆

CART 12.11±0.04 6k 1 50
TAO 5.25±0.20 24k 1 8
RF 3.05±0.06 1M 100 46
S-CART 2.96±0.05 6M 1k 30
RF 2.84±0.06 10M 1k 48
sNDF 2.80±0.12 22M 80 10

M
N

IS
T

ADF 2.71±0.10 (3.6M) 100 25
XGBoost 2.67±0.00 0.3M 1k 8
S-CART 2.28±0.02 13M 1k 16
M1-TAO 2.09±0.04 0.8M 30 8
rRF 2.05±0.02 (160k) 100 25
XGBoost 1.94±0.00 0.6M 10k 8
S-TAO 1.93±0.02 0.8M 30 8
M1-TAO 1.74±0.02 2.6M 100 8
S-TAO 1.67±0.04 2.6M 100 8

CART 13.06±0.15 3k 1 27
TAO 9.59±0.31 10k 1 11
XGBoost 4.30±0.00 0.4M 2.6k 10
RF 3.77±0.06 0.4M 100 34
ADF 3.52±0.12 (1M) 100 25
RF 3.44±0.09 4.2M 1k 36
XGBoost 3.35±0.00 0.8M 26k 6

L
et

te
r

S-CART 2.83±0.15 0.7M 100 16
rRF 2.98±0.15 (180k) 100 25
sNDF 2.92±0.17 2.4M 70 10
S-CART 2.58±0.09 6.7M 1k 16
M1-TAO 1.85±0.09 0.2M 30 11
S-TAO 1.79±0.07 0.2M 30 11
M1-TAO 1.40±0.09 0.6M 100 11
S-TAO 1.38±0.03 0.6M 100 11

only two (feature index and bias). However, we enforce ℓ1
penalty in node optimization to make node parameters sparse.

Consequently, it affects to the number of parameters and table

shows that the boosted TAO oblique trees often produce much

compact models.

VI. EXPERIMENTS: ANALYSIS

The success of our proposed boosting method encourages us

to dive into the details of the algorithm and answer important

questions, such as: “Why do stronger learners perform better

than weak learners in this particular case?”, “Does overfitting

occur and are TAO boosted trees robust against that?”, “What

are the most important hyperparameters in our algorithm

and how sensitive is it to hyperparameter changes?”. In this

section, we investigate these issues and also study practicalities

that are specific to boosted TAO trees, such as weighting

schemes and training time.

A. TAO vs CART trees as base learners

The left column of fig. 1 shows the effect of replacing

CART trees with TAO trees as base learners in AdaBoost.M1

and SAMME. The margin of improvement of TAO trees upon

CART on the test error is quite significant for the illustrated

3 datasets. It should be noted that we are selecting optimal

hyperparameters for both CART and TAO trees using cross



TABLE III
SIMILAR TO TABLE II, BUT FOR R8, RCV1 AND CHARS74K DATASETS

Forest Etest (%) #parameters T ∆

TAO 6.64±1.04 3k 1 7
RF 6.16±0.35 93k 100 27
S-CART 5.85±0.07 61k 100 20
RF 5.57±0.56 0.9M 1k 27

R
8 XGBoost 5.34±0.00 51k 800 6

S-CART 5.11±0.09 0.6M 1k 20
XGBoost 4.89±0.00 83k 8k 6
S-TAO 3.12±0.10 0.6M 100 7
M1-TAO 3.06±0.14 0.6M 100 7

S-CART >24 hours runtime 1k 16
RF 19.84±0.42 1M 100 233
RF 18.78±0.37 10M 1k 233
TAO 17.96±0.03 3M 1 12

R
C

V
1

S-CART 16.81±0.38 0.4M 100 100
XGBoost 13.97±0.00 0.3M 5.1k 30
XGBoost 13.06±0.00 0.7M 51k 8
M1-TAO 11.81±0.02 32M 100 9
S-TAO 11.74±0.03 18M 100 9

TAO 23.94±0.37 46k 1 12
XGBoost 18.08±0.00 1.7M 6.2k 50
S-CART 17.86±0.15 2.5M 100 60
RF 17.33±0.14 2.5M 100 65
S-CART 16.77±0.08 14M 1k 16

C
h
ar

7
4
k

XGBoost 16.70±0.00 6M 62k 12
ADF 16.67±0.21 (4M) 100 25
RF 16.61±0.14 26M 1k 65
sNDF 16.04±0.20 58M 200 12
rRF 15.40±0.10 (1.1M) 100 25
S-TAO 13.14±0.19 3.6M 100 12
M1-TAO 12.81±0.11 4.7M 100 12

validation, and we find that TAO favors more shallow trees

than CART.

This result clearly supports the claim that TAO finds trees

closer to the optimum of the objective function of the base

learner than greedy top down induction in CART. This also

contradicts the common belief that boosting weak learners

is as strong as a boosting in which the learner’s error can

be made arbitrarily small [43], [9]. If the goal is to achieve

more accurate forests with AdaBoost.M1 and SAMME, then

the objective function of the base learner should be optimized

better.

B. Comparison of runtime and number of trees

The left column of fig. 1 also shows the results of two dif-

ferent tree ensembles: Random Forests and gradient boosting

(XGBoost). Clearly, for the fixed T , boosted TAO trees achieve

considerably better test error than all the other forest methods.

This again demonstrates the benefit of better optimization of

base learners in ensemble models.

One could argue that because of the iterative nature of TAO

and the sequential learning of boosting, the time to train T

number of TAO trees will be much slower than inducing T

number of CART trees. Though TAO is in general slower than

CART, it has the flexibility to control the tradeoff between

training time and optimization in the number of TAO iterations

I . By setting I to a lower value, we compare boosted TAO

trees against different tree ensembles as a function of training

time (right column of fig. 1). Even with smaller I (I = 5 for

Letter and MNIST, I = 10 for R8), boosted TAO trees achieve

significantly lower test error than other forest methods almost

Etrain (%) / Etest (%) Etest (%)

50 100 150 200
0

1

2

3

4

5

L
et

te
r

0 20 40 60
1

2

3

4

50 100 150 200
0

2

4

6

8

R
8

0 50 100
2

4

6

8

10

50 100 150 200
0

1

2

3

4

Number of trees T

M
N

IS
T

0 500 1000 1500

1.5

2

2.5

3

3.5

Time (s)

Fig. 1. Comparison between different tree ensembles as a function of the
number of trees T (left) and training time (right). Solid lines—test er-
rors, dashed lines—train errors. “M1”—AdaBoost.M1, “S”—SAMME, RF—
random forest. All methods except “*-CART” use parallel training with 8
threads. In the left column, we limited the number of trees to 104 , that is the
reason RF stops early on Letter and MNIST.

from the start or in a reasonably short time. This is because

TAO needs fewer boosting steps to reach better test error than

the other tree ensembles.

C. Hyperparameter search

The most important hyperparameters in TAO are the number

of iterations I and tree depth ∆. In fig. 2 we explore how these

two hyperparameters affect the performance of S-TAO along

with the other two hyperparameters of boosting: the shrinkage

factor η and the number of trees T . In the suppl. mat. we

provide similar exploration for M1-TAO.

The shrinkage factor η has a significant effect on the test

error. Larger values of η tend to result in noisy and less

accurate ensembles, while smaller values tend to require more

boosting steps T to reach the minimum test error. This is in

accordance with the empirical findings in statistical literature.

For the default shrinkage factor we use η = 0.1.

Comparison of different I suggests that more TAO iterations

result in more accurate ensembles. This is expected, because

higher values of I correspond to better optimization. Compar-

ison of different ∆ indicate that deeper trees produce better

models, though overly deep trees are more likely to overfit.

D. Does overfitting occur?
Overfitting is known to occur in ensembles with weak

classifiers (e.g. decision stumps), but with trees, bagged and

boosted forests are both often said not to overfit [1], [2].

This contradicts statistical wisdom that overfitting will occur

if using a large enough model that is optimized well. Indeed,



Letter MNIST

100 200 300 400 500
1

1.5

2

2.5

3
∆

=
1
1

,
I
=

2
0

50 100 150 200
1.6

1.8

2

2.2

2.4

2.6

2.8

∆
=

8
,
I
=

2
0

100 200 300 400 500

1

1.5

2

2.5

∆
=

1
1

,
η
=

0
.1

50 100 150 200
1.5

2

2.5

3

3.5

∆
=

8
,
η
=

0
.1

100 200 300 400 500
0

1

2

3

4

5

6

I
=

2
0

,
η
=

0
.1

Number of trees T

50 100 150 200
0

2

4

6

8

I
=

2
0

,
η
=

0
.1

Number of trees T

Fig. 2. Test error of S-TAO on Letter and MNIST as a function of 4
hyperparameters: tree depth ∆, number of TAO iterations I , shrinkage factor
η and number of trees T . Each column fixes two and varies the other two.

Letter

0 1000 2000 3000 4000
1

1.2

1.4

1.6

1.8

2

Number of trees T

E
te

st
(%

)

Fig. 3. S-TAO with large number of trees to detect whether overfitting happens
on Letter dataset with different number of TAO iterations (I). Overfitting can
be clearly observed for I = 5 and I = 150.

for the Letter dataset, [2] shows that, for a boosted forest of

C4.5 trees, the test error decreases almost monotonically and

slowly, reaching 3.1% with T = 1000 trees.

With CART or C4.5 trees, it is not possible to optimize

a desired objective function and the resulting trees are very

noisy estimates of the optimal tree. With TAO we do have

the ability to learn trees that are closer to the optimum of the

objective function, as evidenced in section IV. Still, it is hard

to see any overfitting in fig. 2 as one increases I or the model

size (∆, T ).

In fig. 3 we explore this using higher values of I and T

for the Letter dataset (with a relatively large depth ∆ = 11).

This eventually makes the model size much bigger than the

dataset size (i.e., the model is vastly overparameterized). Now

we see that overfitting eventually occurs, for example the test

error curve for I = 150 touches bottom at around T = 150

and then increases (surprisingly, this also happens for I =
5). However, the increase is small (from 1.1% to 1.2%) and

all curves continue to oscillate slightly as T increases. This is

similar to the behavior of SGD with a fixed-size model, which

MNIST Letter

50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Number of trees T

resampled
weighted

E
tr

ai
n

(%
)

/
E

te
st

(%
)

50 100 150 200
0

0.5

1

1.5

2

2.5

3

Number of trees T

resampled
weighted

Fig. 4. Different approaches to solve weighted classification problem for trees
(eq. (1)) on MNIST and Letter. Solid lines—test err., dashed lines—train err.

will converge to a neighborhood of the minimizer and oscillate

around it if the step size is small but does not tend to zero.

However, the model size here keeps growing monotonically.

We conclude the following. Firstly, we corroborate the

benefit of a better optimization (effected by TAO): the more

TAO iterations, the smaller T needs to be, and the lower the

error achievable. Second, while hard to get, overfitting does

occur, but in the form of oscillations around the minimum test

error value, rather than a steady error increase.

E. Weighting or resampling?

Each boosting step involves training a tree to minimize

weighted misclassification error (eq. 1) and depending on

how tree optimization works, some algorithms cannot directly

handle such losses. Therefore, some implementations use so

called “resampling” technique as an approximation which

samples N instances with replacement and with probabilities

assigned for each data point. w1, w2, ..., wn play role of that

probabilities and indeed, they can be a good approximation

since each weight is interpreted as an “importance” of that

instance at the current boosting step. Moreover,
∑

n wn = 1.

On the other hand, our oblique trees can directly handle

weighted losses and thus, we do not need any “resampling”.

But we still investigate these two approaches applied to our

boosting algorithm and present our findings in fig. 4. Results

show that directly solving the optimization problem gives

better performance. However, sometimes the difference might

be marginal as it can be observed on MNIST.

VII. CONCLUSION

Decades of research on boosted trees have considered

many variations of the boosting procedure and of the tree

learning procedure. However, the latter has been restricted to

approximate, divide-and-conquer algorithms (such as CART or

C5.0) that grow an axis-aligned tree in a greedy way and are

known to be quite suboptimal. And yet, even with individual

trees that are quite inaccurate classifiers, the resulting boosted

forest often achieves state-of-the-art classification accuracy in

many tasks. We have shown that we can consistently achieve

even more accurate forests, sometimes considerably so, by

improving the individual tree optimization (using the TAO

algorithm) and by using more powerful trees (sparse oblique).

The resulting forests achieve lower test error using fewer,

smaller trees than CART-based AdaBoost, random forests and

gradient boosting. Given the widespread use of forests, this is

a remarkable result which has immediate practical application.



While our experiments are only for (two versions of) Ad-

aBoost, we expect that the advantages of using sparse oblique

trees trained with TAO will carry over to other variations of

boosting such as gradient boosting, and to other tasks such as

regression or ranking, which we are working on.

Acknowledgments. Work funded in part by NSF award IIS–

2007147. We thank Chih-Jen Lin (National Taiwan University)

for helping us to make some custom modifications to the

LIBLINEAR code.

REFERENCES

[1] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct. 2001.

[2] R. E. Schapire and Y. Freund, Boosting. Foundations and Algorithms,
ser. Adaptive Computation and Machine Learning Series. MIT Press,
2012.

[3] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[4] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “LightGBM: A highly efficient gradient boosting decision tree,”
in NIPS, I. Guyon, U. v. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. MIT Press, Cambridge,
MA, 2017, pp. 3146–3154.

[5] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proc. of the 22nd ACM SIGKDD 2016, San Francisco, CA, Aug. 13–17
2016, pp. 785–794.

[6] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.

Computer Vision, vol. 57, no. 2, pp. 137–154, May 2004.
[7] A. Criminisi and J. Shotton, Decision Forests for Computer Vision and

Medical Image Analysis, ser. Advances in Computer Vision and Pattern
Recognition. Springer-Verlag, 2013.

[8] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The Elements of

Statistical Learning—Data Mining, Inference and Prediction, 2nd ed.,
ser. Springer Series in Statistics. Springer-Verlag, 2009.

[9] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, ser. Chap-
man & Hall/CRC Machine Learning and Pattern Recognition Series.
CRC Publishers, 2012.

[10] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms,
2nd ed. John Wiley & Sons, 2014.

[11] C. Bentéjac, A. Csörgő, and G. Martı́nez-Muñoz, “A comparative
analysis of gradient boosting algorithms,” AI Review, vol. 54, no. 3,
pp. 1937–1967, Mar. 2021.

[12] L. J. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-

cation and Regression Trees. Belmont, Calif.: Wadsworth, 1984.
[13] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.
[14] A. Zharmagambetov, S. S. Hada, M. Gabidolla, and M. Á. Carreira-

Perpiñán, “Non-greedy algorithms for decision tree optimization: An
experimental comparison,” in IJCNN’21, Virtual event, Jul. 18–22 2021.

[15] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J. Computer and System

Sciences, vol. 55, no. 1, pp. 119–139, 1997.
[16] P. Bühlmann and T. Hothorn, “Boosting algorithms: Regularization,

prediction and model fitting,” Statistical Science, vol. 22, no. 4, pp.
477–505 (with discussion, pp. 506–522), 2007.

[17] J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class AdaBoost,”
Statistics and Its Interface, vol. 2, no. 3, pp. 349–360, 2009.

[18] R. E. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Machine Learning, vol. 37, Dec. 1999.

[19] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Annals of Stats, vol. 28, no. 2, pp. 337–
407, Apr. 2000.

[20] I. Mukherjee and R. Schapire, “A theory of multiclass boosting,” JMLR,
vol. 14, no. 1, pp. 437–497, Feb. 2013.

[21] M. Saberian and N. Vasconcelos, “Multiclass boosting: Margins, code-
words, losses, and algorithms,” JMLR, vol. 20, no. 137, pp. 1–68, 2019.

[22] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“CatBoost: Unbiased boosting with categorical features,” in NEURIPS,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. MIT Press, Cambridge, MA, 2018, pp.
6638–6648.

[23] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[24] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” J. AI Research, vol. 2, pp. 1–32, 1994.

[25] C. Yu and D. B. Skillicorn, “Parallelizing boosting and bagging,” Dept.
of Computing and Information Science, Queens University, Tech. Rep.
2001–442, Feb. 2001.

[26] C. Henry, R. Nock, and F. Nielsen, “Real boosting a la Carte with
an application to boosting oblique decision tree,” in Proc. of the 20th

IJCAI’07, Hyderabad, India, Jan. 6–12 2007, pp. 842–847.
[27] M. Á. Carreira-Perpiñán and P. Tavallali, “Alternating optimization of

decision trees, with application to learning sparse oblique trees,” in Ad-

vances in NEURIPS, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. MIT Press, Cambridge,
MA, 2018, pp. 1211–1221.

[28] M. Á. Carreira-Perpiñán, “The Tree Alternating Optimization (TAO)
algorithm: A new way to learn decision trees and tree-based models,”
2021, arXiv.

[29] A. Zharmagambetov and M. Á. Carreira-Perpiñán, “Smaller, more
accurate regression forests using tree alternating optimization,” in Proc.

of the 37th ICML 2020, H. Daumé III and A. Singh, Eds., Online,
Jul. 13–18 2020, pp. 11 398–11 408.

[30] M. Á. Carreira-Perpiñán and A. Zharmagambetov, “Ensembles of
bagged TAO trees consistently improve over random forests, AdaBoost
and gradient boosting,” in Proc. of the 2020 ACM-IMS Foundations of

Data Science Conference (FODS 2020), Seattle, WA, Oct. 19–20 2020,
pp. 35–46.

[31] M. Gabidolla and M. Á. Carreira-Perpiñán, “Pushing the envelope of
gradient boosting forests via globally-optimized oblique trees,” in Proc.

of the 2022 IEEE Computer Society Conf. CVPR’22, New Orleans, LA,
Jun. 19–24 2022.

[32] A. Zharmagambetov, M. Gabidolla, and M. Á. Carreira-Perpiñán, “Im-
proved boosted regression forests through non-greedy tree optimization,”
in IJCNN’21, Virtual event, Jul. 18–22 2021.

[33] ——, “Improved multiclass AdaBoost for image classification: The role
of tree optimization,” in IEEE ICIP 2021, Online, Sep. 19–22 2021, pp.
424–428.

[34] K.-U. Hoffgen, H. U. Simon, and K. S. Vanhorn, “Robust trainability of
single neurons,” J. Computer and System Sciences, vol. 50, no. 1, pp.
114–125, Feb. 1995.

[35] L. Pitt and L. G. Valiant, “Computational limitations on learning from
examples,” Journal of the ACM, vol. 35, no. 4, pp. 965–984, Oct. 1988.

[36] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” JMLR, vol. 9,
pp. 1871–1874, Aug. 2008.

[37] S. Schulter, P. Wohlhart, C. Leistner, A. Saffari, P. M. Roth, and
H. Bischof, “Alternating decision forests,” in Proc. of the 2013 IEEE

Computer Society Conf. CVPR’13, Portland, OR, Jun. 23–28 2013, pp.
508–515.

[38] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Buló, “Deep neu-
ral decision forests,” in Proc. 15th ICCV’15, Santiago, Chile, Dec. 11–18
2015, pp. 1467–1475.

[39] S. Ren, X. Cao, Y. Wei, and J. Sun, “Global refinement of random
forest,” in Proc. of the 2015 IEEE Computer Society Conf. CVPR’15,
Boston, MA, Jun. 7–12 2015, pp. 723–730.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duch-
esnay, “Scikit-learn: Machine learning in Python,” JMLR, vol. 12, pp.
2825–2830, Oct. 2011, available online at https://scikit-learn.org.

[41] M. Lichman, “UCI machine learning repository,” http://archive.ics.uci.
edu/ml, 2013.

[42] R. Řehůřek and P. Sojka, “Software framework for topic modelling with
large corpora,” in Proc. LREC 2010 Workshop on New Challenges for

NLP Frameworks, Valletta, Malta, May 22 2010, pp. 45–50.
[43] R. E. Schapire, “The strength of weak learnability,” Machine Learning,

vol. 5, no. 2, pp. 197–227, Jun. 1990.
[44] S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett, Eds., Advances in NEURIPS, vol. 31. MIT Press,
Cambridge, MA, 2018.

[45] Int. J. Conf. Neural Networks (IJCNN’21), Virtual event, Jul. 18–22
2021.


