
Improved Multiclass AdaBoost Using
Sparse Oblique Decision Trees

Magzhan Gabidolla, Arman Zharmagambetov and
Miguel Á. Carreira-Perpiñán

Dept. of Computer Science and Engineering

University of California, Merced

July 11, 2022



Introduction

Ensembles of decision trees (= forests) have found numerous
applications in many domains.

They posses multiple advantages, such as strong generalization
property, scalability to large data and fast inference time.

Some examples of forests:

Random forests train each tree independently on a different data
sample and on a different subset of features.
Boosted Trees sequentially train trees on reweighted versions of
the data.

We focus on boosted decision trees for multiclass classification
problems.



Overview

Most of the papers on boosting and implementations of them
use trees that are:

Axis-aligned (i.e. it uses a single feature at a decision node)
Trained with greedy recursive partitioning

However, axis-aligned trees are not very suitable for many
problems, especially for the ones with correlated features
(e.g. pixels of an image).

Greedy top-down induction produces suboptimal trees [4].



Our idea

We propose the following to address these issues:

to use oblique decision trees (i.e. trees with hyperplane splits at
decision nodes)
to use a non-greedy optimization algorithm to learn such trees

We adapt the recently proposed algorithm for learning classi-
fication/regression trees, Tree Alternating Optimization (TAO)
[2, 5], for a specific boosting framework and empirically evaluate
its performance on several datasets.

By monotonically decreasing an objective function over a tree
with predetermined structure, TAO finds better approximate op-
tima, and is quite flexible for the choices of objective function and
the types of tree (axis-aligned, oblique, etc.).



Boosting algorithm: AdaBoost.M1 and SAMME

Algorithm 1 SAMME pseudocode using TAO trees. The pseu-
docode for AdaBoost.M1 is slightly different

input: training set {(xn, yn)}Nn=1 where yn ∈ {1, . . . ,K};
base learner T; number of boosting steps T ; shrinkage factor η;
initial weights (per instance): {wn = 1

N
}Nn=1;

for t = 1 to T do
Train a TAO tree (Tt) on the training set with the current weights
to minimize weighted 0-1 loss;
Obtain predictions: {ŷn}Nn=1 ← Tt({xn}Nn=1);
Compute weighted misclassification loss E;
if E ≥ 1− 1

K
then

set T = t− 1; exit loop;
end if
Compute αt = η · (log 1−E

E
+ log (K − 1));

Set wn ← wn · exp (αt · I(yn 6= ŷn)); renormalize w1, . . . , wN ;
end for
return F (x) = argmaxk Σ

T
t=1αt · I(Tt(x) = k);



Related work

The roots of DTs are in the 1950s, although they became really
popular in the early 1980s. Since then, many approaches have
been proposed to train them. Some common approaches:

Greedy recursive splitting: start from the root and recursively
split into two or more children based on solving a “purity”
optimization problem (e.g. CART [1]). Simple and fast, but
generates suboptimal trees.

Approximate brute force search: attempts to find an optimal
decision tree via mixed-integer programming. Do not scale
beyond small or toy datasets.

Non-greedy, global optimization algorithms: neither of the
above. Tries to find approximate solution by optimizing over
the entire tree. Well-known example: “soft decision trees”. Our
proposed algorithm, Tree Alternating Optimization
(TAO) [2], is in this category but does not use soft trees.



Related work (cont.)

The literature of DTs is not restricted by training a single tree,
Various methods have been proposed to ensemble them:

Bagging train each tree independently on a different data
sample: Random Forests, Extra Randomized Trees, etc...

Boosted Trees sequentially train trees on reweighted versions
of the data: AdaBoost, Gradient Boosting, XGBoost,
LightGBM, CatBoost, etc...

Moreover, there are attempts to combine decision trees and
other models (say neural nets) and train trees with more
complex models at each node (e.g. SVMs, LDA). Some
examples: neural decision trees, hierarchical mixture of experts
(HME), Naive Bayes trees, etc.



TAO: general formulation

We consider trees whose nodes make hard decisions (not soft
trees). Optimizing such trees is difficult because they are not
differentiable. Assuming a tree structure T is given (say, binary
complete of depth ∆), consider the following optimization prob-
lem over its parameters:

E(Θ) =
N∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

φi(θi)

given a training set {(xn,yn)}
N
n=1. Θ = {θi}i∈N is a set of

parameters of all tree nodes. The loss function L(y, z) can be any
loss which separates over training instances (e.g. squared error,
cross-entropy, etc.). The regularization term φi (e.g. ℓ1 norm)
penalizes the parameters θi of each node (to prevent overfitting).



TAO: separability of nodes

The TAO algorithm is based on 3 theorems: separability condi-
tion, reduced problem over a leaf, reduced problem over a decision
node.

1. Separability condition

Consider any pair of nodes i and j. Assume the parameters of
all other nodes (Θrest) are fixed. If nodes i and j are not
descendants of each other, then E(Θ) can be rewritten as:

E(Θ) = Ei(θi) + Ej(θj) + Erest(Θrest)

In other words, the separability condition states that any set of
non-descendant nodes of a tree can be optimized independently.
Note that Erest(Θrest) can be treated as a constant since we fix
Θrest.



TAO: separability of nodes

Any set of non-descendant nodes of a tree can be optimized
independently:

Ri–reduced set

Fixed



TAO: optimizing over leaves

A set of non-descendant nodes are all the leaves. Optimizing over
the parameters of one leaf is given by the following theorem.

2. Reduced problem over a leaf

If i is a leaf, the optimization of E(Θ) over θi can be
equivalently written as:

min
θi

Ei(θi) =
∑

n∈Ri

L(yn,gi(xn;θi)) + αφi(θi)

The reduced set Ri contains the training instances that reach
leaf i. Each leaf i has a predictor function gi(x;θi): R

D → R
K

that produces the actual output. Therefore, solving the reduced
problem over a leaf i amounts to fitting the leaf’s predictor gi to
the instances in its reduced set to minimize the original loss (e.g.
squared error).



TAO: optimizing over decision nodes

An example of a set of non-descendant nodes are all the decision
nodes at the same depth:

f2(x;θ2)

T4(x;Θ4) T5(x;Θ5)

left right

reduced
set R2

Here, Ri is the reduced set of node i and (assuming binary trees)
fi(x;θi): R

D → {left, right} is a decision function in node
i which sends instance xn to the corresponding child of i. We
consider oblique trees, having hyperplane decision functions “go
to right if wT

i x+ wi0 ≥ 0” (where θi = {wi, wi0}).



TAO: optimizing over decision nodes (cont.)

The reduced problem over a decision node can be written as
a weighted 0/1 loss binary classification problem on the node’s
reduced set instances:

min
θi

Ei(θi) =
∑

n∈Ri

Lin(yin, fi(xn;θi)) + αφi(θi)

where the weighted 0/1 loss Lin(yin, ·) for instance n ∈ Ri is
defined as Lin(yin, y) = lin(y) − lin(yin) ∀y ∈ {left, right},
where yin = argminy lin(y) is a “pseudolabel” indicating a child
which gives the lowest value of the regression loss L for instance
xn under the current tree.
For hyperplane nodes (oblique trees), this is NP-hard, but can
be approximated by using a convex surrogate loss (we use the
logistic loss). Hence, if φi is an ℓ1 norm, this requires solving an
ℓ1-regularized logistic regression.



Pseudocode for training a single TAO tree

TAO repeatedly alternates optimizing over sets of nodes while
monotonically decreasing the objective function.

input training set; initial tree T(·;Θ) of depth ∆
N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively
generate R1 ← {1, . . . , N} using initial tree
repeat
for d = ∆ down to 0
parfor i ∈ Nd

if i is a leaf then
θi ← fit a regressor/classifier (const, linear, neural net, etc.)
gi on reduced set Ri

else
generate pseudolabels yn for each point n ∈ Ri

θi ← fit a binary classifier on Ri

update Ri for each node
until stop
prune dead subtrees of T
return T



TAO: some success stories

TAO has been successfully applied in training a single oblique/axis-
aligned tree [7]

Extension for regression appeared in [5]

Moreover, it has been successfully applied to train hybrid of trees
and other models (e.g. neural nets [6])

Ensemble of TAO trees achieves state-of-the-art performance in
number of benchmarks: [3, 5]



Experiments: MNIST dataset

M1 – AdaBoost.M1, S – SAMME
∆ – max depth of the forest, T – number of trees

Forest Etest (%) #parameters T ∆

CART 12.11±0.04 6k 1 50
TAO 5.25±0.20 24k 1 8
RF 3.05±0.06 1M 100 46
S-CART 2.96±0.05 6M 1k 30
RF 2.84±0.06 10M 1k 48
sNDF 2.80±0.12 22M 80 10

M
N
IS
T

ADF 2.71±0.10 (3.6M) 100 25
XGBoost 2.67±0.00 0.3M 1k 8
S-CART 2.28±0.02 13M 1k 16
M1-TAO 2.09±0.04 0.8M 30 8
rRF 2.05±0.02 (160k) 100 25
XGBoost 1.94±0.00 0.6M 10k 8
S-TAO 1.93±0.02 0.8M 30 8
M1-TAO 1.74±0.02 2.6M 100 8
S-TAO 1.67±0.04 2.6M 100 8

Boosted TAO trees are smaller (fewer and shallower trees) yet
consistently more accurate.



Experiments: Letter dataset

M1 – AdaBoost.M1, S – SAMME
∆ – max depth of the forest, T – number of trees

Forest Etest (%) #parameters T ∆

CART 13.06±0.15 3k 1 27
TAO 9.59±0.31 10k 1 11
XGBoost 4.30±0.00 0.4M 2.6k 10
RF 3.77±0.06 0.4M 100 34
ADF 3.52±0.12 (1M) 100 25
RF 3.44±0.09 4.2M 1k 36
XGBoost 3.35±0.00 0.8M 26k 6

L
et
te
r

S-CART 2.83±0.15 0.7M 100 16
rRF 2.98±0.15 (180k) 100 25
sNDF 2.92±0.17 2.4M 70 10
S-CART 2.58±0.09 6.7M 1k 16
M1-TAO 1.85±0.09 0.2M 30 11
S-TAO 1.79±0.07 0.2M 30 11
M1-TAO 1.40±0.09 0.6M 100 11
S-TAO 1.38±0.03 0.6M 100 11

Boosted TAO trees are smaller (fewer and shallower trees) yet
consistently more accurate.



Experiments: R8 dataset

M1 – AdaBoost.M1, S – SAMME
∆ – max depth of the forest, T – number of trees

Forest Etest (%) #parameters T ∆

TAO 6.64±1.04 3k 1 7
RF 6.16±0.35 93k 100 27
S-CART 5.85±0.07 61k 100 20
RF 5.57±0.56 0.9M 1k 27

R
8 XGBoost 5.34±0.00 51k 800 6

S-CART 5.11±0.09 0.6M 1k 20
XGBoost 4.89±0.00 83k 8k 6
S-TAO 3.12±0.10 0.6M 100 7
M1-TAO 3.06±0.14 0.6M 100 7

Boosted TAO trees are smaller (fewer and shallower trees) yet
consistently more accurate.



Comparison in terms of Boosting Iterations

Letter MNIST

50 100 150 200
0

1

2

3

4

5

Boosting iterations

E
t
e
s
t
(%

)

50 100 150 200
0

1

2

3

4

Boosting iterations



Comparison in terms of Training Time

Letter MNIST

0 20 40 60
1

2

3

4

Time (s)

E
t
e
s
t
(%

)

0 500 1000 1500

1.5

2

2.5

3

3.5

Time (s)

Figure: All methods except “*-CART” use parallel training with 8
threads.



Conclusion

Directly and non-greedily optimizing the base learner’s objective
function in AdaBoost with TAO significantly improves the per-
formance of the ensemble.

Boosted TAO trees outperform all competing algorithms we tested
in terms of accuracy.
The TAO forests are small in terms of model size: number of trees,
total number of parameters, depth.

The design in terms of hyperparameter tuning remains as simple
as the original boosting: we choose the tree depth and number
of trees as large as computationally possible, but without over-
fitting.

This makes our TAO forests a model of immediate, widespread
practical applicability and impact



References

[1] L. J. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, Calif., 1984.

[2] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with ap-
plication to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems (NEURIPS), volume 31, pages 1211–1221. MIT Press, Cambridge, MA, 2018.

[3] M. Gabidolla and M. Á. Carreira-Perpiñán. Pushing the envelope of gradient boosting
forests via globally-optimized oblique trees. In Proc. of the 2022 IEEE Computer Society
Conf. Computer Vision and Pattern Recognition (CVPR’22), New Orleans, LA, June 19–24
2022.

[4] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning—
Data Mining, Inference and Prediction. Springer Series in Statistics. Springer-Verlag, second
edition, 2009.

[5] A. Zharmagambetov and M. Á. Carreira-Perpiñán. Smaller, more accurate regression forests
using tree alternating optimization. In H. Daumé III and A. Singh, editors, Proc. of the 37th
Int. Conf. Machine Learning (ICML 2020), pages 11398–11408, Online, July 13–18 2020.

[6] A. Zharmagambetov and M. Á. Carreira-Perpiñán. Learning a tree of neural nets. In Proc. of
the IEEE Int. Conf. Acoustics, Speech and Sig. Proc. (ICASSP’21), pages 3140–3144, Toronto,
Canada, June 6–11 2021.

[7] A. Zharmagambetov, S. S. Hada, M. Gabidolla, and M. Á. Carreira-Perpiñán. Non-greedy
algorithms for decision tree optimization: An experimental comparison. In Int. J. Conf.
Neural Networks (IJCNN’21), Virtual event, July 18–22 2021.


	References

