
Improved Boosted Regression Forests Through
Non-Greedy Tree Optimization

Arman Zharmagambetov, Magzhan Gabidolla and

Miguel Á. Carreira-Perpiñán

Dept. of Computer Science and Engineering

University of California, Merced

IEEE IJCNN, July 2021

Introduction

An ensemble of decision trees (= forest) is a widely
established method in machine learning with many successful
applications.

They often produce very accurate results with very little
effort on hyperparameter tuning, and are part of many
winning methods on ML challenges and competitions.

Some examples of forests:

Random forests train each tree independently on a different
data sample (bagging).
Boosted Trees sequentially train trees on reweighted versions of
the data.

We focus on boosted decision trees for regression problems, where
the output can be a scalar or a vector.

Overview

Majority of papers and implementations of boosting
algorithms use decision trees that are:

Axis-aligned (i.e. tests a single feature at a decision node e.g.
“if x7 ≥ 3 then go right”)
Trained with greedy top-down induction.

However, axis-aligned trees are quite restricted models,
especially for problems with correlated features.

And, it has been shown and widely accepted that the trees
produced by greedy top-down induction are suboptimal (such
as CART trees) [4].

Our idea

We address both issues by:

using trees with more complex nodes (oblique, i.e., hyperplane)
using a better optimization algorithm to learn the tree.

We build on a recently proposed algorithm for learning classifi-
cation/regression trees, Tree Alternating Optimization (TAO)
[1, 5]. TAO finds good approximate optima of an objective
function over a tree with predetermined structure and it ap-
plies to trees beyond axis-aligned splits.

We use an oblique decision tree as a base learner in a specific
boosting algorithm for regression problems, and adapt the TAO
algorithm to optimize the base learner’s objective function.

Boosting for regression: AdaBoost.R2

Quite a few boosting algorithms exist for regression:

AdaBoost.R2, AdaBoost.RT, gradient boosting, etc.

In this work, we focus on AdaBoost.R2 [3]:

The first practical boosting algorithm for regression
It has similar intuitive behavior with instance weights as
AdaBoost.M1: more difficult points obtain higher weight
(importance) in the next boosting step.

The main point of this work is to show that stronger base
learners trained with TAO can improve the overall performance
of the ensemble, and we believe that this will apply to any
boosting algorithm.

AdaBoost.R2 pseudocode

Algorithm 1: AdaBoost.R2 with TAO modification
Result: Forest of boosted TAO trees F
input training set {(xn, yn)}

N
n=1, number of trees T ,

learning rate η, initial weights {wn = 1/N}Nn=1

for t = 1 to T do

T← fit TAO with instance weights {wn}
N
n=1

obtain predictions {ŷn}
N
n=1 ← T({xn}

N
n=1)

calculate a loss per instance ln ←
|ŷn−yn|

D

where D = maxn|ŷn − yn|
calculate the average loss L̄ = ΣN

n=1wnln
if L̄ > 0.5 then

set T = t− 1, exit the loop
end

βt =
L̄

1−L̄
, weight of the current tree αt = log(1/βt)

update the instance weights wn ← wnβ
1−ln
t

end

F (x) = weighted median of {T(x)}Tt=1

Optimizing a single tree with TAO: general formulation

We consider trees whose nodes make hard decisions (not soft
trees). Optimizing such trees is difficult because they are not dif-
ferentiable. Assuming a tree structure T is given (say, complete
tree of depth ∆), consider the following optimization problem
over its parameters:

E(Θ) =

N∑

n=1

wiL(yn,T(xn;Θ)) + α
∑

i∈N

φi(θi)

{(xn,yn)}
N
n=1 is a training set with weights {wn}

N
n=1

Θ = {θi}i∈N is a set of parameters of all tree nodes

L(y, z) is a loss function. We use the squared error ‖y − z‖22
(it is possible to use other losses, e.g. the least absolute
deviation or a robust loss)

φi is a regularization term (e.g. ℓ1 norm), which penalizes the
parameters θi of each node.

Optimizing a single tree with TAO: separability of nodes

Our TAO algorithm for regression is based on 3 theorems: sepa-
rability condition, reduced problem over a leaf, reduced problem
over a decision node.

1. Separability condition

Consider any pair of nodes i and j. Assume the parameters of
all other nodes (Θrest) are fixed. If nodes i and j are not
descendants of each other, then E(Θ) can be rewritten as:

E(Θ) = Ei(θi) + Ej(θj) + Erest(Θrest)

In other words, the separability condition states that any set of
non-descendant nodes of a tree can be optimized independently.
Note that Erest(Θrest) can be treated as a constant since we fix
Θrest.

Optimizing a single tree with TAO: leaves

A set of non-descendant nodes are all the leaves. Optimizing over
the parameters of one leaf is given by the following theorem.

2. Reduced problem over a leaf

If i is a leaf, the optimization of E(Θ) over θi can be
equivalently written as:

min
θi

Ei(θi) =
∑

n∈Ri

wnL(yn,gi(xn;θi)) + λφi(θi)

Reduced set Ri is the set of training points that reach leaf i

gi(x;θi): R
D → R

K is a predictor function of leaf i that
produces the tree output. We use a constant or linear model.

Solving the reduced problem over a leaf i amounts to fitting
gi to the instances in Ri to minimize the original loss.

Optimizing a single tree with TAO: decision nodes

3. Reduced problem over a decision node

If i is a decision node, the optimization of E(Θ) over θi can be
equivalently written as:

min
θi

Ei(θi) =
∑

n∈Ri

lin(fi(xn;θi)) + λφi(θi)

Ri is the reduced set of node i

fi(x;θi): R
D → {left, right} is a decision function in node i

which sends instance xn to the corresponding child of i

We consider oblique trees, having hyperplane decision
functions “go to right if wT

i x+ bi ≥ 0” (θi = {wi, bi})

lin(·) is the loss incurred if xn goes to the left or right subtree.

Optimizing a single tree with TAO: decision nodes

(cont.)

The reduced problem over a decision node can be equivalently
rewritten as a weighted 0/1 loss binary classification problem on
the node’s reduced set instances:

min
θi

Ei(θi) =
∑

n∈Ri

wnLin(yin, fi(xn;θi)) + λφi(θi) (1)

Lin(yin, ·) is a 0/1 misclassification loss

yin ∈ {left, right} is a “pseudolabel” indicating the child
which gives a lower value of E under the current tree.

wi = lin(ŷ)− lin(yin) where ŷ is the other child ŷ 6= y

For hyperplane nodes, this is NP-hard, but can be approximated
by using a convex surrogate loss (we use the logistic loss). Hence,
if φi is an ℓ1 norm, this requires solving an ℓ1-regularized logistic
regression.

Pseudocode for training a single TAO tree

Algorithm 2: Learning a single TAO tree with boosting
weights
Result: trained tree T

input training set {(xn, yn)}
N
n=1; random tree T(·;Θ) of depth ∆;

AdaBoost weights {wn}
N
n=1;

repeat

for depth d = 0 to ∆ do

for i ∈ nodes at depth d do

if i is a leaf then
θi ← fit a weighted regressor (constant or linear) on a
reduced set Ri with the current weights {wn};

else
θi ← fit a weighted binary classifier to minimize eq. (1)

end

end

end

until convergence occurs or max iteration;
postprocessing: remove dead or pure subtrees;

Experiments: standard benchmarks and algorithms

R2 TAO-c: boosted oblique trees with constant leaves,
R2 TAO-l: boosted oblique trees with linear leaves.
See the paper for extended results, additional datasets, etc.

Forest Etest T ∆

CART 2.71±0.06 1 51
TAO-c 1.54±0.05 1 7
R2 CART 1.48±0.03 100 10
XGBoost 1.45±0.00 100 10
R2 CART 1.31±0.01 1k 10

C
T

sl
ic
e

XGBoost 1.18±0.00 1k 10
RF 1.03±0.01 100 71
cRF[2] 1.00 1k –
RF 0.97±0.01 1k 78
R2 TAO-c 0.59±0.00 30 8
R2 TAO-c 0.51±0.00 100 8
R2 TAO-c 0.31±0.00 100 12

Forest Etest T ∆

CART 13.41±0.11 1 49
RF 9.31±0.00 100 68
R2 CART 9.25±0.01 100 15
RF 9.23±0.00 1k 73
R2 CART 9.21±0.03 1k 15

Y
e
a
rP

re
d
ic
ti
o
n
M
S
D

TAO-c 9.11±0.05 1 8
XGBoost 9.04±0.00 100 10
XGBoost 9.01±0.00 1k 10
cRF[2] 8.90 1000 –
R2 TAO-c 8.85±0.00 30 10
R2 TAO-c 8.83±0.00 100 10
R2 TAO-l 8.82±0.00 50 7

Boosted TAO regression trees are smaller (fewer and shallower trees)
yet consistently more accurate, particularly if using linear predictors at
the leaves.

Comparison with other forests

Etrain Etest

0 20 40 60 80 100

0

1

2

3

4

C
T

sl
ic
e

0 20 40 60 80 100
0

1

2

3

4

0 20 40 60 80 100

1

2

3

4

cp
u
a
ct

Number of trees
0 20 40 60 80 100

2

2.5

3

3.5

4

Number of trees

Figure: Comparison of different regression forests on the CT slice and
cpuact datasets as a function of the number of trees. “R2” refers to
AdaBoost.R2, “RF” refers to Random Forest. All errors are RMSE.

Hyperparameter exploration

Etrain Etest

0 20 40 60 80 100

0.5

1

1.5

2

2.5

3

3.5

ost ∆=12
∆=10
∆=8
∆=6
∆=4

C
T

sl
ic
e

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

1.6

η=1.0
η=0.5
η=0.1
η=0.05
η=0.01

cp
u
a
ct

Number of trees
0 20 40 60 80 100

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of trees

Figure: The effect of the depth ∆ (top row) and the learning rate η

(bottom row) of the boosted TAO trees on CT slice and cpuact. All
errors are RMSE.

Conclusion

Using a better optimized and more complex tree as a base
learner in a specific boosting algorithm improves the overall
performance of the ensemble.

Our boosted TAO regression trees outperform all competing
algorithms we tested in terms of accuracy.
The TAO forests are smaller in terms of model size: number of
trees, total number of parameters, depth.

The design in terms of hyperparameter tuning remains as sim-
ple as the original boosting: we choose the tree depth and num-
ber of trees as large as computationally possible, but without
overfitting, and the optimal learning rate can be found using
cross validation.
This makes our TAO forests a model of immediate, widespread
practical applicability and impact

In separate papers, we have also found that TAO trees improve
significantly in classification (rather than regression) and with
bagging (rather than boosting).

[1] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems (NEURIPS), volume 31, pages 1211–1221. MIT Press, Cambridge, MA,
2018.

[2] M. Denil, D. Matheson, and N. de Freitas. Narrowing the gap: Random forests in theory
and in practice. In E. P. Xing and T. Jebara, editors, Proc. of the 31st Int. Conf. Machine
Learning (ICML 2014), pages 665–673, Beijing, China, June 21–26 2014.

[3] H. Drucker. Improving regressors using boosting techniques. In D. H. Fisher, editor, Proc.
of the 14th Int. Conf. Machine Learning (ICML’97), pages 107–115, Nashville, TN,
July 6–12 1997.

[4] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning—Data Mining, Inference and Prediction. Springer Series in Statistics.
Springer-Verlag, second edition, 2009.

[5] A. Zharmagambetov and M. Á. Carreira-Perpiñán. Smaller, more accurate regression
forests using tree alternating optimization. In H. Daumé III and A. Singh, editors, Proc. of
the 37th Int. Conf. Machine Learning (ICML 2020), pages 11398–11408, Online, July 13–18
2020.

	References

