
Fast, Accurate Spectral Clustering

Using Locally Linear Landmarks

Max Vladymyrov

Google, Inc.

Email: mxv@google.com

Miguel Á. Carreira-Perpiñán

EECS, UC Merced

Email: mcarreira-perpinan@ucmerced.edu

Abstract—For problems of image or video segmentation, where
clusters have a complex structure, a leading method is spectral
clustering. It works by encoding the similarity between pairs of
points into an affinity matrix and applying k-means in its low-
order eigenspace, where the clustering structure is enhanced.
When the number of points is large, an approximation is
necessary to limit the runtime even if the affinity matrix is sparse.
This is commonly done with the Nyström formula, where one
solves an eigenproblem using affinities between a subset of the
data points (landmarks) and then estimates the eigenvectors over
the entire data by interpolation. In practice, this can still require
many landmarks to achieve reasonably accurate solutions, and
applies only for explicitly defined affinity kernels. In this paper
we propose two ideas: the Locally Linear Landmarks technique,
where one solves a reduced spectral problem over landmarks
that involves the entire, original affinity matrix; and a fast,
good initialization for k-means. We show both approximation
error and runtime are considerably reduced, even though fewer
landmarks are used. We apply it to spectral clustering and to
several variants of it that involve complex affinities: constrained
clustering, affinity aggregation, neighborhood graphs based on
tree ensembles, and video segmentation.

Spectral clustering (SC; [28], [36]) is a popular method that

has been used for many problems in machine learning and

computer vision, such as image or motion segmentation [28],

[12], [25]. It uses graph structure that can discover complex

clusters in data better than model-based algorithms such as

Gaussian mixture. The use of pairwise affinities allows for

construction of different similarity measures, ranging from

simple Gaussian affinities based on the pixel location and

color and/or texture, to using edge and contour information

or approaches involving information at multiple scales and

semisupervised learning [28], [18], [22], [16]. The clustering

structure in the original space is amplified in the projections

of the data on the eigenspace of the graph, so that a simple

clustering algorithm (e.g. k-means) can help locating the

clusters efficiently.

One disadvantage of SC is its computational cost. With large

number of points N , computing and storing a full N × N
affinity matrix is impractical. Using a sparse matrix reduces

the complexity, but the runtime can still be high for large

N , because of the need to solve a sparse large eigenproblem.

In addition, for high-dimensional input data, achieving good

clustering solutions requires the use of a neighborhood graph

because of the concentration of measure. In this case, one

seeks an approximate solution. The most common way to

Part of this work was done while M.V. was a PhD student at UC Merced.

do this is based on subsampling. Here, one selects a small

subset of points (landmarks) from the input, solves the eigen-

problem for them, and approximates the full eigenproblem

with an out-of-sample mapping, most commonly the Nyström

formula [37], [3]. By using sufficiently many landmarks, the

approximation error can be reduced to an acceptable level

while keeping the runtime lower than that of the full problem.

One problem with the subsampling approach is that the

solution for the landmarks is obtained using only the affinities

between the landmarks themselves, while the rest of the points

are used only in the out-of-sample formula. Hence, for few

landmarks the eigenproblem solution will have a large error,

and so will the extension to all the points. One can use more

landmarks, but at the cost of larger runtime. This is also

problematic if a user wants to use a small bandwidth in the

affinity kernel, because in order for two landmarks to interact

they have to be within reach of each other. Additionally, the

Nyström method requires a continuous kernel function that

generates the affinity matrix, which is not always available.

Many of the popular variants of SC, such as proximity

graphs [7], constrained spectral clustering (CSC; [20]) and

affinity aggregation for spectral clustering (AASC; [15]) are

using custom affinity matrices that are not generated from a

continuous kernel.

A different way to avoid this problem while still using a

small number of landmarks is to use the connection between

pairs of points, not just between the landmarks. This was

proposed by Vladymyrov and Carreira-Perpiñán [35] in the

context of manifold learning. Their locally linear landmarks

(LLL) method solves a reduced spectral problem for land-

marks, where the “reduced affinities” involve the entire orig-

inal affinity matrix, rather than just the affinities between the

landmarks. This is useful for problems with big and sparse

affinity matrices, for which subsampling methods would need

a lot of landmarks to get the structure right.

In this paper we analyze the application of LLL algorithm

for different variations of spectral clustering. We show that

the algorithm is particularly beneficial for problems of image

and motion segmentation, with speed and accuracy benefits

that sometime larger than LLL has for manifold learning,

which is the original application of the algorithm. We also

show that LLL can be used for effective approximation of

custom non-Gaussian affinity matrices. Such affinities arise in

order to improve the quality of the Gaussian affinities [7], add

additional must- and cannot-link constraints [20] or aggregate

different features into one unified affinity [15]. For each of

those affinities we derive a custom fast and accurate algorithm

that benefits from the structure of the approximation used by

LLL. For these custom-based affinities, it is difficult to apply

Nyström and other approximations. Based on our knowledge,

we are the first one to propose to scale up affinity aggregation

and constrained SC algorithms.

We analyze the assumptions of LLL for the context of SC.

Different from Vladymyrov and Carreira-Perpiñán [35] who

concentrated on the manifold learning, the structure of the data

in clustering is very different. While in manifold learning it is

ok for the clustering information to be smoothed out in order

to reveal the manifold structure, in clustering it is important

to emphasize the discontinues between points from different

clusters. In section IV and the experiments we validate the

assumptions imposed in LLL for SC.

Finally, we also provide a simple but very effective way

to accelerate the k-means step by using a good initialization

based on the landmarks’ solution. Our approach is robust,

parameter-free and fast, essentially reducing the cost of the

algorithm to a single k-means iteration over the full dataset.

In the experiments we show that our approach gives faster

yet accurate solution with respect to the both exact SC and its

variations and compares favorably to the Nyström extension.

It is able to efficiently solve a motion segmentation problem

using spatio-temporal affinities with N = 787 200 variables.

It took the algorithm under 10 minutes to get meaningful

solution, while for Nyström we were not able to get good

results at all.

I. THE SPECTRAL CLUSTERING PROBLEM

There exist several formulations of SC, depending on what

kind of affinities are used, type of normalization applied to the

graph Laplacian, etc [36]. Here we use the most common one,

which approximates the normalized cut criterion [28]. Given

a (sparse) affinity matrix W ∈ R
N×N defined on data points

Y = (y1, . . . ,yn) of D ×N :

1) Find K dimensional spectral embedding:

minX tr
(
XLXT

)
, s.t. XDXT = I, XD1 = 0, (1)

where L = D −W is a graph Laplacian defined for a

degree matrix D = diag (
∑N

m=1 wnm) and X ∈ R
K×N

is a data projection.

2) Obtain the final clustering by running k-means on the

normalized projections X̂ij = Xij/(
∑

j X
2
ij)

1/2.

The solution to the spectral embedding problem (1) is

given by X = UT
KD− 1

2 , where UK = (u1, . . . ,uK) are

2, . . . ,K + 1 trailing eigenvectors of the N × N matrix

C = D− 1
2LD− 1

2 . This eigendecomposition is a bottleneck

and scales as O(N3). In case of sparse affinities and small

number of clusters K, one can possibly use iterative methods,

such as power method or Krylov subspace methods [13],

however the complexity still can be expensive.

Our goal is to approximate the solution of this spectral

problem, and thus to achieve a fast approximation to final

clustering result. As we will show, we can also speed up step

2 with no error.

II. RELATED WORK

The most widespread approach to approximate the solution

of a spectral problem, in particular spectral clustering, is to

solve the problem for a subset of points (landmarks) and

then to estimate the solution for the remaining points. For

example, the Nyström formula [37], [3] has been widely

applied to approximate the solution of SC [4], [12]. The

formula nonlinearly interpolates the landmarks using the ker-

nel that was used to construct the affinities. The projection

x of a new point y can be found using the interpolation

xk = 1
λk

∑L
n=1 XnkK(y,Yi), where an out-of-sample ker-

nel K is defined as K(a,b) = K̃(a,b)/
√
DaDb, with

K̃(a,b) as a data-dependent kernel (e.g. Gaussian) and

Da =
∑L

n=1 K̃(a,yn), Db =
∑L

n=1 K̃(yn,b).
Nyström formula gives fast results, with

cost being proportional to O(KL2) to com-

pute the embedding of landmarks and

O(NLK) to compute the projection of N out-of-sample

points. However, the quality of the method is not the best,

since landmarks’ projection only uses a small subsample of

the affinity matrix, basically ignoring the rest of the available

information. In addition, the algorithm relies on the existence

of the data-dependent kernel K(a,b) which is not always

available.

K-means-based approximate spectral clustering (KASP;

[38]) replaces the original data with a subsample, while

maintaining the mapping between the original data and the

subsample points. Then, the SC is run on the subsample and

the final clustering assignment to the original points comes

from the cluster assignment of the corresponding subsample

point. For the subsampling algorithm Yan et al [38] chose k-

means and Random Projection trees. Similar to Nyström, the

subsample matrix does not use the structure of the original

data.

Laplacian eigenmaps latent variable model (LELVM; [6])

approximates SC based on the idea of adding new point to

the subset embedding and solving the spectral problem for that

new point. The final formula takes the form of a Nadaraya-

Watson estimator jointly constructed on the feature vectors and

embedding projections.

Landmark Spectral Clustering (LSC; [8]) uses the Anchor-

Graphs [19], where a smaller affinity matrix is built between

landmarks and points that approximate a full N ×N affinity.

This approach, however, does not solve the problem (1), in the

sense that it does not approximate a given spectral problem

and thus the clustering defined by it.

Multi-grid spectral clustering methods [9], [17] approximate

the eigendecomposition specifically for the problem of image

segmentation. The eigenspectrum of the Laplacian is defined

using a random chain matrix expressed as Markov chain

propagation model with a certain probability distribution,

which can be fine scaled using a kernel matrix. Multi-scale

approximation [10] was also proposed in the context of image

segmentation and is restricted to data defined on an image

grid. It approximates a dense affinity matrix as a weighted

sum of affinities connected at different scales, which allows

faster computation. Maire and Yu [21] combine both multi-

scale and multi-grid techniques together. These algorithms

are specialized for data having a form of an image grid

and may not apply to unstructured, high-dimensional data.

In comparison to the proposed LLL-based algorithm, they

do not benefit from savings when having to solve multiple

SC problems on the same dataset but with different affinities

(as in affinity aggregation or model selection over the affinity

parameters). In addition, these methods are far more complex

to implement than Nyström or LLL, and require several user

parameters that are nontrivial to set (e.g. scale splits and their

weights in multi-split SC or initial kernel size, coarse schedule

for multi-grid methods).

III. ACCELERATING THE SPECTRAL CLUSTERING USING

LOCALLY LINEAR LANDMARKS

LLL approximates (1) by constructing matrices Ã and B̃

defined for a set of landmarks, but using the structure of

the whole data. For L ≪ N landmarks Ỹ = (ỹ1, . . . ỹL)
from Y, LLL approximates each point as a linear combination

of KZ nearest landmarks Y ≈ ỸZ, where a reconstruction

matrix Z ∈ R
L×N is a column matrix of the nearest KZ

landmarks of each point (KZ nonzero entries per column).

Thus, this approximation preserves the locality of the data

and the matrix Z corresponds to the proximity of the data

points to the nearby landmarks. We can solve for Z using

minZ ‖Y − ỸZ‖2, s.t. 1TZ = 1T , where the constraint

comes from the translational invariance of Z. The solution to

this optimization problem is found for each point separately by

first solving the linear system
∑L

k=1(yn− ỹi)(yn− ỹj)znk =
1 and then rescaling the weights so they sum to one.

Further, LLL assumes that this local reconstruction matrix

Z also approximates the points in the projection space:

X ≈ X̃Z. (2)

Now, the spectral embedding problem (1) takes a form

min
X̃
tr (X̃ÃX̃T) s.t. X̃B̃X̃T = I, (3)

with L× L reduced affinity matrices

Ã = ZLZT , B̃ = ZDZT . (4)

This problem has the same form as the original problem

(1), but defined on a smaller-size reduced affinities Ã and

B̃. LLL basically solves a smaller embedding problem for

the landmarks using smaller reduced affinities that incorporate

the structure of the original affinity. After the landmarks

are projected, the rest of the points can be found using

reconstruction (2). Notice, that Ã and B̃ do not have the same

form as the original matrices L and D. For example, A may

or may not have a form of graph Laplacian, B may not be

diagonal – those matrices just approximate L and D.

The cost of LLL is based on four parts: computing Z

is O(NDK2
Z); Ã and B̃ are O(cKZN), where c depends

on the sparsity of W; K eigenvectors takes O(KL2); and

5 10 15 20

10
5

10
6

Random
LLL
kmeans++

E
rr

o
r

Runtime
10 20 30 40

0.8

1

1.2

1.4
x 10

5

LLL
kmeans++

E
rr

o
r

Rand. subset

Number of Iterations

Fig. 1. Left: 20 runs of k-means initialized at random (red), with LLL (green)
and with k-means++ (blue). Right: k-means initialized with LLL landmarks
and 50 other subsets of L points.

the final projection (2) is O(LdN). The total cost is

O
(
(KZc+ Ld+DK2

Z)N +KL2)
)

which is linear in N .

As one can see from the form of the approximation (3)

LLL requires feature vectors, but the majority of (spectral)

clustering applications do use features.

a) Accelerating the k-means clustering step: LLL ap-

proximation gives us the K-dimensional projections X of

the original data Y (using (2)). Next step is to run k-means

on X to obtain the final K clusters. This problem is non-

convex and, to avoid local optima, a common strategy is to

use multiple restarts with different initializations and pick the

result with the lowest error. We can speed up the k-means

step by capitalizing on the fact that the landmarks themselves

provide a reasonable clustering, and there are fewer landmarks

than points. Instead of running k-means for the whole dataset

m times, we run it just on the landmarks, pick the best solution

and feed its centroids as an initialization to k-means on the

entire data. Thus, k-means is run just once on the full problem,

but with an initialization that is much better than random. The

cost is O(mLK2 + NK2) and when L ≪ N the speed-up

over the O(mNK2) of the naive k-means step is proportional

to m. Also, we can afford to run many restarts to increase the

chance of finding a good local optimum.

The idea of seeding for initialization of k-means is not

new [11], [30]. However, our approximation makes sense in

the context of LLL, since instead of the random sample of

points, our sample comes from the landmark location. Those

landmarks are acting as the reference points to the rest of

the data for the local linear reconstruction (2). Therefore, the

landmarks have more chance to be inside the cluster than on

its boundary.

Fig. 1 on the left shows the decrease of k-means objective

function for the clustering N = 787 200 points to 6 classes

using LLL (see motion segmentation example below). Red

curves correspond to randomly initialized restarts of full k-

means and a green curve is a single full k-mean initialized

from the best of m = 20 different restarts of k-means on

LLL landmarks. We also compare to the kmeans++ [2], which

picks centroids greedily one at a time so they are widely

separated. Overall it took 0.5 seconds to run k-means using

LLL landmarks and 5.3 seconds for a single run of a full k-

means. In comparison, 20 restarts of full k-means took 91.3
seconds. On the inset we can see that only one out of 20 runs

Input Y Approx. eigenvectors
B

ad
as

si
g
n
.

G
o
o
d

as
si

g
n
.

Fig. 2. Left column: dataset Y with 5 landmarks selected far from the cluster
boundary (top row) and closer (bottom row). Right column: final eigenvectors
form LLL. The color of the points are the same if they share two nearest
landmark assignment.

of k-means converged to that solution. This means that using

smaller number of restarts m we could end up only with more

expensive, but also worse solution that using LLL landmarks.

In the right plot of fig. 1 we show k-means error using LLL

landmarks versus k-means using 50 different subsets of L
random points from Y. While LLL landmarks do not give

the best result among random subsets (see the inset), the error

is lower then most of the random subsets.

IV. IS LOCAL LINEARITY A GOOD ASSUMPTION FOR

CLUSTERING?

Comparing to the original motivation of Vladymyrov and

Carreira-Perpiñán [35] that propose LLL to be used for man-

ifold learning, the desired properties of SC in the projection

space are different. For clustering, we do not need to preserve

the manifold structure, but rather separate the points into

clusters. Let us consider the following ideal clustering situation

with SC. The eigenvectors are piecewise constant with same

values for points in each cluster. A clustering solution is also a

piecewise constant function. The approximate solution (from

LLL) for the landmarks’ eigenvectors is piecewise constant

as well, corresponding to the same clusters. The LLL out-

of-sample formula (2) is a linear combination of the nearest

landmarks’ eigenvector value. Then we have two cases: (1) if

the nearest landmarks to the test point are in the same cluster,

their eigenvectors values (“cluster labels”) are equal and (2)

will predict that same eigenvector value, which is correct. This

will happen with the test points in the “interior” of each cluster,

i.e. “nearly everywhere” if the cluster boundaries are narrow.

(2) if the nearest landmarks to the test point are not all in the

same cluster, their eigenvector values (“cluster labels”) are not

all equal and the formula will predict an “average” of those

values, giving more weight to the landmarks that are closer to

the test point. The resulting predicted eigenvector value will

be smoothed out, since it averages different labels. This will

happen with test points in the “boundary” between different

clusters. How narrow are the cluster boundaries depends on the

number of landmarks. The more landmarks, the narrower the

boundaries, since this is the region where points have nearest

neighboring landmarks from different clusters.

In fig. 2 we show the example of two cases above. The

dataset on the left consists of points along a line separated into

two clusters. Exact SC solves this problem given sufficiently

narrow bandwidth of the kernel, such that the points on the side

of one cluster won’t be affected by the points on the side of the

other. For LLL, there is one more constraint. If the test point

is reconstructed by landmarks from different clusters (such as

dark red points in the top plots) the target eigenvector will be

smoothed out. Good assignment (as the one on the bottom),

gives much better approximation.

We expect the a piecewise linear model of LLL to match

perfectly the piecewise constant clustering model except at

discontinuities (cluster boundaries). These points are difficult

for SC in the first place, i.e. their exact eigenvector value will

be less “pure” than at points in the interior of a cluster. LLL

might have troubles with small clusters, because they will get

fewer landmarks. However, SC tends not to produce small

clusters, since it approximates the Normalized Cut objective

function [28], which discourages this.

V. USING MORE COMPLEX AFFINITIES

One of the important benefits of LLL is that it can use any

affinity matrix and with any explicit or implicit kernel that

generates it. Comparing to that, Nyström method requires well

defined data-independent kernel function that generates the

affinities [4], and, to our knowledge, was applied only to the

Gaussian kernel [32], [12]. Landmark Spectral Clustering [8]

is also not applicable because their approximation constructs

their own affinity matrix. Finally, the vector quantization

techniques (such as the algorithm of Yan et al [38]) also cannot

be easily applied for this problem, since the affinities are built

between the subset of points, while in this section we consider

specifically the affinities that involve the whole dataset.

Apart from expensive eigendecomposition that can be al-

leviated with LLL, the custom affinities involve large over-

head in their computation, which can become a bottleneck

by itself. For each of those cases we investigate how the

structure of LLL can help the computation of the affinities

and propose custom algorithm that can reduce the cost of both

the computation of the affinities and the eigendecomposition.

Our analysis comes naturally given the structure of LLL and

does not involve additional approximations. Based on our

knowledge, the algorithms below have been never applied on

large matrices before. Slightly abusing the notation, in this

section we are going to call W the modified affinities of

currently described algorithm.

A. Constrained Spectral Clustering

In constrained spectral clustering (CSC) user additionally

provides must and cannot link constraints between some of the

data points. Lu and Carreira-Perpiñán [20] propose the algo-

rithm for including this information inside the affinity matrix.

Original affinity information is assumed to be interpreted as

a covariance matrix of a zero-mean Gaussian process, which

acts as a prior on the labels. The pairwise constraints serve as

noisy observations. The modified affinities are then computed

using the Bayes’ rule as the posterior probability of the labels

given the pairwise constraints. The final expression for the

modified affinities:

W = (W−1 +M)−1 = W −W(I+MW)−1MW, (5)

0 10 20
0

20

40

60

Sliding window size

S
p
ar

si
ty

L
ev

el
,

%

0 50 100
0

20

40

60

W
W

Number of constraints

Fig. 3. Sparsity of the original W and constrained W affinity matrices for
64×64 cameraman image. Left: as a sliding window increases with 10 random
constraints (must and cannot), right: as a number of constraint increase with
the sliding window radius equals to 5. Experiments were repeated 5 times
with different random sets of constraints.

where M contains the constraint information:

Mij =

mi

ǫ2
m

+ ci
ǫ2
c

if i = j

− 1
ǫ2
m

(i, j) ∈ M
1
ǫ2
c

(i, j) ∈ C
0 otherwise

.

Here mi and ci are the number of must- and cannot-links

respectively for point i, ǫm and ǫc are the importance of the

constraints with respect to the affinity (with ǫ → 0 implying

harder constraints).

The modified affinity W is able to capture constrains well

with two drawbacks: (1) computing the inverse in (5) scales

as O(N3) and (2) W is much denser than W.

The first problem can be solved efficiently by reorganiz-

ing the points, such that the constrained ones appear first:

M =
(
M1:2R 0

0 0

)
, where R is the number of constraints

and M1:2R has a size of at most 2R × 2R. Then, I +

MW =
(

M1:2RW1:2R+I1:2R M1:2RW2R+1:N

0 I2R+1:N

)
, where we split

W = (W1:2RW2R+1:N)
T

. Now, for the inverse: (A B
0 I)

−1
=(

A−1 A−1B
0 I

)
. Thus, the only matrix to be inverted is a small

2R× 2R matrix A = M1:2RW1:2R + I1:2R, which is always

invertible due to the added identity.

The second problem makes things complicated. Adding

many constraints to the original affinity can make it much

denser than the original one, as a result of which not only the

subsequent eigendecomposition is much more complicated to

do, but even storing the matrix can be problematic. In fig. 3

we show how the sparsity level of W changes with respect

to two different variables: the sparsity of W and the number

of constrains R. For both cases the constrained affinity matrix

becomes dense very fast.

With LLL we can a huge benefit of computing the con-

strained affinity W without ever evaluating the original affinity

W, thus removing both of the problems above. Using (5) we

can expand the reduces affinities (4) as

ZLZT = ZDZT − ZWZT = Z diag (W1)ZT

− Z diag (WQW1))ZT − ZWZT + ZWQWZT ,

where Q = (I+MW)−1M is N ×N matrix, but only with

N × L nonzero rows (due to the sparsity of M). Therefore,

instead of computing L and then computing the reduced

affinity, we can precompute ZW in O(cNL), where c is the

constant that depends on the sparsity of W, and solve for

diagonal matrix in the second term by multiplying the elements

from right to left. Overall, the complexity of computing the

affinity is O(cNL) and it avoids direct computation and

storage of dense matrix W.

B. Affinity Aggregation for Spectral Clustering

In many situations using just a single affinity matrix built

on top of Euclidean distance features does not give sat-

isfactory performance. A practitioner has to try many dif-

ferent features with many different parameters in order to

get good performance. Huang et al [15] propose an affinity

aggregation spectral clustering (AASC) that combines multiple

affinities in a single SC framework. For K affinity matri-

ces W(1), . . . ,W(K) and the weighting coefficients v =
(v1, . . . , vk) the AASC minimizes the following:

minX,v XLXT , s.t. XDXT = I,vT1 = 1, (6)

where L = D − W and W is an aggregated affinity matrix

W =
∑K

k=1 v
2
kW

(k). To solve (6) the algorithm alternates

between minimizing over v and X. With respect to v, the

problem is a 1D root-finding problem that can be solved

with a few Newton iterations. With v fixed, the objective

function is a standard SC objective with affinity W. The

algorithm works well in combining affinity matrices resulting

from different features, however it is too expensive for large

problems, requiring an eigendecomposition of N ×N matrix

for every iteration. In addition, the aggregate affinity matrix is

denser than the input affinities.

Similarly to the case above, we can use the structure of LLL

to solve the problems with dense affinity. The reduced affinity

(4) takes the form:

L̃ = ZLZT = ZDZT − ZWZT

= Z (
∑K

k=1 v
2
kW

(k)1)ZT − Z (
∑K

k=1 v
2
kW

(k))ZT

=
∑K

k=1 v
2
kZD

(k)ZT −
∑K

k=1 v
2
kZW

(k)ZT .

We can benefit from precomputing Z and reduced affinity

matrices ZW(k)ZT just once in the beginning. Then, each

iteration would just involve recomputing a weighted sum and

eigendecomposition of small L× L matrix.

VI. EXPERIMENTS

Here we are going to provide an extensive experimental

analysis on benefits of LLL for spectral clustering problem.

We are going to evaluate the algorithm for a classical settings

of image segmentation with Gaussian affinity matrix. Then

we will show how LLL can be useful for the problem of

model selection of hyper-parameters. After that we are going

to describe three different experiments with custom non-

Gaussian affinity matrices. In the end, we are going to show the

scalability of our approximation by applying it to the motion

segmentation problem with N = 787 200 data points.

All the algorithms in this paper use an affinity matrix as

an input. Since we cannot explicitly compute the full affinity

matrix, we can approximate it with a sparse N × N matrix

exact LLL Nystrom LSC LELVM KASP

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ro

j.
er

ro
r

of landmarks
10

−1
10

0
10

1
10

2

Runtime, s
10

1
10

2
10

3
10

4
10

−3

10
−2

10
−1

10
0

C
lu

st
.

er
ro

r

of landmarks
10

−1
10

0
10

1
10

2

Runtime, s
10

1
10

2
10

3
10

4

10
−1

10
0

10
1

10
2

R
u
n
ti

m
e,

s

of landmarks
Fig. 4. Image segmentation of 256× 256 cameraman. Projection and clustering errors with respect to the number of landmarks and the runtime. Dashed
vertical black line represents the results of exact spectral clustering.

Clustering 1st eigenvector 2nd eigenvector 3rd eigenvector 4th eigenvector 5th eigenvector

E
x
ac

t
e
=

0%

t
=

6
6
.6

N
=

6
5
5
3
6

L
L

L
e
≈

10
%

t
=

0
.9

L
=

1
4

e
≈

1%

t
=

1
.8
2

L
=

2
4
7
5

N
y
st

rö
m

e
≈

10
%

t
=

0
.6
7

L
=

1
5
5
0

e
≈

1%

t
=

5
6
.8

L
=

4
1
0
3
4

Fig. 5. Clustering results and leading eigenvectors for exact spectral clustering, LLL and Nyström. For each row, left columns give the clustering error e, the
runtime t and the number of landmarks L needed to produce the results.

computed e.g. with a neighborhood graph. Constructing such

a graph requires finding nearest neighbors for every point,

which is costly. However, for some cases this matrix can be

approximated using a domain knowledge. For example, for

image segmentation the features can represent color, intensity

or texture information, but also a spatial ordering (such as

the coordinates of the pixels). Thus, we can compute the

approximate nearest neighbors for each point using a sliding

window approach, where for each pixel we define its neighbors

as points that fall in a square window with a side r centered

at a given datapoint. We can get additional savings by using

similar approach to find nearest landmarks for LLL. Because

the number of closest landmarks KZ is quite low in practice

(we used KZ = K + 1, as in Vladymyrov and Carreira-

Class. error (exact), % Class. error (LLL), % Runtime (exact), s. Runtime (LLL), s.

1 10 100 1000 10000

1

10

100

1000

10000 20

40

60

80

σ

kW

1 10 100 1000 10000
20

40

60

80

kW

1 10 100 1000 10000

20

40

60

80

100

kW

1 10 100 1000 10000

2

4

6

8

10

kW
Fig. 6. Model selection of the Gaussian affinities using exact spectral clustering and LLL approximation with different values of bandwidth σ and number
of nearest neighbors kW . First two plots show the classification error and last two show the runtime. Notice that the error pattern in very similar for exact
and LLL, but the runtime is an order of magnitude smaller.

Perpiñán [35]), chances are that the closest landmarks can

be found within the sliding window neighborhood of a given

point. For few points for which this is not the case, we retrieve

to computing the distance to all landmarks and truncate it to

achieve the KZ closest ones.

The solution of the spectral embedding (both exact and

approximate) results in K-dimensional projections matrix X

(on which k-means is run after the normalization). We char-

acterize the error incurred by our algorithm in three different

ways. (1) Projection error between the unnormalized exact

and LLL eigenvectors, defined as ‖proc(X̃)−X‖F / ‖X‖F ,

where we apply Procrustes alignment to remove the influence

of translations, rotations and scaling of the eigenvectors. (2)

Clustering error between final clusters of exact and LLL SC.

To align the clusters we used the Hungarian algorithm [5] and

report the fraction of misclassified points. (3) Classification

error (when ground truth is available). We report all errors as

% (0% – exact match, 100% – total mismatch). To compute the

eigendecomposition we used the MATLAB routine eigs().

All the experiments were performed on a single core machine.

A. Classical Spectral Clustering

We show the runtime, the proj. and clust. errors as number

of landmarks grow. We compared LLL with Nyström method,

Landmark Spectral Clustering (LSC; [8]), LELVM [6] and

KASP [38]. We applied the approximations to 256 × 256
cameraman grayscale image (N = 65 536, D = 3) 5
times with different number of randomly chosen landmarks

logarithmically spaced from L = 8 to L = N − 10. We used

sparse Gaussian affinities constructed using a sliding window

over the pixels with a side r = 40 (1 681 nearest neighbors for

each point) with σ = 20. In fig. 4 we show the results. Nyström

method gives poor performance for a L < 200 because the

affinity matrix has isolated points that are not connected to

any of the landmarks. As L grows, the error improves, but

slowly. LLL gives good performance for any L, with both

proj. and clust. error decreasing steadily and consistently with

the increase of L.

There are other ways to compute the error (angle between the subspaces
defined by the eigenvectors, NMI [31] etc.) We observed that the error that
they give is very similar to the one we use.

In fig. 5 we show the final clustering and the largest normal-

ized eigenvectors of the exact clustering and LLL and Nyström

approximations that achieve 10% and 1% clustering error.

With respect to the exact algorithm, clustering performance

of LLL is visually identical for both clustering results and

eigenvectors, but with LLL being 30× faster.

B. Model Selection

As a preprocessing step, the spectral clustering algorithm

needs to compute the affinity matrix. It should be a good

representation of the underlying data, which requires careful

parameter selection. For example, for the Gaussian affinities,

it is crucial to find a good value of the bandwidth σ as

well as the number of neighbors kW that one wishes to

preserve. There is no universal rule that allows a user to pick

the best values for those parameters. Ng et al [24] simply

suggest choosing them by trying several values until satisfiable

result is achieved. Apart from that, couple of heuristic has

been proposed that can improve the results. Zelnik-Manor and

Perona [39] claim that the results can be improved by setting

bandwidth individually per each point of the dataset and

computing the Gaussian affinity between points yn and ym as

wnm = exp(−‖yn−ym‖2

σnσm
). The paper suggests to use distance

to k nearest neighbor to set individual σn, for n = 1, . . . , N .

Entropic affinities [14], [34] compute individual bandwidth for

each point, such that the perplexity, or the effective number

of neighbors, is equal to K.

While each of the methods above can result in a good

affinity matrix, they all depend on some parameter(s) that need

to be tuned (nearest neighbor, perplexity etc.). This can lead to

multiple restarts of the whole algorithms, which is expensive.

To reduce this cost, we can use LLL for spectral clustering

to perform the model selection. Because LLL uses complete

affinity matrix, its parameters are also shared between exact

method and LLL. Notice that it is not the case for the

subset methods (e.g. Nyström), that use smaller affinity matrix

which may require different parameter settings for the best

performance. The algorithm that we propose is as follows:

instead of running full exact spectral clustering several times

for different parameter values, we can first try them out

with LLL approximation. Then, the best parameters for LLL

will roughly correspond to the best parameters for the exact

spectral clustering.

In fig. 6 we show the search for the parameters of the

simple Gaussian affinities for 10 000 digits from MNIST. We

run exact spectral clustering and LLL approximation with

1000 landmarks using 20 different values for σ and kW
chosen on a logarithmic scale from 1 to 10 000. Left two

plots correspond to the classification error for the exact and

LLL spectral clustering respectively. Notice that the error has

similar pattern for both exact and approximate clustering.

Also, for kW = 1 exact clustering fails, because the affinity

matrix decouples into many disconnected components. LLL

reduced affinity matrix brings those components together again

and gives meaningful error. Right two plots show the runtime

of exact spectral clustering and LLL respectively with LLL

being more than 10× faster than the exact one (notice different

ranges of the color bar).

C. Constrained Spectral Clustering

We applied CSC to a problem of figure/ground segmentation

of an image from BSDS500 dataset [1]. To show the scala-

bility, we tested the algorithm using the same image with 3
different sizes: 64×94 small, 160×240 medium and 321×481
large. We used the following bandwidths: σ = 8 for small,

σ = 20 for medium and σ = 40 for large image. In all

the cases, the sliding window size is equal to σ. We used

L = 730 landmarks for small image, L = 2100 for medium

and L = 3890 for large.

We first run the original SC that was able to separate

the flower from the background (see fig. 7 for the LLL

approximation of the large size image. Then, for the CSC we

introduced constraints that separate the petals from the center

of the flower (see green and red lines in fig. 7). Below we

show the runtimes for both exact and LLL approximations:

SC CSC

Image Size Exact LLL Exact LLL

Small 4.47 0.87 5.14 0.51
Medium 44 4.66 104.49 6.51

Large 512.01 48.19 – 59.98

LLL gives 10× speed up with almost no compromise on the

quality (both proj. and reconst. errors are less then 1% for SC

and CSC). For large image exact method run out of memory

during the computation of W. In comparison, LLL was able

to handle large-scale input with no problem.

D. Affinity Aggregation for Spectral Clustering

We tested the algorithm on a subset of CMU-PIE [29],

where each point is a 64×64 cropped image of the face in the

near frontal position (poses C05, C07, C09, C27, C29). We

had 11 368 points each with 4 096 dimensions that correspond

to 67 people. Following Huang et al [15], we used three types

of features: Local binary pattern (LBP; [26]) with uniform

LBP using 8 neighbors and radius of 1; Gabor texture [23]

with 40 filters generated for 5 scales and 8 orientations; and

eigenface [33] using top 90% eigenvectors.

All the affinities were computed with Gaussian kernel with

1 000 nearest neighbors. To chose the best bandwidth σ we

used LLL for the model selection (similar to the way we

describe above). We run LLL with L = 1000 landmarks for

20 different values spaced logarithmically between 10 and 107.

The best values were: 2.33 · 106 for LBP, 10 for Gabor filter

and 42 for the eigenfaces. Notice the scatter of final values.

Without LLL, it would be hard to predict those values by

random guessing.

In the table I we show the classification error and the run-

time of the exact eigendecomposition and LLL approximation

using 5 different tries of 1 000 randomly chosen landmarks.

Using the affinity matrices individually, LLL performs almost

as well as exact method, but 10× faster. For AASC the

resulting error of LLL is also about the same as the exact

method, but 40× faster. In fig. 9 we show the classification

error decrease per iterations. LLL follows the exact method

closely with a very similar error.

E. Proximity Graph

Carreira-Perpiñán and Zemel [7] define affinity as an ensem-

ble of multiple affinities constructed using minimum spanning

tree on a neighborhood graph perturbed with noise. Con-

structed this way, the affinities tend to be more robust to

shortcuts between distant parts of the manifold. In fig. 10 we

show the results of the image segmentation for the 512× 512
grayscale image of the house using LLL for spectral clustering

with 3 000 landmarks and KZ = 5. We used a graph ensem-

ble of 10 affinities constructed with MST with every point

perturbed using uniform random jitter with standard deviation

0.4d̄, where d̄ is a mean distance to the available neighbors

of that point. For comparison, we also show the results

of traditional Gaussian affinities (with bandwidth σ = 5).

Both affinities use a neighborhood graph defined with sliding

window with r = 10. Graph ensemble gives better results than

Gaussian affinities. In particular, sky, windows and shadow of

the house is better clustered using the former affinities.

F. Motion Segmentation

We also applied SC for motion segmentation in video.

We used a dataset of 41 video frames of a person walking

around a room. Each frame is represented as 120× 160 RGB

image. Following [27], we used both spatial and temporal

features, with each datapoint given by six coordinates: two

for the location on the image plane, one for the number of

the frame and three for the color intensity. Overall this gives

N = 787 200 points in D = 6 dimensions. The neighborhood

graph can be easily defined by connecting points along both

spatial and temporal domain. For spatial, we used a sliding

window with a side r = 30. For temporal, we connected each

pixel with the same pixel and its adjacent pixels of the previous

and the next frames. It gives a neighborhood graph with 963
neighbors for each point. Then we build a Gaussian affinities

with bandwidth σ = 15 for each pair of neighbors. Overall, it

took 6.8 minutes to build this affinity matrix.

http://cmp.felk.cvut.cz/multicam/Demos/Students/BorrasJoan/

Original image SC with LLL CSC with LLL

Fig. 7. Figure/ground segmentation of a flower image using SC and CSC (see eq. (5))

0 5 10 15

40

50

60

70

80

Number of iterations

C
la

ss
ifi

ca
ti

o
n

er
ro

r,
%

Exact

LLL

Fig. 9. Classification error for AASC obj. function.

TABLE I
CLUSTERING OF THE 11 368 FACES FROM CMU-PIE DATASET USING SEPARATE

FEATURES AND COMBINED FEATURES WITH EXACT SC AND LLL APPROXIMATION.
LLL IS AVERAGED OVER 10 RUNS WITH RANDOM SET OF 1 000 LANDMARKS.

Single affinities Combined
Features LBP Gabor filter Eigenface AASC

Class. error, %
Exact 43 48 56 39
LLL 44± 1 49± 2 56± 1 39± 3

Runtime, s
Exact 78 85 105 1 063

LLL 8.15± 0.5 8.76± 0.7 8.23± 0.8 28.2± 2.1

Proj. error, % 4± 0.8 3± 1 1± 0.5 3± 2

1st frame 20th frame 41st frame

In
p
u
t

L
L

L
N

y
s.

fu
ll

N
y
s.

sp
ar

se

Fig. 8. Spatio-temporal segmentation of 41 frame video with resolution 120×

160. We shows 3 frames from the original video. Rows shows the result of
clustering with LLL and Nyström methods applied on full or sparse affinities.

It took 3 minutes for LLL to find a solution with L = 5000
randomly chosen landmarks with 1 minute spent on computing

the entries of Z and 1 minute to compute the reduce affinities

(4). Also, as we showed above (fig. 1), k-means with 20
restarts took 1.5 minutes which is comparable to the runtime

of LLL. We tried using larger number of landmarks, but the

results did not change much.

For Nyström we first tried using the same sparse affinities

as we did for LLL. However, with so few non-zeros, it is

impossible to cover the entire dataset even with thousands of

landmarks. We end up trying 10 000 landmarks before running

out of memory. Even for such graph we still got 35 singleton

points. We also applied Nyström that approximates full affini-

ties by computing the Gaussian kernel between all the point in

the subset. This requires computing eigendecomposition of full

L×L matrix and evaluating an out-of-sample kernel for N−L
non-landmark points, which are quite costly. For L = 3000
these two steps already took more time than the runtime of

the LLL and the results were still not as good as LLL.

In fig. 8 we show two frames from the input and their

segmentation for LLL and Nyström. The clusters for LLL

correspond to the meaningful objects (e.g. floor, person, wall)

and are consistent from frame to frame. Interestingly, the pants

and the shirt of the person ended up in the same cluster, albeit

having very different colors. Nyström results are much worse.

Using the full affinities, it is possible to find some useful

clusters (e.g. person’s torso), but the rest do not represent any

good features. Nyström with sparse affinities does not show

almost any meaningful segmentation.

VII. DISCUSSION

A further speedup not explored here is the use of multi-

processors. The basic operations required are: (1) the com-

putation of the sparse affinity matrix (itself possibly involv-

ing constructing a nearest-neighbor graph and computing the

affinity values); (2) the computation of the weights Z; (3) the

construction of the reduced spectral problem (involving matrix

products); (4) the computation of the landmark eigenvectors;

(5) the out-of-sample extension of the eigenvectors to the full

data; (6) the random k-means restarts on the landmarks; and

(7) the final k-means on the entire data. Most of these steps

are easily parallelizable, in particular the more expensive ones

that involve the entire, O(N), dataset.

VIII. CONCLUSION

Our contribution is to speed up the eigenproblem and k-

means steps of spectral clustering with small approximation

Original image Graph ensemble affinities Gaussian affinities

Fig. 10. Image segmentation of 512 × 512 house image (shown on the left) into four clusters using graph ensemble affinities from [7] (center plot) and
Gaussian affinities (right plot). Notice that the former segments the sky, the shadow in a separate cluster.

errors, both with kernel-based affinities and with more com-

plex affinities used by variants of spectral clustering. In the

spectral problem, LLL provides two crucial advantages. 1) It

uses all the available affinity information in constructing the

landmark eigenproblem, but preserving the fast computation

properties of subsampling methods. Because fewer landmarks

are necessary, this makes it possible to achieve both smaller

error and runtime than with the Nyström method. 2) LLL does

not rely on an explicitly defined affinity kernel, unlike the the

Nyström method, so it applies to variants such as constrained

spectral clustering. In the k-means clustering, we run many

restarts on the landmarks at little overhead. This gives a good

initialization for k-means on the entire data, which then con-

verges in very few iterations, considerably reducing the overall

runtime, and is more likely to find a good optimum.

Good results can be obtained for over 700K points in 10

minutes in a single processor. Since most of the required

operations are easily parallelizable, in particular the more ex-

pensive ones involving the entire data, this could enable the

application of spectral clustering to quite larger datasets.

REFERENCES

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and
hierarchical image segmentation. PAMI, 33(5):898–916, May 2011.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful
seeding. In SODA, p. 1027–1035, Jan. 7–9 2007.

[3] C. T. H. Baker. The Numerical Treatment of Integral Equations.
Clarendon Press, 1971.

[4] Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent, and
M. Ouimet. Learning eigenfunctions links spectral embedding and kernel
PCA. Neural Computation, 16(10):2197–2219, Oct. 2004.

[5] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Other
Titles in Applied Mathematics. SIAM Publ., 2009.

[6] M. Á. Carreira-Perpiñán and Z. Lu. The Laplacian Eigenmaps Latent
Variable Model. In AISTATS, p. 59–66, 2007.

[7] M. Á. Carreira-Perpiñán and R. S. Zemel. Proximity graphs for clustering
and manifold learning. In NIPS, p. 225–232, 2005.

[8] X. Chen and D. Cai. Large scale spectral clustering with landmark-based
representation. In AAAI, p. 313–318, 2011.

[9] C. Chennubhotla and A. Jepson. Hierarchical eigensolver for transition
matrices in spectral methods. In NIPS, p. 273–280, 2005.

[10] T. Cour, F. Bénézit, and J. Shi. Spectral segmentation with multiscale
graph decomposition. In CVPR, p. 1124–1131, 2005.

[11] V. Faber. Clustering and the continuous k-means algorithm. Los Alamos

Science, 22:138–144, 1994.
[12] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping

using the Nyström method. PAMI, 26(2):214–225, 2004.
[13] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins

University Press, Baltimore, third edition, 1996.

[14] G. Hinton and S. T. Roweis. Stochastic neighbor embedding. In NIPS,
p. 857–864, 2003.

[15] H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen. Affinity aggregation for
spectral clustering. In Proc. CVPR, p. 773–780, 2012.

[16] T. H. Kim, K. M. Lee, and S. U. Lee. Learning full pairwise affinities
for spectral segmentation. PAMI, 35(7):1690–1703, 2013.

[17] D. Kushnir, M. Galun, and A. Brandt. Efficient multilevel eigensolvers
with applications to data analysis tasks. PAMI, 32(8):1377–1391, 2010.

[18] T. Leung and J. Malik. Contour continuity in region-based image
segmentation. In ECCV, p. 544–559, 1998.

[19] W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable
semi-supervised learning. In ICML, 2010.

[20] Z. Lu and M. Á. Carreira-Perpiñán. Constrained spectral clustering
through affinity propagation. In CVPR, 2008.

[21] M. Maire and S. X. Yu. Progressive multigrid eigensolvers for multiscale
spectral segmentation. In ICCV, p. 2184–2191, 2013.

[22] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis
for image segmentation. IJCV, 43(1):7–27, 2001.

[23] B. S. Manjunath and W.-Y. Ma. Texture features for browsing and
retrieval of image data. PAMI, 18(8):837–842, 1996.

[24] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In NIPS, volume 14, p. 849–856. Cambridge, MA, 2002.

[25] P. Ochs and T. Brox. Higher order motion models and spectral clustering.
In CVPR, p. 614–621, 2012.

[26] T. Ojala, M. Pietikäinen, and T. Mäenpää. Gray scale and rotation
invariant texture classification with local binary patterns. In ECCV, p.
404–420, 2000.

[27] J. Shi and J. Malik. Motion segmentation and tracking using normalized
cuts. In ICCV, p. 1154–1160, 1998.

[28] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI,
22(8):888–905, 2000.

[29] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and
expression database. PAMI, 25(12):1615–1618, 2003.

[30] D. Steinley and M. J. Brusco. Initializing k-means batch clustering:
A critical evaluation of several techniques. Journal of Classification,
24(1):99–121, 2007.

[31] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse
framework for combining multiple partitions. JMLR, 3:583–617, 2002.

[32] A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning.
In CVPR, 2008.

[33] M. A. Turk and A. Pentland. Eigenfaces for recognition. J. Cognitive

Neurosci., 3(1):71–86, 1991.
[34] M. Vladymyrov and M. Á. Carreira-Perpiñán. Entropic affinities:

Properties and efficient numerical computation. In ICML, p. 477–485,
Atlanta, GA, 2013.

[35] M. Vladymyrov and M. Á. Carreira-Perpiñán. Locally Linear Landmarks
for large-scale manifold learning. In ECML, p. 256–271, 2013.

[36] U. von Luxburg. A tutorial on spectral clustering. Statistics and

Computing, 17(4):395–416, Dec. 2007.
[37] C. K. I. Williams and M. Seeger. Using the Nyström method to speed

up kernel machines. In NIPS, volume 13, p. 682–688, 2001.
[38] D. Yan, L. Huang, and M. I. Jordan. Fast approximate spectral clustering.

In SIGKDD, p. 907–916, 2009.
[39] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In NIPS,

p. 1601–1608, 2005.

