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Abstract

We approach the problem of multivariate regression using
latent variable models, which infer a low-dimensional repre-
sentation of an observed, high-dimensional process. Defin-
ing functional relationships between variables may be con-
veniently done by picking informative points from the corre-
sponding conditional distribution. However, this is problem-
atic when this conditional distribution is multimodal, since
there are in principle multiple candidates for the representa-
tive point, i.e., the mapping is one-to-many. We show, both
with a toy example and with real-world data—the acoustic-
to-articulatory mapping problem—that: 1) the modes of the
conditional distribution contain information to potentially
invert many-to-one as well as one-to-one mappings; 2) this
information may be successfully used if some extra informa-
tion is available, in particular continuity constraints for se-
quential data, for which we introduce a quantitative measure.
We sketch algorithms for mode-finding in Gaussian mixtures
and for performing smooth multivariate regression.

1 Introduction

Consider a system on which we can observe, or measure,
several continuous variables, which we represent in vector
form as t = (t1, . . . , tD) ∈ R

D. For example, the sys-
tem could be a human speaker and t could be some rep-
resentation of the acoustic and articulatory signals (at each
moment in time), such as PLP coefficients and articulator
positions. In many practical situations, we need to com-
pute the values of several of these variables given values of
other of the same variables. This is the problem of multi-
variate regression1. That is, we want to predict tJ = f(tI)
where I,J ∈ {1, . . . , D} are sets of indices and D is
the dimensionality of the observed space. For example, if
I = {1, 7, 3}, then tI = (t1t7t3). Therefore, we need to
find a representation for the function f . For simple cases
with a low dimensionality D and where there is a mathe-
matical model for the variables t1, . . . , tD (say, a system of
differential equations) this may be done analytically. But
often the mathematical complications rule out this possibil-
ity and approaches that learn from data become necessary.
Here, given a sample {tn}N

n=1 of the observed variables, one
estimates a (parametric) model, which can be deterministic
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1Note that we do not deal here with the problem of predicting future
values from past values, but with that of predicting in a given instant some
variables given other variables.

(i.e., some powerful function approximator, such as multi-
layer perceptrons) or probabilistic. However, there is an ad-
ditional difficulty: the mapping f may be one-to-many, in
which case, given a value of tI , the variables tJ = f(tI)
may take several values, only one of which is realised at a
given time. An example is the problem of the acoustic-to-
articulatory mapping in speech. It is well known that, while
given a time sequence of vocal tract configurations there is a
unique output acoustic signal, the converse is not true: mul-
tiple vocal tract configurations can produce a given acous-
tic signal (Schroeter and Sondhi, 1994). One could imag-
ine that there is an additional information = that uniquely
identifies the particular realisation tJ = f(tI ,=). Meth-
ods like multilayer perceptrons, oriented to estimating one-
to-one mappings—in that they provide with a single, and
same, value tJ every time they are presented with a value
tI—, will usually give a compromise value of all the pos-
sible ones for tJ and thus perform poorly2. Probabilis-
tic methods, which can construct a conditional distribution
p(tJ |tI), can offer several values for tJ : a unimodal distri-
bution indicates a one-to-one association while a multimodal
one indicates a one-to-many association. Thus, we are po-
tentially able to select the appropriate one if some additional
information is available. In this work we use the temporal
continuity of the signal to constrain the reconstructed values
to give a trajectory as smooth as possible. Also, since the
apparent high-dimensionality of the observed data is often
due to noise, we use latent variable models to try to capture
the low-dimensional, latent structure of the system.

2 Generative modelling using latent
variables

In latent variable modelling the assumption is that the ob-
served high-dimensional data t is generated from an un-
derlying low-dimensional process defined by a small num-
ber L of latent variables x = (x1, . . . , xL) (Bartholomew,
1987). The latent variables are mapped by a fixed transfor-
mation into a D-dimensional data space and noise is added
there. The aim is to learn the low dimensional generating
process along with a noise model, rather than directly learn-
ing a dimensionality reducing mapping. Note that the low-

2More precisely, one can easily prove that, in the limit of large samples
and in the sense of the Euclidean norm, the best approximation using a one-
to-one mapping is given by the conditional means: f(tI) = E {tJ |tI}.
This is the function that a universal approximator, such as a multilayer per-
ceptron, will find (under certain conditions). The only improvement over
this function comes from being able to assign different values to tJ given
the same tI at different times.
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Figure 1: Schematic of a latent variable model where the observed data consists of EPG patterns and PLP coefficients.

dimensional representation is abstract and may not necessar-
ily be interpretable in terms of any physical variables.

A latent variable model is specified by a prior distribu-
tion in latent space p(x), a smooth mapping f from la-
tent space to data space and a noise model in data space
p(t|x). These three elements are equipped with parameters
which we collectively call Θ. Integrating the joint proba-
bility density function p(t,x) over the latent space gives the
marginal distribution in data space, p(t). Figure 1 illustrates
the idea. Given an observed sample in data space {tn}N

n=1

of N D-dimensional real vectors that has been generated
by an unknown distribution, a parameter estimate can be
found by maximising the log-likelihood of the parameters
l(Θ) =

∑

N

n=1 log p(tn|Θ), typically using an EM algo-
rithm.

We consider the following latent variable models, for
which EM algorithms are available:

Factor analysis (Bartholomew, 1987), in which the map-
ping is linear, the prior in latent space is unit Gaus-
sian and the noise model is diagonal Gaussian. The
marginal in data space is then Gaussian with a con-
strained covariance matrix.

The generative topographic mapping (GTM) (Bishop
et al., 1998) is a nonlinear latent variable model, where
the mapping is a generalised linear model, the prior in
latent space is discrete uniform and the noise model is
isotropic Gaussian. The marginal in data space is then
a constrained mixture of Gaussians.

3 Regression with latent variables

Once the latent variable model has been trained using data
from the observed space, we have a probabilistic model
p(x, t) for all the variables of interest. For simplicity of
notation, we omit the dependence on the parameters and the
model. Using the standard operations of marginalisation and
conditioning, it is possible to obtain the distributions of any
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Figure 2: A unimodal (dotted line) and a multimodal con-
ditional distribution (solid line). The vertical, dashed lines
mark the modes and the means.

variable(s) with respect to any other variable(s). For exam-
ple, to find the distribution in latent space, we compute the
posterior distribution of the latent variables with respect to
the observed ones,

p(x|t) =
p(t|x)p(x)

p(t)
,

which leads to dimensionality reduction and has been inves-
tigated for electropalatographic data in (Carreira-Perpiñán
and Renals, 1998). Here, we construct conditional distri-
butions of the form p(tJ |tI) where I,J ∈ {1, . . . , D}
are sets of indices and D is the dimensionality of the ob-
served space. From a conditional distribution p(tJ |tI) it is
possible to construct a functional relationship tJ = f(tI)
provided that the entropy of this conditional distribution is
low. That is, given tI , only a small region of the space of
tJ should have nonnegligible probability mass: p(tJ |tI)
is sharply peaked. As mentioned in section 1, to derive a
functional relationship y = f(x) from a conditional distri-
bution p(y|x), one can take a point that conveniently sum-
marises the information contained in p(y|x), e.g., the mean
or the mode(s). If p(y|x) is unimodal (like the dotted curve
in fig. 2), the mean will usually be near the mode (value y4).
But if p(y|x) is multimodal (like the solid curve in fig. 2),
then each mode is potentially a valid solution (values y1, y2,
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y5), while the mean (value y3) may be a misleading estimate
if it lies in a low-probability area. For the latent variable
models investigated here, the distribution p(t) in observed
space is either Gaussian (factor analysis) or a mixture of
isotropic Gaussians (GTM), and so p(tJ |tI) is again Gaus-
sian or a Gaussian mixture, respectively.

3.1 Exhaustive mode finding

The Gaussian case offers no problem as the mean coincides
with the mode and the distribution is unimodal. For Gaus-
sian mixtures, it is possible to find all the modes efficiently
by using a maximisation algorithm starting from each cen-
troid, such as gradient ascent combined with quadratic opti-
misation or a fixed-point iteration (Carreira-Perpiñán, 1999).
Spurious modes may be discarded if their probability is
lower than a suitable threshold; this accelerates the regres-
sion algorithm and may make it more robust. Additionally,
it is possible to obtain error bars (i.e., a confidence interval)
at each mode by locally approximating the density function
by a normal distribution. However, if the dimensionality of
tJ is high, the error bars become very wide due to the curse
of the dimensionality.

4 Using continuity constraints

Since the bare conditional distribution p(tJ |tI) is just an
account of the relative proportions of the data independent
of the time, we need some extra information at a given in-
stant to decide which of the modes to choose. A property of
most natural phenomena is their temporal continuity, i.e., the
fact that the signals involved do not change abruptly, due to
physical constraints. For example, for speech, the movement
of the articulators (production organs) is relatively slow due
to their inertia and to forces of friction, tension, etc. If the
regression method provides with multiple choices at each
time frame, such as GTM (as we saw in section 3), we can
choose the mode that gives the smoothest reconstructed tra-
jectory. That is, consider a sequence3 of consecutive obser-
vations of vectors {t(n)

I }N

n=1. At time frame n, p(tJ |t(n)
I )

will have several modes, of which we will choose one; let
us call it t

(n)
J . Then the reconstructed sequence will be

{(t(n)
I , t

(n)
J )}N

n=1. Now let us define a smoothness measure
L for a polygonal trajectory {p(n)}N

n=1 ⊂ R
D as the sum of

the Euclidean distances between consecutive points:

L
(

{p(n)}N

n=1

)

def
=

N−1
∑

n=1

δ
(

p(n),p(n+1)
)

for δ(u,v)
def
= ‖u − v‖2 and ‖u‖2

def
=

√
uT u. That is,

L
(

{p(n)}N

n=1

)

is the length of the trajectory. Then, from
all the possible trajectories, we select the shortest one. This
leads to the following minimisation problem:

min
{t

(n)
J

}N

n=1

L
(

{(t(n)
I , t

(n)
J )}N

n=1

)

.

3In our notation, {t(n)}N

n=1 means a sequence of temporally ordered
vectors, while {tn}N

n=1 means an arbitrary collection of vectors, not nec-
essarily consecutive in time.
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Figure 3: A layered graph. The layers are represented as ver-
tical columns of nodes, each node being a point in D dimen-
sional space. An edge between two nodes is labelled with a
cost equal to the Euclidean distance between the nodes; the
white nodes in the left and right ends are fictitious and have
zero-cost edges. The shortest path between the end nodes is
the shortest trajectory passing through all layers (such as the
one in thick line).

4.1 Smoothest trajectory search

Call ν(n) the number of possible choices at time step n, i.e.,
the number of modes of p(tJ |t(n)

I ). Then, the search space
contains

∏

N

n=1 ν(n) different trajectories, and thus depends
exponentially on N . However, there are efficient algorithms
to search this space. The problem can be formulated as find-
ing the shortest path in a layered graph (fig. 3) between the
leftmost and the rightmost nodes.

A full search can be carried out by a divide-and-conquer
algorithm:

• select the centre layer (i.e., for n = N

2 ), with ν
(

N

2

)

nodes;

• for each one of its nodes, solve recursively the layered
graphs to its left and to its right (which contain approx-
imately N

2 layers each) and join the resulting shortest
sub-paths with the node;

• of the ν
(

N

2

)

solutions computed, choose the shortest
one.

If all the layers have the same number of nodes ν, this al-
gorithm has a polynomial complexity of O(N 1+log2 ν) ap-
proximately.

A heuristic search can be carried out by a greedy algo-
rithm:

• select any layer n, with ν(n) nodes (ideally ν(n) = 1);

• work backwards (from n down to 1) and forwards
(from n to N ) picking at each new layer the closest
node to the current one;

• of the ν(n) solutions computed, choose the shortest
one.

This algorithm has linear complexity, O(N), and is thus
very fast, but it is sensitive to the starting layer and can per-
form poorly when it only finds a suboptimal solution, as the
experiments below show.

At the time of writing this paper, only the greedy algo-
rithm was implemented. However, the experiments below
show that the desired solutions present a smaller value of L,
which suggests that the full search may find a solution close
to the desired one.
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Figure 4: Trajectory reconstruction for a 2D problem, where the observed data fall in the curve (t1, t2) = (x, x + 3 sin(x))
for x ∈ [−2π, 2π], with normal isotropic noise added. For all graphs, the thick line indicates the true trajectory, the dots the
training data and the circles the Gaussian components for the GTM model. Top row: t2 given t1. Bottom row: t1 given t2.
Left column: factor analysis (solid line). Centre column: GTM with conditional mean (solid line) and conditional global
mode (dashed line). Right column: GTM with conditional closest mode (solid line) and conditional modes found with the
greedy algorithm (dashed line).

5 Experiments with a toy data set

Using a nonlinear data set in an observed space of dimen-
sion D = 2, we trained a factor analysis model and a GTM
model, both with a one-dimensional latent space. For GTM
we used a grid of 20 latent points, which gives a Gaus-
sian mixture of 20 components in observed space. Figure 4
shows the results of reconstructing a two-dimensional tra-
jectory, i.e., t2 as a function of t1 (which is easy, since the
mapping is one-to-one) and t1 as a function of t2 (which is
difficult, since the mapping is one-to-many).

Due to the nonlinear character of the data set, factor anal-
ysis performs poorly: p(t2|t1) and p(t1|t2) provide linear
mappings passing through the global mean of the data set.

GTM approximates much better the data distribution. To
transform a conditional distribution into a mapping, we try
four different strategies: the mean; the global mode, i.e.,
the mode with highest probability; the modes selected us-
ing the greedy algorithm of section 4; and the closest mode,
which is the mode closest to the true target value. This lat-
ter case gives a lower bound in the reconstruction error, and
cannot be achieved in general, since the target values are
unknown in a real situation. In the t1 → t2 case the con-

ditional distribution p(t2|t1) is unimodal for all values of t1
and all methods (either mean- or mode-based) perform ap-
proximately equally well. However, in the t2 → t1 case the
conditional distribution p(t1|t2) is multimodal for a number
of values of t2, and the only method that adequately recov-
ers the trajectory is the closest modes one—the other strate-
gies producing very jagged trajectories. This shows that the
conditional distribution has actually captured the informa-
tion about the correct predicted values. We note that the
trajectory length L for each method is 29.4, 39.5, 22.2 and
19.2, in the order mentioned above. Thus, the closest modes
provide with the shortest trajectory, which suggests that a
global search would find a trajectory similar to the desired
one.

6 Real-world problem: prediction of
PLP coefficients and EPG patterns

To demonstrate the potential ability of the method described
for regression in a real-world problem, we trained latent
variable models with both acoustic and articulatory speech
data and computed conditional distributions of the acoustic
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Figure 5: Use of the conditional distribution modes to predict, or reconstruct, variables in observed space. Here, we use
the GTM model to compute the distribution of the EPG part greyed out (the unknown values) conditional on the EPG part
which is not greyed out (the known values). The modes are given to the right of the arrow, labelled with their normalised
probability if there is more than one mode. In all four cases, the mean (marked ∗) coincided approximately with one of the
modes. Note the left-right asymmetry. As is customary in the electropalatography literature, the EPG vectors are pictured
rowwise from top to bottom resembling the human palate (top: alveoli; bottom: velum).

EPG pattern given the PLP coefficients PLP coefficients given the EPG pattern
Data set Factor GTM Factor GTM

analysis mean g-mode gr-mode c-mode analysis mean g-mode gr-mode c-mode
Training 3.7635 2.2736 2.8681 3.6111 0.9462 0.8870 0.5777 0.6221 0.7435 0.4206
Test 3.5060 2.7667 3.5012 4.3522 1.4809 0.8632 0.7967 0.9061 0.8436 0.6102
Utterance 2.6172 1.4398 1.7046 1.6785 0.8061 0.6723 0.7778 0.8103 0.6228 0.5865

Table 1: Average quadratic reconstruction error of the EPG patterns given the PLP coefficients and vice versa.

variables given the articulatory ones and vice versa. Our
articulatory variables here are electropalatographic (EPG)
frames, rather than the positions of the different articulators,
due to the unavailability of a more appropriate data set. Each
EPG frame is a binary pattern indicating the presence or ab-
sence of contact between the tongue and the hard palate in
a fixed set of locations in the palate. In this case, the map-
ping EPG → acoustic signal is one-to-many, since different
phonemes may correspond to the same EPG frame.

The data were obtained from the ACCOR database (Mar-
chal and Hardcastle, 1993). This database, designed for
the cross-language study of coarticulation, contains elec-
tropalatographic and acoustic measurements (among other
measurements) for utterances in different European lan-
guages and varying speech styles (slow, fast, etc.). We se-
lected the utterance “Put your hat on the hatrack and your
coat in the cupboard” for speaker FG and computed from its
acoustic waveform 12th-order PLP coefficients (Hermansky,
1990) plus the log-energy, all at 200 Hz. The EPG data con-
sists of 62-bit frames sampled at 200 Hz, which we consider
as 62-dimensional vectors of real numbers, with components
indexed from 1 (top left) to 62 (bottom right). Thus, the re-
sulting sequence consisted of over 600 75-dimensional real
vectors. We constructed a training set by picking, in random
order, 80% of these vectors, and a test set with the remain-
ing 20%. Thus, these two sets have lost the temporal con-
tinuity present in the original utterance. We constructed an
additional set with temporal continuity by selecting 100 con-
secutive frames from the utterance. All the data used were

unlabelled.

The models trained were factor analysis with 9 factors
(= dimensionality of latent space) and the generative topo-
graphic mapping (GTM) with a latent space of dimension 2
and a 20 × 20 grid.

In fig. 5 we used GTM to reconstruct parts of the EPG
frame given other parts of it. Note how the reconstructed pat-
tern is slightly different when the left half is given than when
the right half is given, revealing asymmetry in the tongue
movement. When the bottom half is given, the distribution
for the top half happens to be multimodal, with several pat-
terns (corresponding to open vowels and alveolars) becom-
ing possible.

Table 1 shows the results for the average quadratic recon-
struction error of the EPG pattern given the PLP coefficients

and vice versa, defined as E2 = 1
N

∑

N

n=1

∥

∥t̂n − tn

∥

∥

2

2
,

where tn is the true vector, t̂n the reconstructed one and
N the total number of vectors in the set under considera-
tion. For the linear-normal model (factor analysis), the con-
ditional distribution is always normal and so the only point
to consider to reconstruct the vector is the conditional mean
(equal to the conditional mode). As with the toy data set,
we tried four possibilities for GTM: the conditional mean;
the global conditional mode (g-mode); the modes selected
using the greedy algorithm of section 4 (gr-mode); and the
conditional mode closest to the vector to be reconstructed
(c-mode).

Regarding method comparison, the table shows that GTM
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attains a smaller error than factor analysis in almost all cases.
Thus, even though GTM assumes an isotropic noise model
(and our variables have different ranges and variances, e.g.
the EPG variables are in [0, 1] while the log-energy is in
[1, 5] approximately) and it uses a latent space of dimension
2, its nonlinear mapping compensates enough to outperform
a linear method using a diagonal noise model and a latent
space of dimension 9.

Regarding the use of the mean or a mode, the average
reconstruction errors for GTM show that, in all cases, the
mean performs better than the global mode (in agreement
with the theory) but worse than the closest mode. We em-
ployed an additional strategy, not shown in the table, where
the mean is used if the conditional distribution is unimodal
and the global mode if it is multimodal. This gave an error
virtually equal to that of the global mode, which indicates
that the divergence occurs in multimodal conditional distri-
butions. Thus, the best predictor is one of the modes, but
not necessarily the mode with the highest probability. Look-
ing now at the results using continuity constraints with the
greedy algorithm, we see a worse performance over that of
the mean or the global mode in the training and test sets.
This is reasonable since we deliberately eliminated the conti-
nuity from these sets. For the utterance fragment, in the case
of the regression EPG → PLP we observe a performance im-
provement over that of the mean, but not in the case PLP →
EPG. This suggests that this suboptimal algorithm may be
able to take advantage of the continuity of the data in some
cases. However, since—as in the toy data set—the length
of the closest modes trajectory was the smallest one, it is
likely that a global search could improve the reconstruction
performance over that of the other methods, approaching the
optimal one as bounded by that of the closest modes.

7 Discussion

Our claim is that the combination of:

• latent variable models, which can capture the low-
dimensional structure of the data in a stochastic way;

• the probabilistic nature of the model, which allows to
compute in practice several candidates for predicting
the values of some variable(s) given other variable(s);

• the use of continuity constraints to select those candi-
dates that give the smoothest reconstructed trajectory in
observed space;

provides with an approach to the difficult problem of invert-
ing many-to-one mappings. Regarding its practical imple-
mentation, we have also sketched algorithms for computing
all the modes of a Gaussian mixture and for enforcing conti-
nuity by minimising the trajectory length in observed space.
Our experimental results confirm that the information about
the potentially correct values may be captured by the prob-
abilistic model and that the continuity constraint—in those
cases where it is applicable—may help to recover the values
that are actually correct at a given time. A heuristic search
for smooth trajectories was seen to find suboptimal solu-
tions. Thus, more work is necessary to determine whether

a global search for the smoothest trajectory guarantees an
improvement over the conditional mean regression.

Some issues that require further investigation include:

• A poor probabilistic model may give rise to conditional
distributions with too many or too few modes. Thus, it
is necessary to test how robust the approach is in such
a situation.

• Depending on the data distribution, a set {t(n)
I }N

n=1

may contain too few points to uniquely determine a
smooth trajectory.

• Comparison with standard function approximators,
such as multilayer perceptrons.

A potential problem of latent variable models is that the
dimension of the latent space has to be fixed in advance, al-
though an optimal one could be found by model selection.
An additional problem of methods that sample the latent
space, like GTM, is that their computational cost grows ex-
ponentially with the dimension of the latent space.

Finally, a regression can be seen as missing data imputa-
tion, where given the present values tI , the missing values
tJ are to be filled in using the knowledge of the distribution
p(tJ |tI). Thus, the same formalism applies to missing data
imputation. Note that I and J may be different for each
point in the data set to be reconstructed.
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