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~ Abstract— We present a machine learing approach for tra- of manipulators, and even then it can be complicatextal
jectory inverse kinematics: given a trajectory in workspace, to  methods [10], [11], [8] are based on linearising the forward
find a feasible trajectory in angle space. The method leams \a55ing to obtaink = J(6)8, where J is the Jacobian
offline a conditional density model of the joint angles given ff (R ived Mot Rate Control [10D. Thi i

the workspace coordinates. This density implicitly defines the o (Reso ve. OLON SRate _on ro . [10). S equg lon
multivalued inverse kinematics mapping for any workspace C€an then be integrated numerically in order to obtain the
point. At run time, given a trajectory in the workspace, the global trajectory for@. For redundant manipulators, where
method (1) computes the modes of the conditional density given J has more columns than rows, a unique Va|ug'90|fnay
each of the workspace points, and (2) finds the reconstructed be obtained by optimising a suitable objective (such as en-

angle trajectory by minimising over the set of modes a global, th I f the J bian: i ticul
trajectory-wide constraint that penalises discontinuous jumps ergy) over the nullspace of the Jacobian; in particular, one

. . )
in angle space or invalid inverses. We demonstrate the method €an obtain the pseudoinverse method by minimisifg-,
with a PUMA 560 robot arm and show how it can reconstruct  yielding & = J*(6)x, at a computational cost(m?n)

the true angle trajectory even when the workspace trajectory wherem = dimx < n = dim 0. However, the idea breaks
contains singularities, and when the number of inverse branches down at singularitiesd*, where J(6*) becomes singular;
depends on the workspace location. L . . .
this is caused by the existence of multiple inverse branches
|. INTRODUCTION intersecting a®*. Also, the numerical error can accumulate
over time, and the computational cost is high since many
seudoinverses of non-sparse Jacobians must be computed.
ther local methods [8] use an augmented set of variables
(%, 0) rather than jusk. Another local method (well-known
in articulatory inversion) isanalysis-by-synthesisvhich di-
ectly finds an inverse valug of f by iteratively minimising
he squared erro(0) = |x — £(0)|* with a numerical
optimisation method, e.g. gradient descent, whete =
2J(0)T(£(8) — x). Unfortunately, which inverse value is
found depends on the initial value f@r and the iteration may

We consider the problem dfajectory inverse kinematics
(IK) [1] of a (say) robot arm, where given a sequence 0O
positionsxy,...,xy in (Cartesian) workspace of the end-
effector, we want to obtain a feasible sequence of jointengl
64,...,0y that produce the-sequence (we do not consider
dynamics in this paper). Given the joint angles, the en
effector position is given by the forward kinematics majgpin
x = f(0), which is usually (but not necessarily) known.
However, the inversé—!(x) can take multiple values, or for

redundant manipulators (whettm 6 > dim x), an infinite also get stuck at non-inverse values whif)” (£(6)—x) —

number of them; this makes it difficult to represent and com but £(8) - x. However, the method is useful if the initial

—1 .
putef™". At the same time, we want the recovered SequenGe; o sufficiently close to the inverse sougf&lobal methods

IOf joint arlwgles to trla}ce a colnt|nu0l|Js, Irzahsablﬁ tray@ctor[lz]’ [13] propose a variational aPproach where the trajec-
mportgnt y,lourgoabls.noton yttl) Solve at eﬁlc .trajfytontory of & minimises a functiona![to1 G(0,0,t)dt (such as
?eoallgllaleu(tea Soa\t/(())igintalgisa:oigguei)tig?i(r:t?o?b;[ dgéf(gg;)a energy and manipulability) subject to the forward kinemati
Similar IK-r.gI.ated pro%lems arise in other areas: in comp.)ut constraintx(t) = £(6(t)) and appropriate boundary con-

: dt'{tions. The trajectory is obtained by numerical integrati

gra_lphics, where one wants to ac_:hieve reglistic ani_mgtion 8 the corresponding Euler-Lagrange equation. However, th
articulated characters (e.g. [2]); in the articulatoryeirsion method still suffers from singularities [13] and needs the

problem of speech, where an acoustic waveform (“positiof)

" ; y user to provide boundary conditions that are often unknown.
x") may be produced by different vocal tract shapes ( anglefhus, an important problem of many of these methods are

0") [3], [4]; and in the protein loop closure problem in the singularities of the Jacobian. These correspond tonthe i

co_Thpu;atloneg ik()]ologyt.[S]. . v be obtained tersection of multiple inverse branches (violating theeise
e forward kinematics mappirfacan usually be obtaine function theorem), and while locally any of these branches

in closed form for a kinematic chain as a product of homoi-S valid a priori, globally perhaps only one is valid.

geneous transformation matrices, one per link (however, WE A gifferent type of methods are based on machine learning

remark thaEl_;h'S IS r.]ott always the car?e, ?s IIIQ' artlcglgt(f)lr ata-driven) techniques. These methods estimate thesive
inversion). There exist many approaches to IK; we brie apping Using a training set of input-output paiss, ).

review some of them here (see [6], [7], [8] for review). In,,, : e
analytic approaches, one tries to obtain the IK mapping iWhlle the forward mapping may be learnt by fitting a (say)

closed form (e.g. [9]); this is only possible for certain égp eural net directly to pair§9, x), learning the inverse map-

ping by fitting a neural net to pairé, 8) would average
EECS, School of Eng., University of California, Merced, PBdx 2039 the different 'm{erse branChe.S' y'eldmg invalid solusioRor
Merced, CA 95344, US{cqi n, ntarr ei r a- per pi nan}@cner ced. edu. example, consider the function = f(@) = 62%; the least-



squares erroflf — g(x)||; is minimised byg(z) = 0, the p(z,0)
average of the two branches,/z, and this is what a neural
net would yield. The distal learning approach [14] firstrisai ,
a neural net to model the forward kinematfc¢hen another %o |7
net is prepended to this, and the resulting, cascaded rletwor /| |
is retrained to learn the identity but keeping unchanged thr-/ ‘
weights of the forward model. This results in the prepende * ‘
portion of the network learning one of the possible inverses 6o 01 02 ¢
(with the other branches being |rr¢ver§|bly lost). DeMerns—ig. 1. Left joint probability densityp(x, ) (shaded area) and forward
and Kreutz-Delgado [7], [15] try to identify (by clustering mappingy (thick black line).Right multivalued mapping = £~ (z¢) =
subsets of the data corresponding to different branches, i.{60, 61,02} from the multimodal conditional distributiop(6|x). Depend-
representing one-to-one mappings, and then they fit to eagi'(ﬂrggpghn%i‘r’gu‘;e3°g%rT‘?:f/err‘;ié ?;53 modes (as shown), 2 or 1, and
of them a neural net. However, in practice it is hard to ' '
identify such subsets. D'Souza et al [8] fit a locally weighte
projection regression to mafx,0) to 6 as in the local
methods discussed above.

We present a different method based directly repre-
senting multivalued mappings using density mad#lss
a machine learning method that learns trajectory IK give

‘ 00 91 02 0

more interesting issue is that the topology of the manifdid o
inverse branches can be very complex, where the number of
inverse branches may depend on the value;dbr example,

at a singularity two different branches intersect (fig. NeT

i . . ) ensity can deal with these topology changes in that e.g. two
a training set_ of |_nput-output pairs, 6) e_md p_ossnbly but different modes can merge into a single one, and vice versa.
not necessarily given the forward mappifigit is a global . This is a useful property that frees us from having to guess

method in that it disambiguates multiple branches by Mo number of inverses and fix it beforehand

!mtlsmgtqtrilljge;:tqry-)[/vme:[r(]: otnstLgllnt. Tthe %oailof the mfthp We can estimate the conditional density with statistical
IS to obtain ar-trajectory that, while not periectly accurate, IS, j .pjne learning techniques given the dataset of fairs).

sufficiently close at each point to the correct trajectost fh One option is to learn &ill density modep(x, 8) and then

can be refined (if desired) using a local method. We descri%%tain from it the conditional distribution
the method in section Il, demonstrate it in experiments in

section Il and discuss it in section IV. p(0]x) = p(x,0)/p(x) = p(x,80)/ [ p(x,0)d6.

Il. TRAJECTORY INVERSE KINEMATICS BY CONDITIONAL A_ co.nve.nient.density model for which computing con.dlitional
DENSITY MODES dlstrlbtlgon)s |? s)tralgg:tf]%rward ::tre| |s)otrohp|c G?u‘ssgalx—m
o . tures M), p(y) = m—1 Tmp(y|m) where p(y|m) ~
Assume we have a training set of pai, x)_ W|th X = N(y;p,,o%1). The GM pérametersm, u,, ando? (pro-
£(6), wheref is the forward kinematics mapping (if we do portion, mean and covariance) are estimated from the tigini
not knowf, we could estimate it by fitting e.g. a neurallnet).set by maximum likelihood with the EM algorithm [20]. An-

Atrun time, assume we are given a trajectaiy . .., Xy N giher option is to learn directly eonditional density model
workspace and want to obtain a trajectéry ... ., O of joint ,g\.y. ‘this is more efficient because it needs to model a

angl_es that_yields the-trajectory while avoiding discor_1tinu- density in fewer dimensions (onl, not8 andx). We study
ous jumps ing-space. Our method works as followstiline, both choices (full and conditional) in section III.

it estimates a density model8,x) for both variables, or

just a conditional density(6|x), using the training set. At B. Mode finding

run timeg for eachn = 1,..., N we obtain the conditional ~ Assume we have a conditional densijt{f|x) which has
densityp(0|x,,) and its modes; the latter explicitly representhe form of a GM. Efficient algorithms for finding all the
the multiple inverse solutions at easf). Then, we obtain modes of a GM exist [17] that iterate a hill-climbing al-
the @-trajectory by minimising a constraint over the entire segjorithm from every centroid of the GM. In particular, the
of modes. Let us describe each step in detail. This meth@slaussian mean-shift algorithm iterates

is a particular case of a more general approach proposed for 9T+ _ Zﬁ{:l p(m‘a(ﬂ; X, (%)

reconstruction of sequences with missing data [16].
where the posterior probability(m|6™; x) is the normalised

version of

The key property of the conditional distributign@|x - 2
is that it will be peaked around the inverse solu?iﬁnL:%or T (%) exp (= 167 = 2, () /7 (X)] )-
(see fig. 1). Thus, its modes are representatives of thes@veiGaussian mean-shift does not require inverting matricels an
values. If we represent the density with a Gaussian mixtureakes O(kM?2) where M is the number of components in
then we can approximate the true data density to arbitrathe GM andk the average number of iterations per compo-
accuracy by using a sufficiently large number of componentgent. The computational time can be drastically reduced, fo
[20]. Thus, the modes can approximate the inverse values esample discarding low-probability components of the GM
closely as desired (at a corresponding computational.ofst) (having smallr,, (x)); see [18] for other accelerations.

A. Density model



C. Global optimisation with dynamic programming S s s 1
Assume we have collected for each stejm the trajectory 450 ey 08

all the modes (candidate inverses). In principle, each&deh 4t '

modes represents a correct solution for stefffollowing

a certain solution branch), but a given branch that is vali i 0.6

for part of the trajectory may be invalid for another part’2 3 1 | "2

(e.g. because certain joint angles’ values are forbidden d 254 § =+ 04

to mechanical constraints). In order to determine the &wlut

we minimise a global, trajectory-wide constraint over teé s 02

of modes. In this paper, we consider a constraint of the forr 1.5 » &

C + AF (for A > 0), where: 0 05 1 15 0 02 04 06 08 1
« C=Y"""16,,1 — 6., represents @ontinuity con- 0, 1

straint (integrated 1st derivative). This penalises disconrig. 2. Geometry of the 2-link planar arm of sec. IlI-A (lefzspace, right:

tinuous jumps ing-space and encourages short trajecx-space). The black dots are the training set of péftsx) € R*, which
tories. We also uss — ZnN:—IQ H9n+2 20,1 + 071”1 indicate the reachable region of workspace. The blue curtled trajectory

) 1 oon to be reconstructed, and the red lines schematically représe robot arm
which representsmoothnesg@ntegrated 2nd derivative). in 3 different configurations. Points near the two ends ofvibekspace can

o« F = Zﬁle llx, — £(0,,)] represents dorward con- only be reached by one configuration because of limit$an
straint (integrated workspace error), and penalises in-
valid inverses, i.e., mode8,, that do not map near 5
the desiredk,,. This helps to eliminate spurious modes
produced by ripple in the density model.

Effectively, this is a form of planning in angle spac&obal 4
minimisation of the constraint can be obtained by dynami 35
programming inO(Nv?) wherev is the average number of 0,
modes per step (usually very small), thus in linear time o

the trajectory lengthV. Computationally, this is generally 2.5

negligible compared to the mode-finding step. 5
I1l. EXPERIMENTS 15
We show proof-of-concept experiments for several sim 0 05 1 15 0 02 04 06 08 1
ple robot arms. Our goal is to illustrate the methods’ per- 01 1

formance with known ground truth for different settings.Fig. 3. Marginal densitiep(8) (left) and p(x) (right) for the fine GTM

We consider the following methods: the Jacobian pseudoifitode!»(6,x) (4-dimensional), as a contour plot. The component centres
N . of the Gaussian mixture are indicated by red dots.

verse (local method baseline); a conditional mean methocf,

which estimates a univalued inverse mapping (as a neural

net would do); and our conditional modes method, which

estimates multivalued mappings and disambiguates the sohs elbow-up, and the region at the left end as elbow-down.

tion by minimising a global constraint. We study differentMore generally, the feasibl@-domain could have a very

choices of the density model (full and conditional) and ofomplicated shape, where the range of allowed values for a

the global constraintd, S, F). single angled; depends on the values of other andlese.g.
) to avoid self-intersections in a humanoid robot. Respgctin
A. Planar 2-link robot arm these constraints is simple in our method, since the trginin

First, we consider a 2-dof planar robot arm (fig. 2) forset will only contain feasible configurations by constraati
which it is possible to visualise the conditional densitylan and the density modes will always lie on high-density region
study the method. The forward mapping is (not so the mean!). The trajectory in fig. 2 goes through
singularities (when the arm is fully stretched); a local hoet
may choose a branch that later on is unable to reach the
ry = Iy sinfy + lasin(0y + 62) trajectory, but our method can choose the correct branch by

wherel, = 0.8 andl, = 0.2. The inverse mapping can be keepmg track of all local solqtlons and then disambigustin
hem with the global constraint.

computed analytically and has 2 solutions (elbow up/downf. We generated a training set BHO00 pairs (8, x) by uni-

Singularities occur whelJ(0)| = |l1l2sinfs]| = 0 < 6, =
g W(O)] = |ixl; sin 6| o Toformly sampling the#-spacé and mapping withf (black

0, +m, i.e., when the arm is fully stretched or folded. 7> ) . A )
make the problem more complex, we limit tiedomain dots in fig. 2). We trained density models by max. likelihood:

to [0.3,1.2] x [1.5,4.7] rad so that certain branches are in- 1We included samples in a slightly larger domdin, 1.4] x [1.3,4.9]

Va“_d n certaln. regions of the WorkSpace' .FOI’ example, tht% avoid boundary effects in the density model. For GTM, we aldded a
region at the right end of the workspace is only reachablgt of noise (stdew.05) to improve the smoothness of the resulting density.

21 =l cos b1 + lo cos(fy + 02)



« Full densityp(x, 8): we could have trained a GM di- 5/ _ ] 1
rectly, but instead we trained a generative topographi 4.5 |
mapping (GTM) model [19], since the intrinsic dimen- 0.8
sionality of (x,8) is 2 (not 4, because of the forward
mapping). GTM is a latent variable model that yields 3.5 0.6
a GM constrained to lie in a low-dimensional mani-f2 3 T2 :
fold. We tried 2 GTM models, one coarse (willi = 0.4
225 components in the GM) and one fine (wifill = 25
2500). Fig. 3 shows the resulting density, or rather the 2 0.2
marginalsp(@) andp(x) for visualisation purposes. 15
« Conditional densityp(0|x): we used a mixture density A 0
network (MDN) [20]. This is a particular case of mix- 0 05 1 15 0 02 04 06 08 1
tures of experts [21] that yields a GM — 01 . !
p(0]x) = Z%=1 T ()N (05, (X), O (X)) 45
where the functions,, (x), u,,(x) ando,,(x) are neu- 0.8
ral nets. We used/ = 2 components and 2-layer neural
nets with10 hidden units. Note a MDN is different from 3.5 0.6
a neural net; the latter is a univalued function, while th@2 3 T2
MDN represents multimodal densities, whose numbe 0.4
of modes depends ox. 25
Fig. 4 shows, for each model, the conditional density for 2 0.2
a particularx value. The conditional density model (MDN) ;15 ]
gives a sharply peaked density with 2 modes near the tri 0 ‘ ‘ ‘ ‘
inverses. The fine GTM model gives also a bimodal densit ~ © 0'59 115 0 0z 04 06 08 1
but less sharp, and the coarse GTM model gives a multimodal !
density where spurious modes arise along the line conrmectir 1
the true inverses. The reason for this is the interfererama fr 4.5
the additional dimensions (fot) that GTM is modelling, so A | o8
that more components are necessary to achieve an accur
conditional density. However, as seen below, all 3 model 3-° ] 0.6
succeed in recovering the true trajectory thanks to the fof2 3 122
ward constraintF (which filters out the spurious modes). 5 | 0.4
Figs. 5-6 show the reconstructed trajectories for each del
sity model (we obtained similar results with other trajecto 2 ® ] 0.2
ries). We also show the trajectory that results from usin¢ 15 ]
the mean of the conditional density. This yields the GM 0
regression mapping and is essentially equivalent to fiting 0 0'501 115 0 02 04 1 06 08 1

neural net directly to pairgx, 8). Since it can only represent _ . .

. . . . Fig. 4. Sample conditional densitig$@|x = (0.78,0.48)) for 3 models:
a univalued mapping, it averages the two inverse branch&ggrse GTM (1op, 18 modes), fine GTM (middie, 2 modes) and MDN
resulting in the fully stretched configuration, which is in-(bottom, 2 modes)Left contours of the conditional density i@-space,
valid (i.e., it does not equal the desireg for most x; its modes (red dots) and the true inverses (black circRiglt robot arm
L. . . . . ’ configurations for the modes (red) and true inverses (black).
it is valid where the inverse is univalued, namely at the
ends of the workspace. When using conditional modes, all
3 density models (MDN, coarse GTM, fine GTM) succeed
in reconstructing the true trajectory with good accuracy, b the region[1,1.5] x [1.5,2] of #-space were not allowed
more importantly, yielding a globally correct trajectotyat  (e.9. because of mechanical constraints) then the trajecto
chooses the appropriate branch at all steps. found by the pseudoinverse method would be invalid; a local

It is very interesting to note that the-trajectory of fig. 2 method has to decide which inverse branch to take at the

can actually be produced by differefitrajectories (fig. 7). singularity near® = (0.3,3) and does not benefit from the
In theory, they all have exactly the same value for the globa@hformation about the forbiddeé—rectangle that lies in the
constraint, but in practice they differ slightly due to thefuture (assuming the trajectory starts néar= (0.3, 1.6)).
particular training set and model used. The pseudoinver§ur method does benefit from it by learning (through the
method, being local, can only find one of these trajectorigisaining set) only those regions and branches that arelictua
(fig. 5-6, green). In our method, the dynamic programminggasible and succeeds in reconstructing the correct teajec
search considers all these trajectories and selects the ondable | gives the errors il andx wrt the true trajectory
with globally minimal constraint value. However, if (say) (true = any of fig. 7). Forx they are of aroun®% of
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Fig. 5. True (blue) and reconstructed trajectories withfihe GTM model Fig. 6. As fig. 5 but for the MDN model (red).
(red) and the pseudoinverse (gredreft 0-spaceright: x-spaceTop using
the conditional mearhottom using the modes and the continuity constraint
C. The pseudoinverse solution is one of the trajectories of7fig 5 5 5 5
4.5 4.5 4.5 4.5
4 4 4 4
35 35 35 35
0 0 2
the length of the fully stretched arnd, (+ I, = 1) for the %3 23 23 23
fine and coarse GTM models, and 065% for the MDN 25 25 25 25
model. These errors are very close to the “oracle” columr 2 2 2 2
which gives the error achieved if the closest modes to tt 15 15 15 15

true solution were selected. We could refine the trajector o o5 1 15 005115 005 115 005115
and reduce the error as much as desired in a postprocessing " o o
step by initialising an analysis-by-synthesis search ah eaglg.;.bl Four trajectories i®-space that produce the samérajectory of
point in the trajectory. We find that the continuity consttai 9. 2 (blue).

alone is enough to find the correct trajectory with the MDN
and the fine GTM model, but not with the coarse GTM
model, because of the spurious modes it has (which provide
shortcuts that the continuity constraint favours). Howgve
adding the forward constrait asC+\F (over a wide range

of XA > 0) yields the correct trajectory for all methods. The__Model mean oracle C S__CHAF S+AF

; .~ . “coarse GTM| 0.783 0.083 0.628 0./04 0.118 0.122
smoothness constrait performs as well as the continuity .o Gtm | 0798 0114 0114 0127  0.114 0127

TABLE |
RECONSTRUCTION ERRORS FOR TH2D ROBOT ARM

Angle reconstruction erroi: S=N_ (|6, — 6,,]| (rad)

constraintC. The errors when using the mean of the density MDN 0.668 0.037 0.037 0.037 0.037 0.037
are considerably larger, but only the figures show how truly Pseudoinv 0.06
bad its solutions are. Workspace reconstruction errg =N [|xn — £(6n)||

Both the pseudoinverse and our method can achieve low Modecl; Bﬂggn grggle 0009 g - 9 +O/\£ , S+ 6\§28

; ; :coarse GTM| 0.084 .024 .094 .097 . .

recqnstructlon error, depending on the chpsen .n.umber of |f-ﬁne v | 0084 0021 0021 0021 0021 0.021
erations and of GM components. Besides its ability to ensure ppn 0.072 0.005 0005 0005 0.005 0.005
globally feasible trajectories, our method has the adepgnta _pseudoinv 0.016

of being less sensitive to singularities. Near singulkesiti
the pseudoinverse method is numerically unstable and takes
many iterations to converge (nhot so our method).



Fig. 8. Training set for the PUMA 560 robot arm of sec. lll-Btviews,
left: 8-space, rightx-space). The workspace contains an unreachable regiol
shaped like a vertical cylinder passing through the robot.fo

S
Fig. 9. Left modes (red dots) for the conditional densit{@|x) for the 0

MDN model and the PUMA 560 robot arm. There are 4 true inversieskb Fig. 10.  Reconstruction of an elliptical trajectory (bluUe) the PUMA
circles), which are well represented by the modes, but thezeatso two 260 &rm: MDN (red); pseudoinverse (greebgft 6-spaceyight: x-space.

spurious modes (which are removed by the forward constjreince they ~ 10P Mean of the densitypottom modes and continuity constraidt
map far from the desiredt). Right modes and true inverses in workspace,
represented as schematic arms.

B. PUMA 560 robot arm with 6 DOF

Figs. 10-11 and table 1l show similar experiments for a
PUMA 560 robot arm with 3 dof for positiol = (61, 62, 03),
3 dof for orientation (which we ignore), and a 3D workspacéd’s
x € R3. The (point) IK can be solved analytically for this
robot [9] and yields 4 solution branches (two combinations |
of elbow up/down; fig. 9); we use the implementation of 14
the Matlab Robotics Toolbox [22]. As before, we limit the
angle domain in order to complicate the topology of the
inverse mapping, and generate a training seb @0 pairs
(6,x) (shown in fig. 8). The GTM (full density model) that 6, 0
we trained (results not shown) failed to produce a goou 0,
reconstruction because of the existence of multiple spario
modes. The reasons for this are the higher dimensionality ¢
the space, but also the fact that GTM is practically limited 1
to an intrinsic dimensionality of at most 2, while in this g, 0
case the intrinsic dimensionality is 3. We also trained ¢ -1
MDN (conditional density model) witld/ = 12 components
(and neural nets witl800 hidden units), which did succeed 13} %
in reconstructing various trajectories, with errors of itam \
magnitude as with the planar arm of sec. lll-A; we show
a sample of results, for 3 trajectories (an elliptical ctbse
loop, a figure—8 closed loop, and an open trajectory; figs. 10 0, ~1
11, table I). Again, the symmetry of the problem results in -1 9
several equivalent global solutions; the pseudoinversk an !
our method choose different ones. The larger errors occur

[

0

|
[N

Fig. 11. As fig. 10 but for a figure—8 trajectory.



TABLE Il 3
RECONSTRUCTION ERRORS FOR THBD ROBOT ARM (PUMA 560) 25
. 2
Angle reconstruction errOf}v Zle [|6n — Oy (rad) 03 T3 18 |
Traj. pseudoinv| mean C S CH+XF S+I\F ]
Ellipse 0.072 2.110 0.076 0.069 0.071 0.069
Figure—8 0.076 1.990 0.082 0.081 0.081 0.080 8 05
Open 0.042 2.140 0.173 0.778 0.173 0.176 2 ’
Workspace reconstruction errge S-N_ [|xn — £(65)]] By 17 2 : 05 15 25
x
Traj. pseudoinv| mean C S C+AF S+ M\F . 01 . . !
Eflipse 0.075 0819 0030 0.029 0.029 0029 Fig. 12.  Reconstruction of the loopy trajectory for the nedant arm:
Figure—8 0.019 0.750 0.028 0.027 0.027 0.027 MDN with constraintC + AF (red); pseudoinverse (green).
Open 0.007 0.665 0.055 0.080 0.055 0.055

w

for points near a cylindrical hole at centre of the workspalc@3 ,
which is not reachable by the robot, because of boundary Z2 15
effects of the density model. They could be reduced by in-

creasing the number of components in the GM, or more 2

efficiently by refining the trajectory with a local method. 2 5 3 0

. 0 15 3
The “oracle” (best achievable) error (not shown) was very B 13 01 1
similar to that ofC + AF. Fig. 13. As fig. 12 but for a figure-8 trajectory.

C. Redundant planar 3-link robot arm
IV. DISCUSSION

: . . . Our method, by directly representing multivalued map-
number of inverse# exist for a givenx. The corresponding . . S .
pings and using a global constraint, is able to achieve fea-

densityp(6]x) would ideally be uniform over this set of in- sible, globally correct solutions to trajectory IK even het

verses. Instead, because we use a Gaussian mixture, this Ur[]bsence of (1) singularities of the Jacobian, where the for

form density becomes approximate and has multiple mod%sard mapping has multiple local inverses, and (2) compli-

distributed over the set of inverses. Thus, these mOde$ath%ted angle domains, which are captured through the train-
a quantised representation of the inverse set, and aralleail ing set. The power (’)f the density model is its flexibility:
for use by the global constraint (which could also incorp®ra in princ.iple it represents implicitly (through its modes) '
terms suggested by arguments of movement economy, S"{ﬁré feasiblé solution branches once and for all, even when
as integrated jerk or torque). We show this with a 3-Iinl§ . ]
redundant manipulator with 3 dof f@ (link lengths: 3, 2.5 heir topology can be very complex (e.g. with a ”“”?ber of
2: foot atx — 0) and a 2D workspace & R?, We ge.ne’raté’a branches that depends af because of the nqnllnearlty qf
tr:alining setin a subset g, 27]° and train a.MDN 0 = 36 the forward mapping, or because of mechanical constraints.
’ The disadvantage is that the mappings are implicit, and must

components, neural nets witto0 hidden units). Figs. 12— be made explicit at run time by mode finding. We discuss
13 and table Il show experiments for three trajectories in P y 9

. . : : .~ several aspects of the method next.
x—space (a circle, a loopy trajectory with self-intersatsio . ! :
: Data collection: In common with other machine learn-
and a figure—8). The larger errors occur when the robot arm

. . . ing methods, we need a training set of paifsx). These
is close to fully-stretched configurations (correspondiag cagn be collected by sampling Pﬁspacepiﬁ gomputing

singularities). Both the pseudoinverse and our method are_ £(9), if the forward mapping is known, or by recording

able to retrieve continuous (but different) trajectorieshi- : ; . R

: o . (8,x) while the robot is performing a task (perhaps imitating
space. As before, near singularities the pseudoinverdsoahet . I~ ; )
. ) . a human). This has the advantage of yielding valid pairs (by
is unstable and takes many iterations to converge. L :

definition) and sampling only those areas &&pace that

correspond tdypical motion, rather than feasible but atypical
motions. Besides, typical behaviour may result in correla-
tions between joints that reduce the intrinsic dimensibtnal
of the@-space. This idea is being exploited in motion-capture

Whendim 6 > dim x (redundant manipulator), an infinite

TABLE Il
RECONSTRUCTION ERRORS FOR THE REDUNDANT MANIPULATOR

1 N o . . e . . .
Workspace reconstruction errgg 37, _; [lxn — £(6n)] systems and has wide applicability in IK in graphics [2]
Model | pseudoinv| mean C S _C+M S+AF  and articulated pose tracking in computer vision [23], [24]
Circle | 0060 | 4610 0173 0185 0140  0.161

Loopy 0106 | 3970 0231 0040  0.040 0.040 The_density model need not be oyerly accurate_; it suffices
Figure—8 | 0.135 | 3.930 0.069 0.069  0.069 0.069 to yield modes near the true solution, and spurious modes
(if there are not too many of them) may be filtered out
by the forward constraint. Being data-driven, a limitatioi




our method is that the estimated global trajectories are not VI. ACKNOWLEDGEMENTS

perfectly accurate, however they are very close to the true mACP thanks Sethu Vijayakumar and Marcelo Kallmann
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local method (e.g. RMRC or analysis-by-synthesis).

Run time: In practice, the run time is dominated by
the mode-finding step, which take3(kM?) where M is
the number of components in the GM aidthe average
number of iterations per component 60). When using a
full density modelp(x, 8), M is very large, which prevents
use in real time. But with a conditional density mogé#|x)
(e.g. a MDN), which besides is more accurate, we can limif3l
M to a number slightly larger than the (estimated) maximum
number of solution branches for atl which is far smaller. [4]
The mode-finding algorithms, e.g. Gaussian mean-shift, can
also be significantly accelerated [18], again noting thateh 5]
is no need to converge with large accuracy. Our methocg
does not use the Jacobian and needs no matrix inversions. In
our unoptimised Matlab implementation for the PUMA arm, [6
our method took0/10/4 ms per point (worst/average/best),
while the pseudoinverse method to2#0,/30/10 ms. [7]

In summary, our method can obtain very accurate solutions
if a GM with a large enough number of components is usedig]
However, its main strength is in being able to find a globally
feasible solution without suffering from singularities tbfe
Jacobian (since it does not use the Jacobian or possibly even
a closed-form forward mapping), and dealing in a natural
way (through the training set) with complex angle domain&
that are very difficult to express in analytical form.

(1]
(2]

[11]
V. CONCLUSION

We have introduced a machine learning method for trgi2
jectory IK that can deal with trajectories containing singu
larities, where the inverse mapping changes topology, aht!
with complicated angle domains caused by mechanical con-
straints (e.g. to prevent self-intersection of body limbsai [14]
humanoid robot)—a hard problem for local methods (e.g. J 5]
cobian pseudoinverse). Given a training @&tx), the method
learns a conditional density(0|x) (using a mixture density
network, MDN) that implicitly represents the branches @& th
inverse mapping = f~!(x); the mappings are obtained by
finding the modes of the conditional density using a Gaussia#’]
mean-shift algorithm, and the fin@itrajectory is obtained by
minimising a global, trajectory-wide constraint over tret s [1g]
of modes. We have demonstrated the method with trajectory
IK for simple robot arms (e.g. PUMA 560) with known
forward and inverse mappings. Future work will apply it to[19]
trajectory IK in other domains (such as animation in com-
puter graphics, articulated pose tracking in computeronisi 20]
or articulatory inversion in speech), where neither theise [21]
nor possibly the forward mappings are known, and havin
complex mechanical constraints that are best captured
data-driven approaches. Another advantage of the methodis)
its probabilistic nature: it can model noise in the measired
x and estimate the uncertainty in the reconstructed trajecto,, 4]
(error bars); it is also applicable when some oftheariables
are missing or unspecified (e.g. for a humanoid robot we
might not care about the hand position when walking).

[16]

] R. P. Paul and H. Zhang,

award 11S-0754089.
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