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Abstract— We present a machine learning approach for tra-
jectory inverse kinematics: given a trajectory in workspace, to
find a feasible trajectory in angle space. The method learns
offline a conditional density model of the joint angles given
the workspace coordinates. This density implicitly defines the
multivalued inverse kinematics mapping for any workspace
point. At run time, given a trajectory in the workspace, the
method (1) computes the modes of the conditional density given
each of the workspace points, and (2) finds the reconstructed
angle trajectory by minimising over the set of modes a global,
trajectory-wide constraint that penalises discontinuous jumps
in angle space or invalid inverses. We demonstrate the method
with a PUMA 560 robot arm and show how it can reconstruct
the true angle trajectory even when the workspace trajectory
contains singularities, and when the number of inverse branches
depends on the workspace location.

I. I NTRODUCTION

We consider the problem oftrajectory inverse kinematics
(IK) [1] of a (say) robot arm, where given a sequence of
positionsx1, . . . ,xN in (Cartesian) workspace of the end-
effector, we want to obtain a feasible sequence of joint angles
θ1, . . . ,θN that produce thex-sequence (we do not consider
dynamics in this paper). Given the joint angles, the end-
effector position is given by the forward kinematics mapping,
x = f(θ), which is usually (but not necessarily) known.
However, the inversef−1(x) can take multiple values, or for
redundant manipulators (wheredimθ > dimx), an infinite
number of them; this makes it difficult to represent and com-
putef−1. At the same time, we want the recovered sequence
of joint angles to trace a continuous, realisable trajectory.
Importantly, our goal is not only to solve IK at each trajectory
point, but also to obtain an angle trajectory that is globally
feasible (e.g. avoiding discontinuities or forbidden regions).
Similar IK-related problems arise in other areas: in computer
graphics, where one wants to achieve realistic animation of
articulated characters (e.g. [2]); in the articulatory inversion
problem of speech, where an acoustic waveform (“position
x”) may be produced by different vocal tract shapes (“angles
θ”) [3], [4]; and in the protein loop closure problem in
computational biology [5].

The forward kinematics mappingf can usually be obtained
in closed form for a kinematic chain as a product of homo-
geneous transformation matrices, one per link (however, we
remark that this is not always the case, as in articulatory
inversion). There exist many approaches to IK; we briefly
review some of them here (see [6], [7], [8] for review). In
analytic approaches, one tries to obtain the IK mapping in
closed form (e.g. [9]); this is only possible for certain types
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of manipulators, and even then it can be complicated.Local
methods [10], [11], [8] are based on linearising the forward
mapping to obtainẋ = J(θ)θ̇, where J is the Jacobian
of f (Resolved Motion Rate Control [10]). This equation
can then be integrated numerically in order to obtain the
global trajectory forθ. For redundant manipulators, where
J has more columns than rows, a unique value ofθ̇ may
be obtained by optimising a suitable objective (such as en-
ergy) over the nullspace of the Jacobian; in particular, one
can obtain the pseudoinverse method by minimising‖θ̇‖2,
yielding θ̇ = J+(θ)ẋ, at a computational costO(m2n)
wherem = dimx < n = dimθ. However, the idea breaks
down at singularitiesθ∗, where J(θ∗) becomes singular;
this is caused by the existence of multiple inverse branches
intersecting atθ∗. Also, the numerical error can accumulate
over time, and the computational cost is high since many
pseudoinverses of non-sparse Jacobians must be computed.
Other local methods [8] use an augmented set of variables
(ẋ,θ) rather than jusṫx. Another local method (well-known
in articulatory inversion) isanalysis-by-synthesis, which di-
rectly finds an inverse valueθ of f by iteratively minimising
the squared errorE(θ) = ‖x − f(θ)‖2 with a numerical
optimisation method, e.g. gradient descent, where∇E =
2J(θ)T (f(θ) − x). Unfortunately, which inverse value is
found depends on the initial value forθ, and the iteration may
also get stuck at non-inverse values whereJ(θ)T (f(θ)−x) =
0 but f(θ) 6= x. However, the method is useful if the initial
θ is sufficiently close to the inverse sought.Global methods
[12], [13] propose a variational approach where the trajec-
tory of θ minimises a functional

∫ t1

t0
G(θ, θ̇, t) dt (such as

energy and manipulability) subject to the forward kinematic
constraintx(t) = f(θ(t)) and appropriate boundary con-
ditions. The trajectory is obtained by numerical integration
of the corresponding Euler-Lagrange equation. However, the
method still suffers from singularities [13] and needs the
user to provide boundary conditions that are often unknown.
Thus, an important problem of many of these methods are
the singularities of the Jacobian. These correspond to the in-
tersection of multiple inverse branches (violating the inverse
function theorem), and while locally any of these branches
is valid a priori, globally perhaps only one is valid.

A different type of methods are based on machine learning
(data-driven) techniques. These methods estimate the inverse
mapping using a training set of input-output pairs(x,θ).
While the forward mapping may be learnt by fitting a (say)
neural net directly to pairs(θ,x), learning the inverse map-
ping by fitting a neural net to pairs(x,θ) would average
the different inverse branches, yielding invalid solutions. For
example, consider the functionx = f(θ) = θ2; the least-



squares error‖θ − g(x)‖2
2 is minimised byg(x) = 0, the

average of the two branches±√
x, and this is what a neural

net would yield. The distal learning approach [14] first trains
a neural net to model the forward kinematicsf ; then another
net is prepended to this, and the resulting, cascaded network
is retrained to learn the identity but keeping unchanged the
weights of the forward model. This results in the prepended
portion of the network learning one of the possible inverses
(with the other branches being irreversibly lost). DeMers
and Kreutz-Delgado [7], [15] try to identify (by clustering)
subsets of the data corresponding to different branches, i.e.,
representing one-to-one mappings, and then they fit to each
of them a neural net. However, in practice it is hard to
identify such subsets. D’Souza et al [8] fit a locally weighted
projection regression to map(ẋ,θ) to θ̇ as in the local
methods discussed above.

We present a different method based ondirectly repre-
senting multivalued mappings using density models. It is
a machine learning method that learns trajectory IK given
a training set of input-output pairs(x,θ) and possibly but
not necessarily given the forward mappingf . It is a global
method in that it disambiguates multiple branches by min-
imising a trajectory-wide constraint. The goal of the method
is to obtain aθ-trajectory that, while not perfectly accurate, is
sufficiently close at each point to the correct trajectory that it
can be refined (if desired) using a local method. We describe
the method in section II, demonstrate it in experiments in
section III and discuss it in section IV.

II. T RAJECTORY INVERSE KINEMATICS BY CONDITIONAL

DENSITY MODES

Assume we have a training set of pairs(θ,x) with x =
f(θ), wheref is the forward kinematics mapping (if we do
not knowf , we could estimate it by fitting e.g. a neural net).
At run time, assume we are given a trajectoryx1, . . . ,xN in
workspace and want to obtain a trajectoryθ1, . . . ,θN of joint
angles that yields thex-trajectory while avoiding discontinu-
ous jumps inθ-space. Our method works as follows.Offline,
it estimates a density modelp(θ,x) for both variables, or
just a conditional densityp(θ|x), using the training set. At
run time, for eachn = 1, . . . , N we obtain the conditional
densityp(θ|xn) and its modes; the latter explicitly represent
the multiple inverse solutions at eachxn. Then, we obtain
theθ-trajectory by minimising a constraint over the entire set
of modes. Let us describe each step in detail. This method
is a particular case of a more general approach proposed for
reconstruction of sequences with missing data [16].

A. Density model

The key property of the conditional distributionp(θ|x)
is that it will be peaked around the inverse solutions forx

(see fig. 1). Thus, its modes are representatives of the inverse
values. If we represent the density with a Gaussian mixture,
then we can approximate the true data density to arbitrary
accuracy by using a sufficiently large number of components
[20]. Thus, the modes can approximate the inverse values as
closely as desired (at a corresponding computational cost). A
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Fig. 1. Left: joint probability densityp(x, θ) (shaded area) and forward
mappingf (thick black line).Right: multivalued mappingθ = f−1(x0) =
{θ0, θ1, θ2} from the multimodal conditional distributionp(θ|x). Depend-
ing on the value ofx0, there may be 3 modes (as shown), 2 or 1, and
correspondingly 3, 2 or 1 inverses forx0.

more interesting issue is that the topology of the manifold of
inverse branches can be very complex, where the number of
inverse branches may depend on the value ofx; for example,
at a singularity two different branches intersect (fig. 1). The
density can deal with these topology changes in that e.g. two
different modes can merge into a single one, and vice versa.
This is a useful property that frees us from having to guess
the number of inverses and fix it beforehand.

We can estimate the conditional density with statistical
machine learning techniques given the dataset of pairs(θ,x).
One option is to learn afull density modelp(x,θ) and then
obtain from it the conditional distribution

p(θ|x) = p(x,θ)/p(x) = p(x,θ)/
∫

p(x,θ) dθ.

A convenient density model for which computing conditional
distributions is straightforward are isotropic Gaussian mix-
tures (GM), p(y) =

∑M

m=1 πmp(y|m) where p(y|m) ∼
N (y;µm, σ2I). The GM parametersπm, µm andσ2 (pro-
portion, mean and covariance) are estimated from the training
set by maximum likelihood with the EM algorithm [20]. An-
other option is to learn directly aconditionaldensity model
p(θ|x); this is more efficient because it needs to model a
density in fewer dimensions (onlyθ, notθ andx). We study
both choices (full and conditional) in section III.

B. Mode finding

Assume we have a conditional densityp(θ|x) which has
the form of a GM. Efficient algorithms for finding all the
modes of a GM exist [17] that iterate a hill-climbing al-
gorithm from every centroid of the GM. In particular, the
Gaussian mean-shift algorithm iterates

θ(τ+1) =
∑M

m=1 p(m|θ(τ);x)µm(x)

where the posterior probabilityp(m|θ(τ);x) is the normalised
version of

πm(x) exp
(

− 1
2 ‖(θ

(τ) − µm(x))/σm(x)‖2 )

.

Gaussian mean-shift does not require inverting matrices and
takesO(kM2) where M is the number of components in
the GM andk the average number of iterations per compo-
nent. The computational time can be drastically reduced, for
example discarding low-probability components of the GM
(having smallπm(x)); see [18] for other accelerations.



C. Global optimisation with dynamic programming

Assume we have collected for each stepn in the trajectory
all the modes (candidate inverses). In principle, each of these
modes represents a correct solution for stepn (following
a certain solution branch), but a given branch that is valid
for part of the trajectory may be invalid for another part
(e.g. because certain joint angles’ values are forbidden due
to mechanical constraints). In order to determine the solution,
we minimise a global, trajectory-wide constraint over the set
of modes. In this paper, we consider a constraint of the form
C + λF (for λ ≥ 0), where:

• C =
∑N−1

n=1 ‖θn+1 − θn‖ represents acontinuity con-
straint (integrated 1st derivative). This penalises discon-
tinuous jumps inθ-space and encourages short trajec-
tories. We also useS =

∑N−2
n=1 ‖θn+2 − 2θn+1 + θn‖,

which representssmoothness(integrated 2nd derivative).
• F =

∑N

n=1 ‖xn − f(θn)‖ represents aforward con-
straint (integrated workspace error), and penalises in-
valid inverses, i.e., modesθn that do not map near
the desiredxn. This helps to eliminate spurious modes
produced by ripple in the density model.

Effectively, this is a form of planning in angle space.Global
minimisation of the constraint can be obtained by dynamic
programming inO(Nν2) whereν is the average number of
modes per step (usually very small), thus in linear time on
the trajectory lengthN . Computationally, this is generally
negligible compared to the mode-finding step.

III. E XPERIMENTS

We show proof-of-concept experiments for several sim-
ple robot arms. Our goal is to illustrate the methods’ per-
formance with known ground truth for different settings.
We consider the following methods: the Jacobian pseudoin-
verse (local method baseline); a conditional mean method,
which estimates a univalued inverse mapping (as a neural
net would do); and our conditional modes method, which
estimates multivalued mappings and disambiguates the solu-
tion by minimising a global constraint. We study different
choices of the density model (full and conditional) and of
the global constraint (C, S, F).

A. Planar 2-link robot arm

First, we consider a 2-dof planar robot arm (fig. 2) for
which it is possible to visualise the conditional density and
study the method. The forward mapping is

x1 = l1 cos θ1 + l2 cos(θ1 + θ2)

x2 = l1 sin θ1 + l2 sin(θ1 + θ2)

where l1 = 0.8 and l2 = 0.2. The inverse mapping can be
computed analytically and has 2 solutions (elbow up/down).
Singularities occur when|J(θ)| = |l1l2 sin θ2| = 0 ⇔ θ2 =
0, ±π, i.e., when the arm is fully stretched or folded. To
make the problem more complex, we limit theθ-domain
to [0.3, 1.2] × [1.5, 4.7] rad so that certain branches are in-
valid in certain regions of the workspace. For example, the
region at the right end of the workspace is only reachable
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Fig. 2. Geometry of the 2-link planar arm of sec. III-A (left:θ-space, right:
x-space). The black dots are the training set of pairs(θ,x) ∈ R

4, which
indicate the reachable region of workspace. The blue curve is the trajectory
to be reconstructed, and the red lines schematically represent the robot arm
in 3 different configurations. Points near the two ends of theworkspace can
only be reached by one configuration because of limits onθ1.

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

θ1

θ2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x1

x2

Fig. 3. Marginal densitiesp(θ) (left) andp(x) (right) for the fine GTM
modelp(θ,x) (4–dimensional), as a contour plot. The component centres
of the Gaussian mixture are indicated by red dots.

as elbow-up, and the region at the left end as elbow-down.
More generally, the feasibleθ-domain could have a very
complicated shape, where the range of allowed values for a
single angleθi depends on the values of other anglesθj , e.g.
to avoid self-intersections in a humanoid robot. Respecting
these constraints is simple in our method, since the training
set will only contain feasible configurations by construction,
and the density modes will always lie on high-density regions
(not so the mean!). The trajectory in fig. 2 goes through
singularities (when the arm is fully stretched); a local method
may choose a branch that later on is unable to reach the
trajectory, but our method can choose the correct branch by
keeping track of all local solutions and then disambiguating
them with the global constraint.

We generated a training set of2 000 pairs (θ,x) by uni-
formly sampling theθ-space1 and mapping withf (black
dots in fig. 2). We trained density models by max. likelihood:

1We included samples in a slightly larger domain[0.1, 1.4] × [1.3, 4.9]
to avoid boundary effects in the density model. For GTM, we also added a
bit of noise (stdev0.05) to improve the smoothness of the resulting density.



• Full densityp(x,θ): we could have trained a GM di-
rectly, but instead we trained a generative topographic
mapping (GTM) model [19], since the intrinsic dimen-
sionality of (x,θ) is 2 (not 4, because of the forward
mapping). GTM is a latent variable model that yields
a GM constrained to lie in a low-dimensional mani-
fold. We tried 2 GTM models, one coarse (withM =
225 components in the GM) and one fine (withM =
2500). Fig. 3 shows the resulting density, or rather the
marginalsp(θ) andp(x) for visualisation purposes.

• Conditional densityp(θ|x): we used a mixture density
network (MDN) [20]. This is a particular case of mix-
tures of experts [21] that yields a GM

p(θ|x) =
∑M

m=1 πm(x)N (θ;µm(x), σm(x))

where the functionsπm(x), µm(x) andσm(x) are neu-
ral nets. We usedM = 2 components and 2-layer neural
nets with10 hidden units. Note a MDN is different from
a neural net; the latter is a univalued function, while the
MDN represents multimodal densities, whose number
of modes depends onx.

Fig. 4 shows, for each model, the conditional density for
a particularx value. The conditional density model (MDN)
gives a sharply peaked density with 2 modes near the true
inverses. The fine GTM model gives also a bimodal density
but less sharp, and the coarse GTM model gives a multimodal
density where spurious modes arise along the line connecting
the true inverses. The reason for this is the interference from
the additional dimensions (forx) that GTM is modelling, so
that more components are necessary to achieve an accurate
conditional density. However, as seen below, all 3 models
succeed in recovering the true trajectory thanks to the for-
ward constraintF (which filters out the spurious modes).

Figs. 5–6 show the reconstructed trajectories for each den-
sity model (we obtained similar results with other trajecto-
ries). We also show the trajectory that results from using
the mean of the conditional density. This yields the GM
regression mapping and is essentially equivalent to fittinga
neural net directly to pairs(x,θ). Since it can only represent
a univalued mapping, it averages the two inverse branches,
resulting in the fully stretched configuration, which is in-
valid (i.e., it does not equal the desiredx) for most x;
it is valid where the inverse is univalued, namely at the
ends of the workspace. When using conditional modes, all
3 density models (MDN, coarse GTM, fine GTM) succeed
in reconstructing the true trajectory with good accuracy, but
more importantly, yielding a globally correct trajectory that
chooses the appropriate branch at all steps.

It is very interesting to note that thex-trajectory of fig. 2
can actually be produced by differentθ-trajectories (fig. 7).
In theory, they all have exactly the same value for the global
constraint, but in practice they differ slightly due to the
particular training set and model used. The pseudoinverse
method, being local, can only find one of these trajectories
(fig. 5–6, green). In our method, the dynamic programming
search considers all these trajectories and selects the one
with globally minimal constraint value. However, if (say)
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Fig. 4. Sample conditional densitiesp(θ|x = (0.78, 0.48)) for 3 models:
coarse GTM (top, 18 modes), fine GTM (middle, 2 modes) and MDN
(bottom, 2 modes).Left: contours of the conditional density inθ-space,
its modes (red dots) and the true inverses (black circles).Right: robot arm
configurations for the modes (red) and true inverses (black).

the region [1, 1.5] × [1.5, 2] of θ-space were not allowed
(e.g. because of mechanical constraints) then the trajectory
found by the pseudoinverse method would be invalid; a local
method has to decide which inverse branch to take at the
singularity nearθ = (0.3, 3) and does not benefit from the
information about the forbiddenθ–rectangle that lies in the
future (assuming the trajectory starts nearθ = (0.3, 1.6)).
Our method does benefit from it by learning (through the
training set) only those regions and branches that are actually
feasible and succeeds in reconstructing the correct trajectory.

Table I gives the errors inθ andx wrt the true trajectory
(true = any of fig. 7). Forx they are of around2% of
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Fig. 5. True (blue) and reconstructed trajectories with thefine GTM model
(red) and the pseudoinverse (green).Left: θ-space,right: x-space.Top: using
the conditional mean,bottom: using the modes and the continuity constraint
C. The pseudoinverse solution is one of the trajectories of fig. 7.

the length of the fully stretched arm (l1 + l2 = 1) for the
fine and coarse GTM models, and of0.5% for the MDN
model. These errors are very close to the “oracle” column,
which gives the error achieved if the closest modes to the
true solution were selected. We could refine the trajectory
and reduce the error as much as desired in a postprocessing
step by initialising an analysis-by-synthesis search at each
point in the trajectory. We find that the continuity constraint
alone is enough to find the correct trajectory with the MDN
and the fine GTM model, but not with the coarse GTM
model, because of the spurious modes it has (which provide
shortcuts that the continuity constraint favours). However,
adding the forward constraintF asC+λF (over a wide range
of λ > 0) yields the correct trajectory for all methods. The
smoothness constraintS performs as well as the continuity
constraintC. The errors when using the mean of the density
are considerably larger, but only the figures show how truly
bad its solutions are.

Both the pseudoinverse and our method can achieve low
reconstruction error, depending on the chosen number of it-
erations and of GM components. Besides its ability to ensure
globally feasible trajectories, our method has the advantage
of being less sensitive to singularities. Near singularities,
the pseudoinverse method is numerically unstable and takes
many iterations to converge (not so our method).
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Fig. 6. As fig. 5 but for the MDN model (red).

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

θ1

θ2

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

θ1

θ2

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

θ1

θ2

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

θ1

θ2

Fig. 7. Four trajectories inθ-space that produce the samex-trajectory of
fig. 2 (blue).

TABLE I

RECONSTRUCTION ERRORS FOR THE2D ROBOT ARM

Angle reconstruction error1
N

P

N

n=1
‖θn − θ̂n‖ (rad)

Model mean oracle C S C + λF S + λF
coarse GTM 0.783 0.083 0.628 0.704 0.118 0.122
fine GTM 0.798 0.114 0.114 0.127 0.114 0.127

MDN 0.668 0.037 0.037 0.037 0.037 0.037
pseudoinv 0.06

Workspace reconstruction error1
N

P

N

n=1
‖xn − f(θ̂n)‖

Model mean oracle C S C + λF S + λF
coarse GTM 0.084 0.024 0.094 0.097 0.022 0.028
fine GTM 0.084 0.021 0.021 0.021 0.021 0.021

MDN 0.072 0.005 0.005 0.005 0.005 0.005
pseudoinv 0.016
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left: θ-space, right:x-space). The workspace contains an unreachable region
shaped like a vertical cylinder passing through the robot foot.

−2
0

2
−2

0
2

−2

0

2
5

2

48

7

3

6

1

θ1
θ2

θ3

−0.5
0

0.5
−0.5

0
0.5

−0.5

0

0.5 123
4

5

6
7

8

x1
x2

x3

Fig. 9. Left: modes (red dots) for the conditional densityp(θ|x) for the
MDN model and the PUMA 560 robot arm. There are 4 true inverses (black
circles), which are well represented by the modes, but there are also two
spurious modes (which are removed by the forward constraintF , since they
map far from the desiredx). Right: modes and true inverses in workspace,
represented as schematic arms.

B. PUMA 560 robot arm with 6 DOF

Figs. 10–11 and table II show similar experiments for a
PUMA 560 robot arm with 3 dof for positionθ = (θ1, θ2, θ3),
3 dof for orientation (which we ignore), and a 3D workspace
x ∈ R

3. The (point) IK can be solved analytically for this
robot [9] and yields 4 solution branches (two combinations
of elbow up/down; fig. 9); we use the implementation of
the Matlab Robotics Toolbox [22]. As before, we limit the
angle domain in order to complicate the topology of the
inverse mapping, and generate a training set of5 000 pairs
(θ,x) (shown in fig. 8). The GTM (full density model) that
we trained (results not shown) failed to produce a good
reconstruction because of the existence of multiple spurious
modes. The reasons for this are the higher dimensionality of
the space, but also the fact that GTM is practically limited
to an intrinsic dimensionality of at most 2, while in this
case the intrinsic dimensionality is 3. We also trained a
MDN (conditional density model) withM = 12 components
(and neural nets with300 hidden units), which did succeed
in reconstructing various trajectories, with errors of similar
magnitude as with the planar arm of sec. III-A; we show
a sample of results, for 3 trajectories (an elliptical closed
loop, a figure–8 closed loop, and an open trajectory; figs. 10–
11, table II). Again, the symmetry of the problem results in
several equivalent global solutions; the pseudoinverse and
our method choose different ones. The larger errors occur
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TABLE II

RECONSTRUCTION ERRORS FOR THE3D ROBOT ARM (PUMA 560)

Angle reconstruction error1
N

P

N

n=1
‖θn − θ̂n‖ (rad)

Traj. pseudoinv mean C S C + λF S + λF
Ellipse 0.072 2.110 0.076 0.069 0.071 0.069

Figure–8 0.076 1.990 0.082 0.081 0.081 0.080
Open 0.042 2.140 0.173 0.778 0.173 0.176

Workspace reconstruction error1
N

P

N

n=1
‖xn − f(θ̂n)‖

Traj. pseudoinv mean C S C + λF S + λF
Ellipse 0.025 0.819 0.030 0.029 0.029 0.029

Figure–8 0.019 0.750 0.028 0.027 0.027 0.027
Open 0.007 0.665 0.055 0.080 0.055 0.055

for points near a cylindrical hole at centre of the workspace
which is not reachable by the robot, because of boundary
effects of the density model. They could be reduced by in-
creasing the number of components in the GM, or more
efficiently by refining the trajectory with a local method.
The “oracle” (best achievable) error (not shown) was very
similar to that ofC + λF .

C. Redundant planar 3-link robot arm

Whendimθ > dimx (redundant manipulator), an infinite
number of inversesθ exist for a givenx. The corresponding
densityp(θ|x) would ideally be uniform over this set of in-
verses. Instead, because we use a Gaussian mixture, this uni-
form density becomes approximate and has multiple modes
distributed over the set of inverses. Thus, these modes act as
a quantised representation of the inverse set, and are available
for use by the global constraint (which could also incorporate
terms suggested by arguments of movement economy, such
as integrated jerk or torque). We show this with a 3-link
redundant manipulator with 3 dof forθ (link lengths: 3, 2.5,
2; foot atx = 0) and a 2D workspacex ∈ R

2. We generate a
training set in a subset of[0, 2π]3 and train a MDN (M = 36
components, neural nets with300 hidden units). Figs. 12–
13 and table III show experiments for three trajectories in
x–space (a circle, a loopy trajectory with self-intersections
and a figure–8). The larger errors occur when the robot arm
is close to fully-stretched configurations (correspondingto
singularities). Both the pseudoinverse and our method are
able to retrieve continuous (but different) trajectories in θ–
space. As before, near singularities the pseudoinverse method
is unstable and takes many iterations to converge.

TABLE III

RECONSTRUCTION ERRORS FOR THE REDUNDANT MANIPULATOR

Workspace reconstruction error1
N

P

N

n=1
‖xn − f(θ̂n)‖

Model pseudoinv mean C S C + λF S + λF
Circle 0.060 4.610 0.173 0.185 0.140 0.161
Loopy 0.106 3.970 0.231 0.040 0.040 0.040

Figure–8 0.135 3.930 0.069 0.069 0.069 0.069
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IV. D ISCUSSION

Our method, by directly representing multivalued map-
pings and using a global constraint, is able to achieve fea-
sible, globally correct solutions to trajectory IK even in the
presence of (1) singularities of the Jacobian, where the for-
ward mapping has multiple local inverses, and (2) compli-
cated angle domains, which are captured through the train-
ing set. The power of the density model is its flexibility:
in principle, it represents implicitly (through its modes)all
the feasible solution branches once and for all, even when
their topology can be very complex (e.g. with a number of
branches that depends onx) because of the nonlinearity of
the forward mapping, or because of mechanical constraints.
The disadvantage is that the mappings are implicit, and must
be made explicit at run time by mode finding. We discuss
several aspects of the method next.

Data collection: In common with other machine learn-
ing methods, we need a training set of pairs(θ,x). These
can be collected by sampling theθ-space and computing
x = f(θ), if the forward mappingf is known, or by recording
(θ,x) while the robot is performing a task (perhaps imitating
a human). This has the advantage of yielding valid pairs (by
definition) and sampling only those areas ofθ-space that
correspond totypicalmotion, rather than feasible but atypical
motions. Besides, typical behaviour may result in correla-
tions between joints that reduce the intrinsic dimensionality
of theθ-space. This idea is being exploited in motion-capture
systems and has wide applicability in IK in graphics [2]
and articulated pose tracking in computer vision [23], [24].
The density model need not be overly accurate; it suffices
to yield modes near the true solution, and spurious modes
(if there are not too many of them) may be filtered out
by the forward constraint. Being data-driven, a limitationof



our method is that the estimated global trajectories are not
perfectly accurate, however they are very close to the true
trajectory and may be refined a posteriori if desired by a
local method (e.g. RMRC or analysis-by-synthesis).

Run time: In practice, the run time is dominated by
the mode-finding step, which takesO(kM2) where M is
the number of components in the GM andk the average
number of iterations per component (≈ 50). When using a
full density modelp(x,θ), M is very large, which prevents
use in real time. But with a conditional density modelp(θ|x)
(e.g. a MDN), which besides is more accurate, we can limit
M to a number slightly larger than the (estimated) maximum
number of solution branches for allx, which is far smaller.
The mode-finding algorithms, e.g. Gaussian mean-shift, can
also be significantly accelerated [18], again noting that there
is no need to converge with large accuracy. Our method
does not use the Jacobian and needs no matrix inversions. In
our unoptimised Matlab implementation for the PUMA arm,
our method took50/10/4 ms per point (worst/average/best),
while the pseudoinverse method took200/30/10 ms.

In summary, our method can obtain very accurate solutions
if a GM with a large enough number of components is used.
However, its main strength is in being able to find a globally
feasible solution without suffering from singularities ofthe
Jacobian (since it does not use the Jacobian or possibly even
a closed-form forward mapping), and dealing in a natural
way (through the training set) with complex angle domains
that are very difficult to express in analytical form.

V. CONCLUSION

We have introduced a machine learning method for tra-
jectory IK that can deal with trajectories containing singu-
larities, where the inverse mapping changes topology, and
with complicated angle domains caused by mechanical con-
straints (e.g. to prevent self-intersection of body limbs in a
humanoid robot)—a hard problem for local methods (e.g. Ja-
cobian pseudoinverse). Given a training set(θ,x), the method
learns a conditional densityp(θ|x) (using a mixture density
network, MDN) that implicitly represents the branches of the
inverse mappingθ = f−1(x); the mappings are obtained by
finding the modes of the conditional density using a Gaussian
mean-shift algorithm, and the finalθ-trajectory is obtained by
minimising a global, trajectory-wide constraint over the set
of modes. We have demonstrated the method with trajectory
IK for simple robot arms (e.g. PUMA 560) with known
forward and inverse mappings. Future work will apply it to
trajectory IK in other domains (such as animation in com-
puter graphics, articulated pose tracking in computer vision
or articulatory inversion in speech), where neither the inverse
nor possibly the forward mappings are known, and having
complex mechanical constraints that are best captured by
data-driven approaches. Another advantage of the method is
its probabilistic nature: it can model noise in the measuredθ,
x and estimate the uncertainty in the reconstructed trajectory
(error bars); it is also applicable when some of thex variables
are missing or unspecified (e.g. for a humanoid robot we
might not care about the hand position when walking).
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