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Introduction

• Robot arm inverse kinematics (IK) 
– Infer joint angles from positions of the end-effector

• Pointwise IK: 
– Univalued forward mapping:                        

– Multivalued inverse mapping: 

• Examples

Planar 2-link arm PUMA 560

forward kinematics inverse kinematics

xθ

θ = f−1(x)

f : θ → x

f−1 : x→ θ

x3

x2
x1
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Introduction

• Trajectory IK
– Given a sequence of positions                     in Cartesian workspace 

of the end-effector, we want to obtain a feasible sequence of joint 
angles                     that produce the   

• Difficulties
– Multivalued inverse mapping (e.g. elbow up; elbow down) 

– must be globally feasible, e.g. avoiding discontinuities 
or forbidden regions  

• Trajectory IK in other areas

x1, . . . ,xN

θ1, . . . ,θN

θ-trajectory

x-trajectory
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Traditional approaches and their problems

• Analytical methods (PaulZhang’86): only possible for simple arms

• Local methods
– Jacobian pseudoinverse (Whitney’69, Liegeois’77) 

• Linearizes the forward mapping:  
• Breaks down at singularity:          becomes singular
• High cost and numerical error accumulates

– Analysis-by-synthesis: 

• Global methods (Nakamura&Hanafusa’87, Martin et al’89) 
– Use variational approaches:
– Need boundary conditions
– Still have problems with singularities

• Machine learning methods
– Neural network
– Distal learning (Jordan&Rumelhart’92) 
– Ensemble neural network (DeMers&Kreutz-Delgado’96, DeMers&Kreutz-Delgado’98) 
– Locally weighted linear regression (D’Souza et al’01) 

J(θ)

θ∗ = argminθ‖x − f(θ)‖
2

x = f(θ)→ ẋ = J(θ)θ̇ → θ̇ = J+(θ)ẋ

min
∫ t1
t0
G(θ, θ̇, t) dt

θ-spacex-space
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Trajectory IK by conditional density modes

• Derive the multivalued functional relationship                     from the 
conditional dist p(θ|x)

f
−1 : x→ θ

– Estimate (offline) from a training set  
– Online, given 

1.  for
find all modes from

2. Search in the graph over all modes to minimize

p(θ|x) {(θi,xi)}
x-trajectory, x1, . . . ,xN

n = 1, . . . , N
p(θ|x = xn)

N−1∑

n=1

‖θn+1 − θn‖

︸ ︷︷ ︸
continuity constraint

+λ
N∑

n=1

‖xn − f(θn)‖

︸ ︷︷ ︸
forward constraint

modes

n=1 2 … N

θ
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Offline step: learning conditional density

• Given a training set               , estimate            by:
• Learning the full density             . We use Generative Topographic Mapping (GTM) 

• A constrained Gaussian mixture in space 

• Learning directly             . We use Mixture Density Network (MDN) 

• A combination of neural network and Gaussian mixture

– Advantages
• Represent inverses by modes from the conditional density

• Deal with topological changes naturally (modes split/merge) 

p(θ |x)

p(θ,x)

p(θ|x)

(θ,x)

p(θ|x){(θi,xi)}

x p(θ|x) = GM : {πm(x), µm(x), σm(x)}

f(x;W) t = (θ,x)
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1. Finding modes of by Gaussian mean-shift (GMS) (Carreira-Perpinan’00) 

– Start from every centroid of the GM and iterate 

– Complexity:

2.  Obtaining a unique                     by global optimization

– Minimize                       over the set of modes with dynamic programming
• : continuity constraint (integrated 1st derivative)

penalizes sudden angle changes

• : forward constraint (integrated workspace error)

penalizes spurious inverses

– Complexity:

p(θ|x)

θ-trajectory

C =
∑

N−1
n=1 ‖θn+1 − θn‖

F =
∑

N

n=1 ‖xn − f (θn)‖

p(m|θ(τ);x) ∝ πm(x) exp (−
‖θ(τ)−µ

m
(x)‖2

2·σm(x)2
)

C + λF (λ ≥ 0)

O(kNM2)

O(Nν2)

Online steps

θ(τ+1) =
∑

M

m=1 p(m|θ
(τ );x)µ

m
(x)
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Experiments: planar 2-link robot arm

• Limit the angle domain to [0.3,1.2]x[1.5,4.7] rad

• Generate 2000 pairs by uniformly sampling angle space  

• Train density models:

– GTM: M=225 and 2500 components

– MDN: M=2 components and 10 hidden units

p(θ) p(x)Desired                       and training setx-trajectory
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t2

l1

l2

x1

x2

end-effector
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x1
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Conditional density            by GTMp(θ|x)
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Conditional density            by MDNp(θ|x)
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Trajectory reconstruction by GTM (modes)
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Trajectory reconstruction by MDN (modes)
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Global ambiguity

? ?

? ?

-- At singular configurations, pseudoinverse doesn’t know how many branches exist and
- local methods get stuck here 
- Forbidden regions: can rule out some trajectories 
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Experiments: PUMA 560 robot arm

• 3D angle space (ignore orientation) and 3D workspace

• Generate a training set of 5000 pairs

• Train conditional density models

– MDN: M=12 components, 300 hidden units

• 4 inverses for a workspace point (combinations of elbow up/down)

θ-space x-space
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Conditional density           by MDNp(θ|x)

x-spaceθ-space
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Reconstruction of figure-8 loop by MDN (modes)

x-spaceθ-space
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Experiments: redundant planar 3-link arm

• Consider a redundant manipulator with 3D angle space and 2D 
workspace

• Generate a training set of 5000 pairs

• Train conditional density models

– MDN: M=36 components, 300 hidden units
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Conditional density            by MDNp(θ|x)

x-spaceθ-space
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Reconstruction of loopy trajectory by MDN (modes)

θ-space x-spacex-spaceθ-space
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Discussion

• Data collection: need a training set

• Run time

– Bottleneck: mode-finding (may be greatly accelerated) 

– Run time per point (Matlab implementation)

Worst (ms) Average (ms) Best (ms) 

Our method 50 10 4

Pseudoinverse 200 30 10

{(θi,xi)}
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Conclusions

• Propose a machine learning method for trajectory IK that:
– Models all the branches of the inverse mapping

– Can deal with trajectories containing singularities, where the inverse mapping 
changes topology (mode split/merge); and with complicated angle domains 
caused by mechanical constraints (no modes)

– Obtain accurate solutions if the density model is accurate

• The method
– Learns a conditional density that implicitly represents all branches of the inverse 

mapping given a training set

– Obtains the inverse mappings by finding the modes of the conditional density 
using a Gaussian mean-shift algorithm

– Finds the angle trajectory by minimising a global, trajectory-wide constraint over 
the entire set of modes

• Future work will apply it to other trajectory IK problems
– Articulatory inversion in speech, articulated pose tracking in vision, animation in 

graphics
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