
Conclusions and future work
We introduce a machine learning method for trajectory IK that can deal with trajectories con-
taining singularities, where the inverse mapping changes topology, and with complicated angle
domains caused by mechanical constraints. Given a training set, 1) it learns a conditional den-
sity that implicitly represents the branches of the inverse mapping; the mappings are obtained
by 2) finding the modes of the conditional density using a Gaussian mean-shift algorithm, and
3) the final θ-trajectory is obtained by minimising a global, trajectory-wide constraint over the
set of modes. Future work will apply it to trajectory IK in animation, articulated pose tracking in
computer vision, and articulatory inversion in speech.

Work funded by NSF CAREER award IIS-0754089
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Discussion
• Data collection: need a training set (θn,xn)

• Run time

– Bottleneck: mode-finding (may be greatly accelerated)
– Matlab implementation: 50/10/4 ms per point (worse/average/best), while pseudoinverse

takes 200/30/10 ms

• Summary

– Obtains accurate solutions if the density model is good
– Deals with singularities of the Jacobian and complicated angle domains naturally
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Experiments: redundant planar 3-link arm

Ellipse Figure-8
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MDN (36 components, 300 hidden units) using modes: The larger errors occur near sin-
gular configurations (e.g. fully-stretched arm). Pseudoinverse: is unstable and converges
slowly near singularities. Both methods retrieve continuous (but different) trajectories.
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Experiments: PUMA 560 robot arm
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Results for a PUMA 560 arm with 3D angle space and 3D workspace: ❶ We generate a training
set of 5000 pairs and train a MDN (12 components, 300 hidden units). ❷ shows the modes
of the conditional density p(θ|x) represent well the 4 true inverses (two combinations of elbow
up/down) given a point in workspace. ❸-❹ show reconstructions for a figure-8 and an elliptical
closed loops (original trajectories in blue). Note that symmetry of the problem results in several
equivalent global solutions: our method and the pseudoinverse method choose different ones.
The larger errors occur for points near a cylindrical hole (❶, right) at the centre of workspace
which is not reachable by the arm, because of boundary effects of density models.

5Experiments: planar 2-link arm
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❶ We limit the θ-domain to [0.3, 1.2]×[1.5, 4.7] rad to complicate the topology and generate
2000 pairs by uniformly sampling θ-space and mapping with f . We train: 1) full density
p(θ,x) by coarse (M = 225) and fine (M = 2500) GTMs (❷ shows the marginal density for
the fine GTM); 2) conditional density p(θ|x) by a MDN. ❸ shows the conditional density
and modes for a given x. ❹-❺ show reconstructed trajectories for the fine GTM and
MDN. The conditional density mean averages two inverses, resulting in a fully-stretched
arm, while the modes succeed in reconstructing true trajectories with good accuracy for all
density models. ❻ shows the x-trajectory could be produced by different θ-trajectories.
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Trajectory inverse kinematics by conditional density mode s
Idea of the method:

❶ Offline, we estimate a density model p(θ,x)

for both variables, or just a conditional den-
sity p(θ|x), using a training set.

❷ At run time, for each n = 1, ..., N we ob-
tain the conditional density p(θ|xn) and its
modes.

❸ For n = 1, ..., N , we obtain the θ-trajectory
by minimising a constraint over the entire
set of modes.
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❶ Density models
• Given a training set of pairs (θn,xn), estimate conditional density model p(θ|x) by:

– Learning the full density p(θ,x). We test: Generative Topographic Mapping (GTM)
– Learning directly p(θ|x). We test: Mixture Density Networks (MDN)

Both represent the density with a Gaussian mixture (GM) with M components

• Advantages:

– Represent inverses by modes from the conditional density
– Deal with topological changes naturally (mode merging)

❷ Mode finding
• Find all modes of conditional density p(θ|xn) by Gaussian mean-shift (GMS), which starts from every centroid of the

GM and iterates θ
(τ+1) =

∑M
m=1 p(m|θ(τ ))θm

❸ Global optimisation with dynamic programming
• Obtain a unique θ-trajectory by minimising C + λF over the set of modes with dynamic programming (λ ≥ 0)

– C =
∑N−1

n=1 ‖θn+1 − θn‖: continuity constraint (integrated 1st derivative), penalises sudden angle changes

– F =
∑N

n=1 ‖xn − f(θn)‖: forward constraint (integrated workspace error), penalises spurious inverses

Computational complexity
(k: average number of GMS iterations; ν: average number of modes at each step n)

Density models Mode finding Global optimisation
Offline O(kNM2) O(Nν2)
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Problem statement
• x: positions in Cartesian workspace of the end-effector

• θ: joint angles

• f : θ → x forward kinematics

• Pointwise inverse kinematics (IK): θ = f
−1(x)

• Trajectory IK: Given an x-trajectory, to obtain a feasible
θ-trajectory that produces the x-trajectory

• Difficulties:

– Multivalued inverse mapping f
−1(x) (e.g. elbow up; el-

bow down)
– θ-trajectory must be globally feasible, e.g. avoiding dis-

continuities or forbidden regions

• Traditional methods:

– Analytical method
– Pseudoinverse: x = f(θ) → ẋ = J(θ)θ̇

– Global method by variational approaches
– Data driven methods

2Abstract
We present a machine learning approach for trajectory
inverse kinematics: to find a feasible trajectory in angle
space that produces a given trajectory in workspace. The
method learns offline a conditional density model of the
joint angles given the workspace coordinates. At run time,
given a trajectory in the workspace, the method (1) com-
putes the modes of the conditional density given each
of the workspace points, and (2) finds the reconstructed
angle trajectory by minimising over the set of modes a
global, trajectory-wide constraint. We demonstrate the
method with a PUMA 560 robot arm and show how it
can reconstruct the true angle trajectory even when the
workspace trajectory contains singularities, and when the
number of inverse branches depends on the workspace
location.
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