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The positions, speeds, etc. of supraglottal mechanical elements of the vocal tract (tongue, jaw ... )

/ The acoustic-to-articulatory mapping problem

are called articulatory variables and are continuous functions of the time.

> A vocal tract configuration produces a
unigue acoustic signal. Thus the map-
\ ping articulatory — acoustic is unival-

ued (forward problem).

> An acoustic signal can be produced

/ by different vocal tract configurations.

articulatory configurations

acoustic signal The mapping acoustic — articulatory

Is multivalued (inverse problem).

Approaches:
> Dynamic programming search in a large articulatory codebook: best performance, but very slow.

> Neural network (trained with the codebook): faster and more compact, but worse performance.

> Carefully prepared assembly of neural networks: approaches codebook performance and is fast.
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Joint density modelling of acoustic and articulatory variables

e Traditional mapping approximators (e.g. neural networks) cannot deal well with:

— the stochastic character of real data

— multivalued mappings (the nonunigueness problem)
. .. for which probabilistic models are more suitable.
e \\e propose:

— ajoint density model for the acoustic and articulatory variables
— construction of the acoustic-to-articulatory mapping from a conditional distribution

— use of continuity constraints (via dynamic programming) to solve the ambiguity.
e The correlations in the joint data (acoustic & articulatory) imply a low intrinsic dimensionality

e ... which suggests using a latent variable model for the joint variables.
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Latent variable models

Aim: to infer a of an observed, high-dimensional process.

Prior p(x) Induced p(t)

Oooooomm
ooooommg
EEEEEEN

1 Manifold M = f(X) t1

PLP

Latent space X Observed space 7T
of dimension L of dimension D

The data distribution in observed space 7 is modelled using a low-dimensional representation in

latent space X . In the figure the observed space consists of 62-dimensional EPG patterns plus 12-
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/ Latent variable models (cont.) \
> Latent space prior p(x), mapping f(x), noise model in observed space p(t|x): parameters ©.
> Marginalisation in latent space (often difficult): p(t) = [ p(t|x)p(x) dx.
> Maximum likelihood parameter estimation from sample {tn},,]:le, usually via an EM algorithm:

N
argmaxe [(®) =) ' logp(t,|O©).
: : : : . . . L _ _ p(t|x)p(x)
> Dimensionality reduction mapping via posterior distribution in latent space: p(X\t) = T
> The latent dimension L must be fixed in advance—could use model selection.
_ Prior in latent _ Noise model Density in observed
Latent variable model Mapping f
space p(X) p(t|x) space p(t)
_ _ _ constrained
Factor analysis (FA) N(O, I) linear diagonal normal _
Gaussian
Principal component constrained
p ’ N(0,1) linear spherical normal _
analysis (PCA) Gaussian
Generative topographic discrete generalised _ constrained
spherical normal _ _
\mapping (GTM) uniform linear model Gaussian mlxture/
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/Deriving a functional relationship from a conditional distribution\

e Consider a conditional distribution p(y|x = x¢).

p(y|x)

e In principle, each solution of y = f_l(xo) should

correspond to a mode of p(y|z = x).

7 Y1 Y2 Y3 Y4 Y5
e |f the entropy is low (i.e., the distribution is very informative), we can pick representative points of
p(y|z):
— Single choice (univalued mapping): pick the mean.

— Multiple choice (multivalued mapping): pick all the modes.

e The correct mode at each point is selected using a continuity constraint minimised by dynamic

programming.

e For unimodal, symmetric distributions (e.g. factor analysis) nothing of this matters!

o J
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/ Our problem: prediction of PLP coefficients and EPG patterns \

Two characteristics of the EPG variables:
> They are an incomplete representation of the vocal tract.

> They are binary—but temporal continuity as proximity between consecutive frames still applies.

The dataset

= plus 12-dimensional PLP coefficients WMWMW sampled at 200 Hz.
Both mappings, EPG — PLP and PLP — EPG, are one-to-many.

> 62-dimensional EPG patterns

> 10 utterances from the ACCOR database for speaker RK were used for training (over 7500 74-

dimensional vectors). 4 utterances were used for testing.

> The silence intervals at the beginning and end (but not inside) of each utterance were removed.

The models
> Factor analysis with a latent space of dimension L = 9 (total: 825 parameters).

> GTM with a latent space of dimension L. = 2, a 30 x 30 latent grid and a 7 X 7 RBF grid (total:
3751 parameters).
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N = 579 points, without start and end silence intervals and without gain.

Reconstruction results: average squared error

~ 2
Average squared error + ij:l th — th for utterance “We tore down the outbuildings” with

Problem type

Pattern of Factor MLP GTM
missing data || analysis mean gmode rmode cmode dpmode
EPG — PLP || 0.3185 | 0.3063 | 0.2843 0.3040 0.2983 0.2399  0.2821
PLP — EPG 5.7824 | 5.6305 | 55576 7.8321 9.2272 24032  8.4136
75% missing 2.9885 3.1947 3.6480 4.0173 2.2315  2.4717
50% missing 1.7364 1.8605 1.9608 2.1005 1.5297  1.6100
25% missing 0.8000 0.8151 0.8498 0.8832 0.6948  0.7178
Low error High error

EPG — PLP
PLP — EPG

General

cmode ~ MLP < dpmode < mean < gmode < FA < rmode
cmode < MLP < mean < FA < dpmode < gmode < rmode

cmode < dpmode < mean < FA & gmode < rmode
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Summary

e Probabilistic models (in particular latent variable models) estimate
mappings where:
— the data is noisy

— nonuniqueness exists (inverse problems).
e Advantages:
— Physical knowledge of the problem (e.g. forward mapping) not

required: just joint data.

— Applicable to varying patterns of missing data: the observed
variables are treated symmetrically, unlike methods based in

function approximators.

— Insensitive to time warping.
e Disadvantages:

— Sensitivity to the smoothness of the density model.
— High computational cost at reconstruction time.
— Difficulty of density estimation in high dimensions.

e \We don’t model the temporal evolution of the data (unlike HMMs

or Kalman filters).
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