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Introduction

- Generalized Additive Models (GAMs) are an important model class
in interpretable machine learning.

« One effective approach in learning these models is through an
ensemble of decision stumps.

 Since each stump depends on a single feature, stumps using the
same feature x4 can be grouped to define a shape function f4(xy)
for this feature.

. Let s(x;0): RP — R be a decision stump with 4 learnable
parameters: 8 = {¢, 7,1/, u"}. ¢ € {1,..., D} is a feature index to
split, 7 € R is a threshold value, 1/, 1" € R are the left and right leaf

prediction values:
/
S(x; 0) = ,ur,
W

A stump forest F(x; ©) is defined as a sum of T stumps plus a bias

term u:
-
= U+ Z S(X; Ht)
t—1

- Regrouping the stumps by feature in_dices, we obtain an additive
model:

ifX¢<7‘
ifX¢Z7‘.

T D
:/L+ZS(X;9t ,LL+Z Z S(X; 0¢) = +Zfd(xd)7
f=1 d=1t: ¢=d d=1
where fy(Xa) = D 1. 4—q S(X; 01).
- |llustration on a toy example:
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Alternating Optimization

- Consider a regression problem with a squared error loss:

- We apply alternating optimization with the following steps:

- Individual stumps. The optimization problem over a given stump
s(-; 8¢) when others are fixed is:

N

Z[Yn — Z S(Xn; 0u) — S(Xp; 04)]°

n=1

U=+t

This is a standard regression problem over a stump but with
targets corresponding to the residuals. It can be solved exactly
through enumeration over each (feature, threshold) pair as in
traditional decision tree algorithms.
+ All leaf parameters. Once the splits {¢;, 7}/, are fixed, the
problem simplifies to a linear regression on features corresponding
to stump partitions. To see this, we can rewrite the predictive
function of a stump using an indicator function:

s(x; 0)

objective function over all leaves is:

min
M{Mt M5t

r T

22

Since in this step all the sp

1 2

= u! I(xy < 7) + u" I(x, > 7). With this notation, the

its {¢¢, ¢}/, are fixed, the indicator

functions /() are just constants multiplying the unknowns

{1}, 1

M T . that appear linearly inside the squared error. And so,
eq. 1 is a simple linear regression problem on features induced by

the stump splits, and can also be solved exactly and efficiently.
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- We apply an ¢4 discontinuity penalty to shape

functions:

where 5; Is the value of the t-th constant piece
from the left, and T, i1s the number of constant

Tg—1

(st o) = 3 881 — 7|

pieces for feature d. This penalizes the
difference between adjacent constant piece

values.

« We also propose is to penalize the deviation
from the bias for each leaf value:

t=1
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- With these two types of regularization, our final objective function is:
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Experiments, interpretability

Table: RMSE error. Green color is the best test error, and blue is the second best. et
Dataset Ours GB EBM Splines FastSparse 5
Cpuact train 2.12+0.01 2.20+0.04 2.19+0.02 2.53+0.02 2.76+0.03 o
N=8.2Kk test 2.3/+0.03 2.43+0.06 2.50+0.05 2.69+0.06 2.91+0.17 CDO_S
D=21 size 642-+0 3.4k+133 16.6k+36 27143 119-+4 D:_
time (s) 9.4+0.3 46-+17 39-+2 37+0.03 3.8+0.5 )
Wine  tain x102 | 65.70-0.15 68.13-0.27 66.73+0.27 67.99-0.29 68.01-+0.25 © mg e e o
N=6.5k test x102 | 70.02+0.66 70.92+-0.51 70.12+0.39 71.79+1.40 71.77+0.63
D=11 size /24+12 /7032 3.9k+11 19717 18214 2100 ‘
time (s) 6.0+0.3 2.87+058 4.44+1.33 D616 0.57+0.07 o
Housing train x 1072 51.84+0.16 54.24+-0.27 52.70+0.04 53.37+-0.21 54.62+0.20 \:1
N=21k test x10-2 | 54.80+0.65 56.15+0.58 55.23+0.68 55.49+0.61 56.29-+0.65 S0
D=8 size 1.4k+20 2.4K-+31 7.2Kk+8 528-+2 579-+9 D:_ OULI\l‘J}
time (s) 13.6+0.4 4248 362 3742 3.94+0.73 . | | |
Diamond train x102 9.95+0.02 10.07+0.05 10.11+0.03 10.02+0.02 10.01-+0.02 " Engine size
N=b54Kk test x102 10.15+0.08 10.19+0.08 10.23+0.06 10.96+1.45 10.1/7+0.09
D=26 size 934 -+16 1182181 3.4k-+7 27/3+24 516-+11
time (s) 25.1+0.9 140458 2042 424-0.4 45410
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Visualization of the resulting GAM on the UK used car price prediction dataset.
For the numerical features, the light red bars show the histogram of the train-

Ing points with the frequency values given on the right y-axis.



