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1 Introduction

• Many important practical applications involve a binary classification problem with

imbalanced classes or asymmetric costs. Examples are fraud or spam detection or

churn prediction.

• We focus on decision trees, which are widely recognized as among the most

interpretable models.

• We formally propose the concept of cost-optimal curve (COC). This defines a set of

optimal accuracy classifiers as a function of the false positive level.

• We give an equivalent, penalized formulation which has the form of a weighted 0/1

loss and (with our new algorithm) is more amenable to optimization, although still

NP-hard in general.

Work partially supported by NSF award IIS–2007147.

2 The ROC curve and the cost-optimal curve (COC)
The ROC curve:

• Is obtained by postprocessing a

classifier through a threshold

t ∈ [0, 1], so that it predicts the

positive class if p(y = +1|x) > t .

• Over a training set with N points this

defines a set of at most N + 1

classifiers, each corresponding to an

ROC point (FP,TP).

• Does not produce a classifier that,

having the desired FP rate, is

optimal within its model class.

The Cost-Optimal Curve (COC) aims to optimize:

•

min
θ

ν(θ) s.t. π(θ) ≤ p with ν(θ) =
N∑

n: yn = +1

L(yn,T (xn;θ)), π(θ) =
N∑

n: yn = −1

L(yn,T (xn;θ)) (1)

where L(·, ·) is the 0/1 loss, ν is the FN rate, π is the FP rate.

• In practice, it solves the following unconstrained optimization:

min
θ

ν(θ) + λπ(θ) (2)

where λ ≥ 0. This objective function is a weighted 0/1 loss.

• Problems (1) and (2) have the same set of solutions, i.e., solving (1) for all p ∈ [0,N] produces the

same set of classifiers as solving (2) for all λ ≥ 0 and hence the same COC curve. But solving (2) is

easier than (1) in our case.

• Dominates the ROC curve (or any other curve using the same classifier family). That is, for any point

(FP,TP) on the ROC curve there exists another point (FP’,TP’) on the COC curve with FP’ ≤ FP and TP’

≥ TP.
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θ
∗(p) is an optimal classifier (minimizing ν) with

an FP rate of at most p. The infeasible set is in

pink. The contours of ν and π are in color and

black, respectively.

optimal classifier path θ
∗(λ) over the cost λ, i.e.,

minimizing ν+λπ, from θ
∗
ν = θ

∗(0) to θ
∗
π = θ

∗(∞).
The contours of ν and π are in color and black,

respectively.

the COC curve corresponding to the

optimal classifier path and the ROC

curve (assuming as base classifier

that for λ = 1).

Figure: Illustration of the COC curve for a classifier with parameters θ ∈ R
2, FP rate π(·), FN rate ν(·).

input: training set {xn, yn ∈ {−1, 1}}N
n=1,

depth of the tree ∆, regularization parameter α ≥ 0,

schedule parameter β > 1. Set the base cost λ0 = N+

N−
.

T0(·;Θ) = TAO on a random tree of depth ∆ with cost λ = λ0

T−0 (·;Θ) = T0(·;Θ), λ = λ0, i = 0

repeat

λ← β λ, i ← i + 1

T−i (·;Θ) = TAO on T−i−1(·;Θ) as initial tree with cost λ
until false positives by T−i (·;Θ) is zero

T+
0 (·;Θ) = T0(·;Θ), λ = λ0, i = 0

repeat

λ← λ/β, i ← i + 1

T+
i (·;Θ) = TAO on T+

i−1(·;Θ) as initial tree with cost λ
until false negatives by T+

i (·;Θ) is zero

return all trained trees {T−i (·;Θ)}i ∪ {T
+
i (·;Θ)}i

Figure: Pseudocode of COC with decision trees

3 Tree Alternating Optimization (TAO)

To realize the advantages of the COC curve one needs to optimize (2),

which uses a weighted 0/1. Recently, an algorithm has been proposed

(Tree Alternating Optimization (TAO)), which does optimize a global

loss over a parametric tree (axis-aligned or oblique). We extend TAO

to handle a weighted 0/1 loss objective:

E(Θ) =

N∑

n: yn = +1

L(yn,T (xn;Θ)) + λ

N∑

n: yn = −1

L(yn,T (xn;Θ)) + α
∑

i∈D

φi(θi) (3)

The algorithm is based on 3 theorems:

• separability condition: objective function (3) separates over any

set of non-descendant nodes (e.g. all nodes at the same depth),

those can be optimized independently and in parallel.

• Optimizing a decision node reduces to a simpler problem of a
weighted 0/1 loss binary classification over the node weights.

In practice, we solve it using convex surrogate, logistic regression.

• Optimizing a constant label leaf is simply solved by setting the

label to the weighed majority class.

input initial T (·,Θ) of depth ∆,

training set {xn, yn ∈ {−1, 1}}N
n=1

cost of false positives λ,

regularization parameter α ≥ 0

repeat

for d = ∆ to 0 do
for all nodes node at depth d

if node is a leaf

set the label of the node to the most

costly class in the reduced set

else
fit a weighted 0/1 binary classifier

where weights come from the costs

until convergence

return tree T (·;Θ)

Figure: TAO pseudocode for cost-sensitive learning

4 Imbalanced classification
MNIST synthetic sensit

32k, 784, 1:10, 1:1 64k, 100, 1:17, 1:3
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5 Toy 2D illustration

0.0, 0.0 0.11, 0.45 0.24, 0.78 0.57, 0.89 1.0, 1.0

0.0, 0.27 0.07, 0.61 0.24, 0.78 0.36, 0.91 0.76, 1.0
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