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Abstract

Spectral methods for dimensionality reduction

and clustering require solving an eigenproblem

defined by a sparse affinity matrix. When this

matrix is large, one seeks an approximate solu-

tion. The standard way to do this is the Nyström

method, which first solves a small eigenproblem

considering only a subset of landmark points, and

then applies an out-of-sample formula to extrap-

olate the solution to the entire dataset. We show

that by constraining the original problem to sat-

isfy the Nyström formula, we obtain an approx-

imation that is computationally simple and effi-

cient, but achieves a lower approximation error

using fewer landmarks and less runtime. We also

study the role of normalization in the computa-

tional cost and quality of the resulting solution.

Spectral problems involve finding eigenvectors of an affin-

ity matrix and have become a standard technique in ma-

chine learning problems such as manifold learning (Cox

& Cox, 1994; Schölkopf et al., 1998; Tenenbaum et al.,

2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003) or

spectral clustering (Shi & Malik, 2000; Ng et al., 2002).

Their success is due to the power of neighborhood graphs

(via an affinity matrix or graph Laplacian) to express simi-

larity between pairs of points, and to the existence of well-

developed linear algebra routines to solve the numerical

problem. We consider a spectral problem of the type

minX tr
(
XMXT

)
s.t. XXT = I (P)

where M is an N ×N symmetric matrix (usually, a graph

Laplacian) constructed on a high-dimensional dataset Y =
(y1, . . . ,yN ) of D ×N , and X = (x1, . . . ,xN ) of d×N
are coordinates in R

d for the N data points (often called
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the embedding), where d < D. Constraints of the form

XBX = I with positive definite B can be used with a suit-

able transformation of M. The solution of (P) is given by

the d trailing eigenvectors of M (note M need not be pos-

itive semidefinite, though it often is). When the number of

points N is very large, an exact solution becomes compu-

tationally impractical or undesirable, even if M is sparse.

Our goal is to solve problems of the type (P) approximately.

We focus on approximate methods to solve (P) that use

sampling, i.e., they solve an eigenproblem on a subset of

L ≪ N points from Y (“landmarks”) and then use this

to extrapolate the solution to all N points. The proto-

type of these is the Nyström method (Williams & Seeger,

2001; Fowlkes et al., 2004), based on an out-of-sample

formula that predicts x ∈ R
d for a given point y ∈ R

D

as a linear combination of the landmarks’ solution using

as weights the affinity values between y and the land-

marks. This has the advantage of interpolating the land-

marks and being convenient—the weights are simply affin-

ity matrix entries. It gives a good approximation if us-

ing sufficiently many landmarks. Its fundamental dis-

advantage is that the reduced eigenproblem on the land-

marks, to which the Nyström formula applies, uses only the

landmark-landmark affinity values. If too few landmarks

are used, this eigenproblem gives a bad approximation and

so does the Nyström extrapolation.

A different approach is that of Locally Linear Landmarks

(LLL) (Vladymyrov & Carreira-Perpiñán, 2013b), which

seeks to define a reduced eigenproblem containing more

information than just landmark-landmark affinities. LLL

defines a different out-of-sample formula, a linear com-

bination of the projections of the nearest landmarks to y

using weights that reconstruct y locally linearly in input

space. The crucial idea in LLL is that problem (P) is

solved constrained to using these weights, resulting in a

reduced eigenproblem that does use the entire affinity ma-

trix. Hence, this obtains a better landmark embedding than

the Nyström method for the same number of landmarks.

This reasoning naturally leads to our first contribution, the
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Variational Nyström (VN) method, where we incorporate

the Nyström formula as a constraint in (P). As in LLL, we

obtain a reduced eigenproblem that uses the entire affinity

matrix and thus better represents the manifold structure of

the landmarks. This reduced eigenproblem is then “opti-

mal” for the Nyström formula (unlike the one based only

on the landmark-landmark affinities). We also save the ex-

pensive computation of the LLL weights. We call it “vari-

ational” Nyström to refer to its optimality motivation.

Our second contribution addresses an issue that has so far

been overlooked in Nyström-type methods: how to use sub-

sampling approximations with data-dependent kernels (e.g.

graph Laplacian)? There each kernel element is generated

not only by the corresponding points from the original data,

but from the other points as well. In this case, applying the

approximations directly to the kernel gives bad results. We

investigate ways to normalize the data-dependent kernel in

order to get best performance with VN and other methods.

Notation. Ã indicates that A is approximated. Ŷ indicates

a landmark subset of Y. A subscript shows to which ma-

trix we apply a certain transformation, e.g. UP is a column

matrix of eigenvectors of P and DW = diag (W1) is a de-

gree matrix for W (and 1 is a vector of ones). For degree

matrices that are computed for rectangular matrices, an ar-

row indicates whether the sum is taken row- or column-

wise, e.g. for an N × L matrix C, DC→ = diag (C1) is a

N ×N matrix of row-wise sums and DC↓ = diag (1C) is

an L× L matrix of column-wise sums.

1. Prior Work

The Nyström method is the most widely used sampling

method in machine learning to approximate the computa-

tion of the eigenvectors of a large matrix. It was originally

proposed as a quadrature method for numerical integra-

tion to approximate eigenfunctions of continuous operators

(Atkinson, 1997). Williams & Seeger (2001) introduced it

to machine learning to approximate the eigenvectors of a

large kernel matrix, as in Gaussian processes. After that

it was used for many other applications: kernel methods

(Zhang et al., 2008; Zhang & Kwok, 2010; Cortes et al.,

2010; Yang et al., 2012), spectral clustering (Fowlkes et al.,

2001; Belongie et al., 2002; Fowlkes et al., 2004), manifold

learning (Platt, 2004; Talwalkar et al., 2013), etc.

Consider a symmetric N × N matrix M = (mij) whose

elements come from applying a certain affinity function

K(·, ·) on pairs of points from Y, i.e., mij = K(yi,yj)
for all i, j = 1, . . . , N . Let its eigendecomposition be

M = UMΛMUT
M

. W.l.o.g., let ŶD×L be the first L data

points (columns) of Y. Write M by blocks:

M =

(
A BT

21

B21 B22

)
, C =

(
A

B21

)
(1)

so CN×L are the columns of M that correspond to Ŷ. The

Nyström method uses the eigendecomposition of the small

matrix A = UAΛAUT
A

to approximate the eigenvectors

UM and eigenvalues ΛM of the large matrix M as

Ũ
Nys

M
=

(
UA

B21UAΛ−1

A

)
, Λ̃

Nys

M
= ΛA. (2)

The Nyström extension reconstructs the embedding of the

landmarks Ŷ exactly, and approximates the rest of the em-

bedding with B21UAΛ−1

A
. It approximates M by

M̃Nys = Ũ
Nys

M
Λ̃

Nys

M
(ŨNys

M
)T = CA−1CT

=

(
A BT

21

B21 B21A
−1BT

21

)
.

The column sampling (CS) method (Frieze et al., 1998) ap-

proximates the eigenvectors of M using left singular vec-

tors of C. If svd(C) = UCΣCV
T
C

, then ŨCS
M

= UC.

Alternatively, this approximation can be computed using

the eigenvectors of the matrix CTC. If Z = CTC =
VCΣ

2

C
VT

C , then the eigenvectors and eigenvalues of Z can

be expressed using the SVD of C as UZ = VC and ΛZ =
Σ2

C
. The approximation of UM becomes ŨCS

M
= UC =

UCΣCV
T
C
VCΣ

−1

C
= CVCΣ

−1

C
= CUZΛ

−1/2
Z

. The

approximation of M is then M̃CS = CTC. This method

uses more information from M than the Nyström method

and, intuitively, should perform better. Talwalkar et al.

(2013) show empirically that, in most cases, this is true.

The Locally Linear Landmarks (LLL) method (Vladymy-

rov & Carreira-Perpiñán, 2013b) is instead motivated by

the minimization problem (P). The Nyström method is,

at its core, only an extrapolation formula, whose success

relies on having a good solution for the landmarks. How-

ever, the latter need not hold if one uses too few landmarks,

because the reduced eigenproblem only uses the landmark-

landmark affinities in A. In LLL, the reduced eigenprob-

lem does use all the information from the affinity matrix

M. LLL constrains the solution of (P) to obey an out-of-

sample formula X = X̂ZT , where X̂d×L is the solution

for landmarks ŶD×L. The weights ZN×L assume that the

projection x ∈ R
d of a given point y ∈ R

D is a locally

linear function of its nearest landmarks’ projections. The

weights are found from the datapoints Y alone as

minZ ‖Y − ŶZT ‖
2

F s.t. Z1 = 1, (3)

that is, such that y itself is a locally linear function of

its nearest landmarks. This represents the manifold learn-

ing assumption that local structure in the high-dimensional

space should be preserved in the low-dimensional space, as

originally formulated in Locally Linear Embedding (LLE)

(Roweis & Saul, 2000). When this assumption holds, LLL

produces better approximations than the Nyström method

in less runtime. However, computing the reconstruction
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weights Z requires knowing which landmarks are neigh-

bors of each data point and is expensive. It also means that

LLL does not apply when only the affinity matrix but not

the feature vectors Y are given.

The random projection (RP) algorithm (Halko et al., 2011;

Boutsidis et al., 2011) first uses a random matrix SN×L

to form a low-dimensional sample matrix MS = MS,

which is an approximation to the range of M. Then, it

computes the SVD of M projected onto the orthogonal ba-

sis Q of MS (found with the QR decomposition). The fi-

nal step is a backward projection of the left singular vec-

tors to the original space. To improve results even further,

Halko et al. (2011) propose to construct the sample matrix

as MS = MqS for q ≥ 1. This is like performing q power

method iterations to make the eigenspace of the projection

be similar to the eigenspace of M. The bottleneck of RP is

the expensive computation of the random projection matrix

MS (since S is dense) and the basis Q.

Li et al. (2010) combine the ideas of both RP and Nyström.

On the one hand, Nyström is fast, but it relies on the re-

duced affinity matrix A capturing the structure of the data,

which requires a large number of landmarks. On the other

hand, RP methods give a good approximation of the data

with a smaller number of samples, but are expensive to run.

Li et al. (2010) propose to approximate the eigenvectors of

a sample with random projections and then use the Nyström

formula to extrapolate the solution to the whole space.

The modified Nyström method (Wang & Zhang, 2013) pro-

poses C
(
C+A(C+)T

)
CT as a low-rank approximation

to M. The eigenvectors of this matrix coincide with those

of the Variational Nyström method (see suppl.mat.). How-

ever, modified Nyström was presented as a low-rank matrix

approximation technique and does not approximate the so-

lution of the spectral problem (P), nor is it obvious how it

can be used for the task of approximating the coordinates

of the low-dimensional points. In addition, while Wang &

Zhang (2013) gave bounds for the approximation quality,

the formula itself was presented with no derivation. Our

paper justifies their choice of low-rank matrix approxima-

tion from the spectral learning point of view.

The Nyström formula is not the only possible out-of-

sample extension. Another one is the Laplacian Eigenmaps

Latent Variable Model (Carreira-Perpiñán & Lu, 2007),

which has the form of a Nadaraya-Watson estimator, and

thus also provides a conditional density of x given y.

Apart from landmark-based methods, it is also possible to

approximate the target eigenvectors using an incomplete it-

erative eigendecomposition, e.g. approximate Krylov meth-

ods. However, working with landmarks has some impor-

tant advantages in machine learning. First, they require

a single, intuitive parameter (the number of landmarks L)

that is easy to set (as large as computationally feasible, typ-

ically), while iterative Krylov methods have multiple non-

trivial parameters (e.g. maximum number of iterations, tol-

erance, number of vectors to retain). Second, landmark-

based methods can compute more eigenvectors easily be-

cause these appear in the reduced eigenproblem. Third, we

observe that the eigendecomposition of the reduced matrix

behaves more robustly than that of the original sparse ma-

trix (for which, depending on its sparsity, we sometimes

observe convergence problems). Fourth, the cost-dominant

operations (constructing the reduced eigenproblem, apply-

ing the out-of-sample mapping, computing the weights for

LLL) are trivial to parallelize and require each a single pass

over the disk if out-of-core. The inherent sequentiality of

Krylov methods involves parallelization only within an it-

eration, and one pass over the disk per iteration. Finally,

landmark-based methods can use any eigensolver as a black

box for the reduced eigenproblem.

2. Variational Nyström (VN)

We now state formally our proposed Variational Nyström

method. This finds an approximate solution of problem (P)

by constraining X to be a l.c. of the landmarks’ embedding

X̃ using as coefficients the point-landmark affinities, i.e.,

minX tr
(
XMXT

)
s.t. XXT = I, X = X̃CT (4)

where M is partitioned as in (1) and X̃ is of L × N . This

results in a reduced eigenproblem of L× L for X̃:

min
X̃
tr (X̃CTMCX̃T ) s.t. X̃CTCX̃T = I (5)

whose exact solution X̃ = Ũ is given by the d trailing

eigenvectors of the generalized eigenproblem

(CTMC)Ũ = (CTC)ŨΛ̃. (6)

Hence, the solution for the full embedding is X = ŨCT .

This can be seen as the answer to the question “what is

the best matrix Q (instead of Q = UAΛ−1

A
as in the

Nyström method) that can be used if the out-of-sample

weights are C?” By construction, VN will find a better ap-

proximate embedding in (P) than Nyström’s method (and

CS). From the LLL perspective, we abandon the local lin-

earity assumption, also saving the computational cost of

LLL’s weights. The reduced affinity matrix CTMC (of

L × L) uses the information from all the points in M, un-

like the Nyström reduced affinity matrix A, and we expect

it to represent the manifold structure better.

Runtime It consists of 3 parts. 1) Setting up the reduced

eigenproblem. Expanding submatrices using (1) we get

CTMC = A3+BT
21B21A+(BT

21B21A)T +BT
21B22B21

and CTC = A2 + BT
21B21. Computing CTC is free as

we compute the first two terms of CTMC. The cost is



The Variational Nyström Method for Large-Scale Spectral Problems

dominated by BT
21B22B21, which is between O(N) and

O((N − L)2L) depending on the sparsity of M. 2) Solv-

ing the reduced eigenproblem is between O(L) and O(L3)
depending on its sparsity. 3) Applying the out-of-sample

formula is between O(L) and O(NL). A rigorous runtime

is difficult to obtain without specifying the sparsity pattern

of M, but in the practical case where L ≪ N and M is

sufficiently sparse, the cost is dominated by setting up the

eigenproblem and is around O(NL), i.e., linear in N .

Assumptions VN makes the following assumptions,

shared with the Nyström method. 1) The data (i.e., affin-

ity matrix or graph Laplacian M) is given as part of the

problem definition. In practice, this requires the construc-

tion of a nearest-neighbor graph on the dataset Y. For large

datasets, this may require using approximate nearest neigh-

bor techniques (in some cases, the graph may be known a

priori, as in image segmentation). 2) The affinity matrix fits

into main memory. If it does not fit in memory but it fits in

local disk, VN can be implemented efficiently and easily.

We simply construct the reduced affinity matrix in (6) by

reading from disk incrementally. If the data is distributed

over machines with local memory/disk, or if the reduced

affinity matrix itself does not fit into memory, the problem

is more difficult, and a topic of future research.

Unlike LLL, VN does not need the actual feature vectors

Y, only their affinity matrix M. This makes VN applica-

ble when the affinity between two points is a sophisticated

function of their context, as in image segmentation using

intervening contours cues (Cour et al., 2005).

How to select the landmarks from Y? In this paper, we fo-

cus on random selection. This works reasonably well most

times and has minimal overhead. Many selection mech-

anisms exist, such as k-means, greedy MaxMin (de Silva

& Tenenbaum, 2004) or leverage scores (Mahoney, 2011),

but we find random landmarks give a better error-runtime

tradeoff unless one uses very few landmarks.

Connection between methods Many of the methods de-

scribed in this paper can be viewed as approximating the

solution with an extrapolation ŨM = ZQ, where ZN×L is

a precomputed matrix of out-of-sample weights, and QL×d

is a matrix that depends on the eigendecomposition of a re-

duced (L × L) affinity matrix over the landmarks. These

methods can then be classified along two axes: how the

out-of-sample weight matrix is defined, and how the re-

duced eigenproblem is set up, as summarized in table 1.

We note the following. Nyström, CS and VN all use the

same out-of-sample weight matrix Z = C, given by actual

entries in the affinity matrix, which is simple and efficient.

LLL is the only method that depends on the metric struc-

ture of the feature vectors Y (through the reconstruction

weights Z) instead of just the elements of M. VN and LLL

Table 1. Choices of different algorithms that approximate the ma-

trix M’s eigenvectors as ŨM = ZQ, where Z is the out-of-

sample weight matrix and Q the solution for the landmarks.

Algorithm ZN×L QL×d
Eigenproblem AU = BUΛ

A, B

Nyström C UΛ−1 A, I

CS C UΛ− 1

2 ZTZ, I

RP qr(MqS) U ZTMZ, I

LLL eq. (3) U ZTMZ, ZTZ

VN C U ZTMZ, ZTZ

are the only methods to define a generalized eigenproblem,

which is slightly slower to solve than a regular eigenprob-

lem. LLL, VN and RP (see suppl.mat.) can be seen as opti-

mizing (P) over Q for a certain choice of Z. In contrast, the

Nyström method chooses weights Z such that, when apply-

ing the out-of-sample formula to the landmarks themselves,

the result equals the reduced eigenproblem solution.

In terms of increasing amount of affinity information used

to construct the reduced eigenproblem, the methods can be

ranked as Nyström < CS < {RP, LLL, VN}. Nyström and

CS discard most of the affinity matrix M (they never use

B22 in eq. (1), the affinities between non-landmarks), while

LLL and VN use all of it. Entirely discarding so much of

M may seem like an advantage, because we save the cost of

computing those affinities in the first place, which is large

if M is not sparse. But even in this case it may be better

to sparsify M (e.g. by zeroing small elements) and use the

non-landmarks affinities in LLL and VN.

3. Subsampling Graph Laplacians

So far, we have discussed various ways to approximate an

eigendecomposition of the matrix M generated by some

kernelK . This kernel usually represents similarity between

points in the dataset Y, e.g. for the Gaussian kernel wij =
K(yi,yj) = exp(−‖y2

i − y2
j‖/2σ

2). The problem is that

often the kernel is data dependent (Bengio et al., 2004),

i.e., the element mij depends not just on a pair (yi,yj) but

on other elements as well. For example, a graph Laplacian

LW (unnormalized as LW = DW −W or normalized as

LW = D
−1/2
W

(DW −W)D
−1/2
W

) constructed on a subset

of L input points is not equal to an L×L subset of the graph

Laplacian constructed on N points (while for the Gaussian

affinity matrixW, both cases do give the same result). This

happens because the graph Laplacian depends on the de-

gree matrix DW = diag (W1) and this couples all the

elements together. This can cause problems for approxima-

tion methods, such as Nyström, CS or VN, whose projec-

tion Z depends on the L× L subsampled matrix, since the

solution does vary depending on how we define the sub-

sampled graph Laplacian. LLL or RP do not have this
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problem, since their out-of-sample matrix either does not

depend on the similarity matrix (for LLL) or involves the

entire similarity matrix with no subsampling (for random

projections). In this section we investigate which out-of-

sample kernel would give better performance for Nyström,

CS or VN for approximating the normalized graph Lapla-

cian matrix LW = D
−1/2
W

(DW −W)D
−1/2
W

. As far as

we know, we are the first to propose such an analysis.

When using the Nyström method, two ways have been pre-

viously proposed to approximate the graph Laplacian. In

the first one, Fowlkes et al. (2004) first apply Nyström to

approximate W to find an estimate of the degree matrix as

D̃ = diag (W̃1) = diag
(

A1+B
T

21
1

B211+B21W
−1

L
B

T

21
1

)
and then

use Nyström one more time to find the leading eigenvec-

tors of D̃−1/2WD̃−1/2 that coincide with the eigenvec-

tors of the normalized graph Laplacian. Hence, they apply

the Nyström method twice: first to approximate the degree

matrix and then to approximate the graph Laplacian. In

the second way, Bengio et al. (2004) approximate the nor-

malized graph Laplacian LW by defining a subset problem

as LA = D
−1/2
A

AD
−1/2
A

with DA = diag (A1). Af-

ter this subproblem is solved, non-landmark points are pro-

jected using an out-of-sample kernel Z = D
−1/2
C→ CD

−1/2
A

,

where DC→ = diag (C1) is an N × N row-wise sum of

C which corresponds to a degree matrix of the affinities

between Y and Ŷ. It is easy to see that Z contains LA as

a subset. Bengio et al. (2004) provided no justification of

their choice of the out-of-sample kernel.

Here, we propose a more general approach based on two

general criteria that define a good normalization of the out-

of-sample kernel. First, it should interpolate over the land-

marks (i.e., the out-of-sample matrix for the subset should

be equal to the subset matrix). Second, the normalized ma-

trix should agree with M when L = N (i.e., the approxi-

mation becomes exact when number of landmarks is equal

to the number of points). From the first criterion we see that

Z should be normalized as Z = D1CD2 for some diagonal

matrices D1 ∈ R
N×N and D2 ∈ R

L×L. In the following

proposition (proven in the suppl.mat.) we show which D1

and D2 satisfy our second criterion for the Nyström and CS

methods.

Proposition 3.1 (Normalization for Nyström and Column

Sampling). Given a subsample L
Nys

A
= D

−1/2
A

AD
−1/2
A

for

the Nyström method, or LCS
A

= (D1CD2)
T (D1CD2) for

the Column Sampling, and Z = D1CD2 as an out-of-

sample kernel, the exact eigenvectors of graph Laplacian

LW for L = N are recovered when D1 = D2 = D
−1/2
W

.

The equation D1 = D2 = D
−1/2
W

is satisfied only when

L = N and for L < N it needs to be approximated. Ta-

ble 2 shows four different choices that we consider (named

according to the affinity matrices used in D1 and D2). For

D1 we can either sum the rows of C as DC→ = diag (C1)

Table 2. Graph Laplacian normalization for Nyström and CS.

WA WC CA CC

D1 D
−1/2
W

D
−1/2
W

D
−1/2
C→ D

−1/2
C→

D2 D
−1/2
A

D
−1/2
C↓ D

−1/2
A

D
−1/2
C↓

Table 3. Graph Laplacian normalization for Variational Nyström.

None Sqrt Sum Direct

D2 I D
−1/2
C↓ D−1

C↓ D
−1/2
W

or the rows of the whole W as DW = diag (W1). For D2

we can either sum the columns of C as DC↓ = diag (1C)
or the columns or A as DA = diag (A1). Note that CA

corresponds to the kernel proposed by Bengio et al. (2004).

In section 4 we evaluate these choices empirically.

For Variational Nyström the normalization is more general.

Proposition 3.2 (Normalization for Variational Nyström).

Given a subsample LVN
A

= D
−1/2
A

AD
−1/2
A

and Z =
D1CD2 as an out-of-sample kernel, the exact eigenvec-

tors of graph Laplacian LW are recovered for any L ≤ N
using any arbitrary symmetrical matrix D1. When L = N
the eigenvectors are recovered using any symmetrical D2.

This means that for L = N any matrices D1, D2 (not only

diagonal) result in the exact solution. Moreover, for D1

this is the case even when L < N . Thus, the normalization

takes the form Z = CD2. In table 3 we show four differ-

ent choices forD2. Note the Direct choice corresponds to

(ZD
−1/2
W

WD
−1/2
W

ZT )U = (ZD
−1/2
W

DWD
−1/2
W

ZT )UΛ

or
(
Z
(
D

−1/2
W

WD
−1/2
W

)
ZT

)
U =

(
ZZT

)
UΛ and is the

same as direct application of VN to LW.

4. Experiments

To set up the spectral problem (P) we want to approxi-

mate, we use Laplacian Eigenmaps (LE) (Belkin & Niyogi,

2003), a spectral manifold learning algorithm. We also use

spectral clustering (SC) (Shi & Malik, 2000) in an image

segmentation experiment. We compare the approximations

to the exact embedding X or the ground truth, when avail-

able. (Note there is no point in comparing VN and Nyström

on the basis of (P) because VN is better by construction.)

To compute X, we use Matlab’s eigs routine with de-

fault parameters (maxit = 300, tol = eps, p = 2d).

eigs uses an iterative algorithm suitable for large prob-

lems, since running eig (which uses a direct algorithm)

is too expensive for N as small as 5 000. We report least-

square relative errors between the embeddings after Pro-

crustes alignment (since problem (P) is invariant to rota-

tion and translation). We do not compare the value of the

objective function in (P) because it is not indicative of the

solution quality by itself, since the problem is constrained.
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Figure 1. 5 000 points from the Swiss roll dataset. Top: error for each of the models wrt the ground truth as a function of the affinity

bandwidth σ. The black solid curve specifies the error of exact Laplacian eigenmaps with respect to the ground truth. L = 500, KW =

500. Bottom: normalization error of different models with respect to exact LE as a function of number of landmarks. σ = 1, KW = 500.

Out-of-sample normalization First, we evaluate the dif-

ferent choices of out-of-sample normalizations proposed in

section 3. We used 5 000 points from the Swiss roll dataset,

for which the ground truth is available. For Nyström,

CS and VN we used different normalizations and also the

direct approach, where the approximations are applied

directly to the graph Laplacian LW (as it is done in e.g.

Fowlkes et al., 2004). LLL and RP are independent from

the normalization and we run them just for comparison. For

RP, we tried different values of q, the number of power it-

erations used before the projection is applied. Each addi-

tional power iteration improves the approximation, but also

increases the runtime.

Fig. 1 (top) shows the relative error with respect to the

ground truth as we change the Gaussian affinity bandwidth

σ. We tried 20 different σ values log-spaced between 10−1

and 10. The error bars show the results over 5 runs with

different sets of landmarks (L = 500, randomly selected).

The black dashed line indicates the error of exact LE with

respect to the ground truth. There is a distinct region some-

where between 0.26 and 2.33 for which the exact LE is

closest to the ground truth. Fig. 1 (bottom) shows all the ap-

proximations and normalizations, but now fixing σ = 1 and

varying L (20 log-spaced values in between 3 and 4 900).

We compared the embedding with respect to the results

of the exact LE. Notice that optimizing LW directly, with

no normalization, gives the worst results for all the meth-

ods. This suggests that the data-dependent kernels, such as

graph Laplacian, should be approximated carefully with a

custom out-of-sample matrix.

The results of different normalizations are consistent for

both experiments. For Nyström all the approximations per-

form badly for any σ, with the CA and CC normalizations

being a little better. For CS, CC gives much better results

than any other normalization. Thus, it is much better to

sum up all the columns of C, rather than just a sum of the

sample from A. For Nyström it is the other way around,

however the difference is not that significant.

For VN the Sum approximation clearly gives the best re-

sults. Interestingly, for some σ it gives an error that is

even lower than the exact LE. This is probably a coinci-

dence (after all VN tries to approximate whatever result we

should get for the exact LE), although the VN approxima-

tion might have a regularizing effect on the embedding. In

multiple experiments we have observed that VN robustifies

the spectral problem. That is, solving the exact problem

for LE using Matlab’s eigs sometimes fails to converge,

or does not return the trailing eigenvectors requested. The

situations when this happens are somewhat unpredictable,

but it seems more likely with small bandwidth values. This

leads to wrong LE embeddings or to no solution at all. With

VN, the behavior of eigs is much more robust, provid-

ing correct solutions in all our experiments. Although we

do not have a theoretically rigorous explanation for this,

empirically it is very noticeable. Vladymyrov & Carreira-

Perpiñán (2013b) also observed a similar effect with LLL.

We conjecture this is because both VN and LLL construct a

reduced eigenproblem that is less sparse, better connecting

data points, and easier to solve numerically.

LLL robustly gives a good approximation, better than

Nyström and CS, but worse than VN. RP improves dramat-

ically as q increases, however the variability between runs

also increases and, as we show later, for a given L its run-

time is much larger than for the other methods. Also, RP

needs a relatively large number of landmarks (L ≤ 100) in

order for the error to start decreasing.
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Figure 2. Normalized error for reconstructing the trailing 10 eigenvectors of the normalized graph Laplacian for 20 000 MNIST points.

Nyström, CS and VN use the best choice of normalization for Z as discussed in section 3. From left to right: normalized error for a

given number of landmarks, runtime for a given number of landmarks and error decrease per second of runtime. The dashed line shows

when the number of landmarks is equal to N or when the runtime is equal to the runtime of the exact LE.

Comparison between methods We compare all the

methods using their best normalization (Nyström: CA, CS:

CC, VN: Sum). We use 20 000 random digits from MNIST

and reduce dimensionality to d = 10 using exact LE and

each of the methods. We construct the affinity matrix using

entropic affinities (Hinton & Roweis, 2003; Vladymyrov

& Carreira-Perpiñán, 2013a) with perplexity K = 30 (i.e.,

each datapointyi has its own Gaussian bandwidth σi, taken

such that the effective number of neighbors covered by the

kernel at yi is K). We also sparsify the affinity matrix by

zeroing all but the 200 largest values in each row. For the

number of landmarks we use 20 log-spaced values from 11
to 19 900 and run each experiment 5 times, each with a dif-

ferent random choice of landmarks. Fig. 2 shows the error

and runtime for different numbers of landmarks L. Each

plot graphs two of (number of landmarks, error, runtime).

Fig. 2 (left) shows the error vs L. The methods can be

ranked from best to worst as VN < LLL < CS < Nyström.

We can see that VN and LLL show fast error decrease right

from the beginning. Other methods do not show any good

results until L & 400, which is 2% of all the points. At

this level VN already shows quite a low error, around 10−2,

and its variability over the random selection of landmarks is

small. In pilot runs initialized the landmarks with k-means

and observed that while the error did not decrease much the

runtime increased a lot. It may be possible to improve the

results with a more clever, efficient landmark selection, but

we think random selection generally works well. RP has a

good error decrease, especially for q = 3, but, again, this

decrease does not happen until L is large.

Fig. 2 (middle) shows the runtime vs L. Nyström and CS

take into account only a subset of the affinity matrix and

thus are the fastest. LLL needs some time in the begin-

ning to compute a reconstruction matrix Z. RP methods in-

volve an expensive projection and QR decomposition. VN

clearly has two regimes: one for L ≤ 103 (smaller slope)

and another for L > 103 (steeper slope). This is because

the affinity matrix becomes denser with more landmarks

and thus the runtime changes from being dominated by the

matrix product to being dominated by the reduced eigen-

problem. This effect also appears in LLL, but for a larger

value of L since the sparsity pattern is different (the out-of-

sample matrix Z is much sparser for LLL than for VN).

Fig. 2 (right) combines the left and middle plots into a

speed/accuracy tradeoff, or error decrease per runtime,

where L grows along each curve. The region of best per-

formance is the bottom-left corner: faster, more accurate

results with fewer landmarks. VN has the best results

when the error is ≤ 10−2, i.e., when we want a fast, low-

to-medium accuracy solution (which is the most practical

regime if approximating a large manifold learning prob-

lem). VN stops being competitive if one seeks a high-

accuracy solution, because the original affinity matrix is

quite dense and the reduced eigenproblem becomes denser

and more expensive as L increases. LLL needs more time

to build its reconstruction matrix Z, but later catches up

since the approximation matrix M̃ is more sparse. It is the

fastest method if one seeks a high-accuracy solution. Other

methods are never in the winning zone. Nyström and CS

are fast, but their approximation is quite bad. RP gives a

good approximation, but is slow to run.

We also ran an image segmentation experiment using spec-

tral clustering (SC) on an image from the BSDS500 dataset

(Arbeláez et al., 2011). Exact SC took 8.5 minutes. Then,

we ran Nyström and VN, limiting their runtime to 25 s (a

20× speedup). Fig. 3 clearly shows that VN is much closer

to the exact result than the Nyström method.

Large-scale experiment We repeat an experiment from

the original LLL paper (Vladymyrov & Carreira-Perpiñán,

2013b). We used 1 020 000 points from the infiniteMNIST

dataset (Loosli et al., 2007), where we created 16 distor-

tions of each MNIST digit by an elastic transformation

(overall 60 000 original + 960 000 distorted digits). This
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Original image Exact SC, 512 s Nyström, 25 s VN, 25 s

Figure 3. Figure/ground segmentation using exact spectral clustering (SC), and Nyström and VN (limited to 25 seconds’ runtime).

Nyström, L = 16 000 CS, L = 15 000 LLL, L = 5 000 VN, L = 4 500
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Figure 4. The Laplacian eigenmaps embedding of an infiniteMNIST dataset with N = 1 020 000 points approximated using Nyström,

Column Sampling, LLL and Variational Nyström. The runtime is restricted to 10 minutes.

dataset is convenient for large-scale evaluations because it

allows us to increase the sample size as much as desired

while still being able to interpret visually the result and

compare with the MNIST ground truth as well as with the

exact run of LE on the original dataset (see fig. 3 in Vla-

dymyrov & Carreira-Perpiñán 2013b). For each digit we

define its nearest neighbors to be a set of 10 neighbors of

the original (non-distorted) digit together with their dis-

tortions. We then used entropic affinities with perplexity

K = 10. Our final affinities contain ≈ 150M nonzero el-

ements with 0.01% sparsity level. For such a large affinity

matrix, running exact LE is challenging, so we ran only

the approximate methods. We set the runtime to 10 min-

utes and ran each method with the largest number of ran-

domly selected landmarks possible. Fig. 4 shows the re-

sults. Nyström clearly gives the worst results even though

it uses the most landmarks. CS uses a similar number of

landmarks but performs much better. Both LLL and VN

give the best embedding while using a much smaller num-

ber of landmarks. The VN embedding is the better one: no-

tice the 4s are much more separated from the 9s and there

is a more defined gap between the clusters of 0s, 5s and 6s.

5. Conclusion

In hindsight, Variational Nyström seems the right thing

to do: if we are going to extrapolate to new data using

the Nyström out-of-sample formula, we should incorpo-

rate that in the optimization. This results in an eigenprob-

lem over the landmarks that better represents the manifold

structure of the data and gives, by construction, a better

solution for the same number of landmarks. Variational

Nyström remains very easy to implement, with no user pa-

rameters other than the number of landmarks, but it does

have the extra cost over Nyström’s method of setting up

and solving a less sparse reduced eigenproblem. Our exper-

iments with manifold learning and spectral clustering show

that Variational Nyström does not always beat Nyström or

other landmark-based algorithms in an error-runtime trade-

off, but it does for the region of practical interest with large-

scale data: achieving a faster solution of low-to-medium

accuracy. With 1M points, Variational Nyström provides a

good embedding in under 10 min runtime.

We also analyzed the use of subsampling approximations

for a graph Laplacian data-dependent kernel. Directly ap-

plying those approximations to the graph Laplacian gives

poor results. We provided a case-by-case analysis for every

approximation method compared in this paper and showed

that Variational Nyström has the simplest and most general

form of normalization among all them.
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Cour, Timothée, Bénézit, Florence, and Shi, Jianbo. Spec-

tral segmentation with multiscale graph decomposition.

In Proc. of the 2005 IEEE Computer Society Conf. Com-

puter Vision and Pattern Recognition (CVPR’05), pp.

1124–1131, San Diego, CA, June 20–25 2005.

Cox, Trevor F. and Cox, M. A. A. Multidimensional Scal-

ing. Chapman & Hall, London, New York, 1994.

de Silva, V. and Tenenbaum, Joshua B. Sparse multidi-

mensional scaling using landmark points. Unpublished

technical report, June 30 2004.

Fowlkes, Charless, Belongie, Serge, and Malik, Jitendra.

Efficient spatiotemporal grouping using the Nyström

method. In Proc. of the 2001 IEEE Computer So-

ciety Conf. Computer Vision and Pattern Recognition

(CVPR’01), pp. 231–238, Kauai, Hawaii, December 9–

14 2001.

Fowlkes, Charless, Belongie, Serge, Chung, Fan, and Ma-

lik, Jitendra. Spectral grouping using the Nyström

method. IEEE Trans. Pattern Analysis and Machine In-

telligence, 26(2):214–225, February 2004.

Frieze, Alan, Kannan, Ravi, and Vempala, Santosh. Fast

Monte-Carlo algorithms for finding low-rank approxi-

mations. In Proc. of the 39th Annual Symposium on

Foundations of Computer Science (FOCS 1998), Palo

Alto, CA, November 8–11 1998.

Halko, N., Martinsson, P. G., and Tropp, J. A. Finding

structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions. SIAM

Review, 53(2):217–288, 2011.

Hinton, Geoffrey and Roweis, Sam T. Stochastic neigh-

bor embedding. In Becker, Suzanna, Thrun, Sebastian,

and Obermayer, Klaus (eds.), Advances in Neural Infor-

mation Processing Systems (NIPS), volume 15, pp. 857–

864. MIT Press, Cambridge, MA, 2003.

Li, M., Kwok, J. T., and Lu, B. Making large-scale

Nyström approximation possible. In Fürnkranz, Jo-

hannes and Joachims, Thorsten (eds.), Proc. of the 27th

Int. Conf. Machine Learning (ICML 2010), pp. 631–638,

Haifa, Israel, June 21–25 2010.
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