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1 Abstract

Spectral methods for manifold learning and cluster-
ing typically construct a graph weighted with affini-
ties (e.g. Gaussian or shortest-path distances) from a
dataset and compute eigenvectors of a graph Lapla-
cian. With large datasets, the eigendecomposition is
too expensive, and is usually approximated by solving
for a smaller graph defined on a subset of the points
(landmarks) and then applying the Nyström formula to
estimate the eigenvectors over all points. This has the
problem that the affinities between landmarks do not
benefit from the remaining points and may poorly rep-
resent the data if using few landmarks. We introduce
a modified spectral problem that uses all data points
by constraining the latent projection of each point to
be a local linear function of the landmarks’ latent pro-
jections. This constructs a new affinity matrix between
landmarks that preserves manifold structure even with
few landmarks and allows one to reduce the eigenpro-
blem size and works specially well when the desired
number of eigenvectors is not trivially small. The so-
lution also provides a nonlinear out-of-sample projec-
tion mapping that is faster and more accurate than the
Nyström formula.

2 Spectral methods

Given the input data points Y ∈ RD×N, the generalized
spectral problem seeks a solution X ∈ Rd×N to the following
optimization problem:

min
X

tr
(
XAXT

)
, s.t. XBXT = I. (1)

•A: symmetric positive semidefinite matrix, usually repre-
sents the similarity between data points,

•B: symmetric positive definite matrix, typically represents
the scale of the points with respect to each other.

The solution is given by X = UT
dB

−1
2, where Ud = (u1, . . . ,ud)

are d trailing eigenvectors of a N ×N matrix C = B−1
2AB−1

2.
It is too costly to find the solution when N and d are large.

3 Locally Linear Landmarks (LLL)

Define:

• Ỹ = (ỹ1, . . . , ỹL) ∈ RD×L a set of L landmarks chosen from
the data set Y.

•Z = (z1, . . . , zN) ∈ RL×N local projection matrix, which cor-
responds to the proximity of the points in the dataset to
nearby landmarks.

Now, we can express each point as a linear combination
of KZ nearby landmarks: yn =

∑KZ

k=1 ỹkznk. We assume
that the transformation between landmarks and the rest of
the points is preserved in both high- and low-dimensional
spaces, i.e. X = X̃Z. Substituting this into the spectral
problem (1) gives reduced spectral problem:

min
X̃

tr
(
X̃ÃX̃T

)
, s.t. X̃B̃X̃T = I, (2)

with Ã = ZAZT , B̃ = ZBZT . The solution is given by X̃ =

ŨT
d B̃

−1
2, where Ũd are d trailing eigenvectors of the matrix

C̃ = B̃−1
2ÃB̃−1

2.

1. After X̃ is found, the values of X can be recovered using
X = X̃Z.

2. Dramatic cost reduction: the total cost is O
(
N(KZc+Ld+

DK2
Z) + L3)

)
where c is a constant that depends on the

sparsity of A and B.

3. New similarity matrix Ã takes into account the whole dataset
and can dramatically improve the quality of the similarity
matrix between the landmarks A:

Dataset A Ã
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4. Matrix Z can be used as a cheap out-of-sample extension
with the cost O(DK2

Z + Ld) per point:

• for a new point y0 find a projection vector z0 using KZ

landmarks around y0.

• the embedding x0 is found using landmark projection of
the training set: x0 = X̃z0.

3 Locally Linear Landmarks for

Laplacian Eigenmaps

We can apply LLL to Laplacian Eigenmaps (LE) al-
gorithm (Belkin & Niyogi, 2003). In this case:

•A - graph Laplacian matrix L = D−W for a sym-
metric affinity matrix W with degree matrix D =
diag

(∑N

m=1wnm

)
.

•B - degree matrix D.

min
X

tr
(
XLXT

)
, s.t. XDXT = I, XD1 = 0.

Using (2) the coefficients of the model becomes:

Ã = ZLZT , B̃ = ZDZT .

4 Properties of LLL

1. Projection matrix Z. We need to keep KZ land-
marks closest to yn. Solve the optimization prob-
lem:

min
Z

‖Y − ỸZ‖2, s.t. 1TZ = 1T .

For the solution (a) compute a local Gram matrix
Gij = (yn − ỹi)(yn − ỹj), (b) solve a linear system∑L

k=1Gjkznk = 1 and (c) rescale the weights so
they sum to one.

2. Location of landmarks. The landmarks should
be spread as uniformly as possible along the man-
ifold to provide local reconstruction. It can be done
using:

• centroids of clustering algorithm (e.g. k-means);

•greedy algorithm (e.g. MinMax algorithm; de
Silva & Tenenbaum, 2004);

• random subset of the data.

3. Total number of landmarks L. The more land-
marks we can afford, the better is the final result.

L ≪ N (approx.)
better approximation
−−−−−−−−−−−−→

slower
L = N (original),

4. Number of landmarks KZ for the projection ma-
trix Z. Each point should be a locally linear recon-
struction of the nearby landmarks:

•Few landmarks ⇒ inexact reconstruction.

•Too many landmarks ⇒ lose locality.

Practically, choosing KZ ≈ d works well.

5 Experimental Evaluation

We compare LLL for LE to three baselines:

1. Exact LE runs LE on the full dataset. Best em-
bedding, but the runtime is large.

2. Landmark LE runs LE only on a set of landmark
points. Once their projection is found, the rest of
the points are embedded using:

•LE(Z): Z as an out-of-sample.

•LE(Nys.): Nyström method as an out-of-sample.

6 Conclusions
The bottleneck of spectral methods is an expensive eigenvalue decompo-
sition. We propose to optimize only for a small set of landmark points,
while retaining the structure of the whole data. The algorithm can be
used (1) to find a fast approximate embedding of large dataset, (2) as a
model parameters selection method, (3) as an out-of-sample extension to
spectral methods. For the Laplacian Eigenmaps the algorithm is able to
achieve 10− 20× speed-up with small approximation error.

1. Number of landmarks

The role of number of landmarks on the performance of LLL:

•Use 60 000 MNIST digits.

•Reduce the dimensionality to d = 50.

•Set KZ = 50, chose landmarks randomly and increase their
number logarithmically from L = 50 to L = 60 000.

•Compute the error between the embeddings with Exact LE.
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2. Model selection

Use LLL to predict the parameters of the affinity matrix:

•Use 4 000 points from swiss roll dataset.

•Vary parameters of the algorithm (bandwidth σ, number of
landmarks L and sparsity KW of the affinity matrix A) and
compute the relative error of the embedding with respect to
the ground truth.
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3. Large-scale: 106 points from infinite MNIST

•Generate 1 020 000 handwritten digits using elastic transforma-
tion to the MNIST digits (see Loosli et al., 2007).

•Use KZ = 5 and L = 10 000 randomly selected landmarks.

• It took 4.2 minutes to compute Z and 14 minutes to compute
the embedding.
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