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47 LOCALLY LINEAR LANDMARKS
(112 FOR LARGE-SCALE MANIFOLD LEARNING

Max Vladymyrov and Miguel A. Carreira-Perpinan. EECS, UC Merced, USA

1 3 Locally Linear Landmarks for 1. Number of landmarks
Abstract Laplacian Eigenmaps The role of number of landmarks on the performance of LLL:
Spectral methods for manifold learning and cluster-  we can apply LLL to Laplacian Eigenmaps (LE) al- * YS€ 60000 MNIST digits.
ing typically construct a graph weighted with affini-  gorithm (Belkin & Niyogi, 2003). In this case: e Reduce the dimensionality to d = 50.
ties (e.g. Gaussian or shortest-path distances) froma 4 A - graph Laplacian matrix I = D — W for a sym- *Set K = 50, chose landmarks randomly and increase their
dataset and compute eigenvectors of a graph Lapla- metric affinity matrix W with degree matrix D =  humber logarithmically from L = 50 to L = 60 000.
cian. With large datasets, the eigendecomposition is diag (2Z1 wnmy o Compute the error between the embeddings with Exact LE.
too expensive, and is usually approximated by solving 4B - degree mafrix D. 107
for a smaller graph defined on a subset of the points min tr (XLX7) ,s.t. XDXT = I, XD1 = 0. | 7 08
(landmarks) and then applying the Nystrom formula to X | | | ;
estimate the eigenvectors over all points. This hasthe  Using (2) the coetfficients of the model becomes: o 10" 0.6 i
problem that the affinities between landmarks do not ~ . ~ . E __—- ExaciLE || S04
benefit from the remaining points and may poorly rep- A=zlz’, B=1DZ. €100 LLL |5
resent the data if using few landmarks. We introduce 4 o —— LE (Z) 0.2/
a modified spectral problem that uses all data points Properties of LLL ; LE (Nys.) |
by constraining the latent projection of each point to 10 02 100 100 0162 U 1ot
be a local linear function of the landmarks’ latent pro- 1. Projection matrix Z. We need to keep K, land-
jections. This constructs a new affinity matrix betw%en marks closest to y,. Solve the optimization prob- Number of landmarks Number of landmarks
landmarks that preserves manifold structure even with lem: B Exact LE, 80 s. , 0.9 8.
few landmarks and allows one to reduce the eigenpro- min [[Y = YZ|", s.t. 1'Z = 1"
blem size and works specially well when the desired For the solution (a) compute a local Gram matrix
number of eigenvectors is not trivially small. The so- Gii = (v, — ¥)(yn — ¥,), (b) solve a linear system
lution also provides a nonlinear out-of-sample projec- S, Gz = 1 and (c) rescale the weights so
tion mapping that is faster and more accurate than the they sum to one.
Nystrom formula. 2. Location of landmarks. The landmarks should

be spread as uniformly as possible along the man-
ifold to provide local reconstruction. It can be done

2 Spectral methods using:
e centroids of clustering algorithm (e.g. k-means);

e greedy algorithm (e.g. MinMax algorithm; de
Silva & Tenenbaum, 2004);

Given the input data points Y € RP*¥| the generalized
spectral problem seeks a solution X € R%*¥ to the following
optimization problem:

R (X AXT) st XBX! — I (1) e random subset of the data.
X | 3. Total number of landmarks L. The more land-
e A: symmetric positive semidefinite matrix, usually repre- marks we can afford, the better is the final result.
sents the similarity between data points, L < N (approx.) better approximation, (original),
e B: symmetric positive definite matrix, typically represents slower o
the scale of the points with respect to each other. 4.Number of landmarks &, for the projection ma-

trix Z. Each point should be a locally linear recon-
struction of the nearby landmarks:

e Few landmarks = inexact reconstruction.
e Too many landmarks =- lose locality.

Practically, choosing K, =~ d works well.

he solution is given by X = UZB~2, where U, = (uy, . . ., uy)
are d trailing eigenvectors of a N x N matrix C = B 2AB 2.
It is too costly to find the solution when N and d are large.

3 Locally Linear Landmarks (LLL)

D‘if'”e(:N Bt a setof L landmarks chosen 5 Experimental Evaluation 2. Model selection
oY = (y1,...,yr) € R aset of L landmarks chosen from |
the data set Y. We compare LLL for LE to three baselines: Use LLL to predict the parameters of the affinity matrix:
oZ = (z1,...,2zy) € RN |ocal projection matrix, which cor-  1.Exact LE runs LE on the full dataset. Best em- e Use 4000 points from swiss roll dataset.
responds to the proximity of the points in the dataset to bedding, but the runtime is large. e Vary parameters of the algorithm (bandwidth o, number of
nearby landmarks. 2.Landmark LE runs LE only on a set of landmark  landmarks L and sparsity Ky of the affinity matrix A) and
Now, we can express each point as a linear combination points. Once their projection is found, the rest of ~ compute the relative error of the embedding with respect to
of K, nearby landmarks: y, = S 1'% yiz,. We assume the points are embedded using: the ground truth.
that the transformation between landmarks and the rest of e LE(Z): Z as an out-of-sample.
the points is preseLved in both high- and low-dimensional o LE(Nys.): Nystrom method as an out-of-sample. GEHOZ B | |
spaces, i.e. X = XZ. Substituting this into the spectral -E.l(’: | 1 e /f
problem (1) gives reduced spectral problem: D::>1° | | - . *
o - O 10-4 T |
mAj:lfl tr (XA.XT> ] St XBXT — I, (2) - 11 ﬁ A T T ek b L._--ﬁsm-—;siﬂ_:—_:_—,\z\f_r_ l—__t__—-.--_:—_;_f'__;;__:;:'K_—_Tj:—'/\:;;;_/:::—J
X e Ny N MV YT Y I 1N
~ ~ ~ 2 10}/ I v S I L s il el e S
with A = ZAZ', B = ZBZ'. The solution is given by X = | 3 S n —Ei‘fd L \Tl\ A
UZB~2, where U, are d trailing eigenvectors of the matrix | 4| WRRLY _ E@) g 20 AN
g ~ 17= 1
C=B2AB™2. 5 LE (Nys.)
1. After X is found, the values of X can be recovered using I 6 10" o 100 1 1wt 1
X = XZ. _ 7| o L Ky
2. Dramatic cost reduction: the total cost is O(N(Kzc+ Ld + 8 . 116 - T
DK2) + ) where c is a constant that depends on the | o/ 3. Large-scale: 10” points from infinite MNIST
sparsity of A and B. i _
3. New similarity matrix A takes into account the whole dataset ﬂﬂ
and can dramatically improve the quality of the similarity - IS
T ek /1423 14617105161513
Dataset A A - 1 ‘f '3" "f 7 ;" 6
0 " lO-S l1'5 ' . e Generate 1020 000 handwritten digits using elastic transforma-
T o4 ° L tion to the MNIST digits (see Loosli et al., 2007).
AERE R £ 0310 e Use K, =5 and L = 10000 randomly selected landmarks.
| | 0.2 80> ' '
L et g - I K 4.2 min m Z and 14 min m
s ..Q.'.,15 IO.115 IO Conclusions .tL teoce)mbeddiln;j[es to compute Z and inutes to compute
0 5 o 5 5 10 15 20 5 10 15 20 The bottleneck of spectral methods is an expensive eigenvalue decompo-
4. Matrix Z can be used as a cheap out-of-sample extension  sition. We propose to optimize only for a small set of landmark points, IBML | Atlanta
with the cost O(DK? + Ld) per point: while retalnlng the structure .of the whole c;lata. The algorithm can be
o for a new point y, find a projection vector z, using K used (1) to find a fast approximate embedding of large dataset, (2) as a International Conference on Machine Learning

model parameters selection method, (3) as an out-of-sample extension to |
spectral methods. For the Laplacian Eigenmaps the algorithm is able to Partially supported by NSF CAREER
achieve 10 — 20x speed-up with small approximation error. award 11S-0754089.

landmarks around y;.
o the embedding x, is found using landmark projection of
the training set: x, = Xz,.



