Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings

Max Vladymyrov and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science University of California, Merced

https://eecs.ucmerced.edu

June 29, 2012

(日) (四) (王) (王)

Introduction

We focus on graph-based dimensionality reduction techniques:

- Input is a (sparse) affinity matrix.
- Objective function is a minimization over the location of the latent points.
- Examples:
 - Spectral methods: Laplacian Eigenmaps (LE), LLE;
 - ✓ have a closed-form solution;
 - X results are often not satisfactory.
 - Nonlinear methods: SNE, s-SNE, t-SNE, elastic embedding (EE);

✓ produce good quality embedding;

X notoriously slow to train, limited to small data sets.

One reason for slow training is inefficient optimization algorithms that take many iterations and move very slowly towards a solution.

COIL-20 Dataset

Rotations of 10 objects every 5°; input is greyscale images of 128 \times 128.

▶ ▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● ���?

We are proposing a new training algorithm that:

- generalizes over multiple algorithms (s-SNE, t-SNE, EE);
- ▶ fast (1-2 orders of magnitude compared to current techniques);

- allows deep, inexpencive steps;
- scalable to larger datasets;
- intuitive and easy to implement.

General Embedding Formulation (Carreira-Perpiñán 2010)

For $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_N) \in \mathcal{R}^{D \times N}$ matrix of high-dimensional points and $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \in \mathcal{R}^{d \times N}$ matrix of low-dimensional points, define an objective function:

 $E(\mathbf{X}, \lambda) = E^+(\mathbf{X}) + \lambda E^-(\mathbf{X}) \qquad \lambda \ge 0$

- E^+ is the *attractive term*:
 - often quadratic,
 - minimal with coincident points;
- *E*⁻ is the *repulsive term*:
 - often very nonlinear,
 - minimal with points separated infinitely.

Optimal embeddings balance both forces.

Example: SNE (Hinton & Roweis 2003)

Define P_n and Q_n as distributions for each data point over the neighbors in high- and low-dimensional spaces respectively:

$$p_{nm} = \frac{\exp(-\frac{\|\mathbf{y}_n - \mathbf{y}_m\|^2}{\sigma^2})}{\sum_{k=1, k \neq n}^{N} \exp(-\frac{\|\mathbf{y}_n - \mathbf{y}_m\|^2}{\sigma^2})}; \quad q_{nm} = \frac{\exp(-\|\mathbf{x}_n - \mathbf{x}_m\|^2)}{\sum_{k=1, k \neq n}^{N} \exp(-\|\mathbf{x}_n - \mathbf{x}_m\|^2)}$$

The goal is to position points **X** such that P_n matches the Q_n for every *n*:

$$E_{\text{SNE}}(\mathbf{X}) = \sum_{n=1}^{N} D(P_n || Q_n)$$

=
$$\sum_{n,m=1}^{N} p_{nm} \log \frac{p_{nm}}{q_{nm}} = -\sum_{n,m=1}^{N} p_{nm} \log q_{nm} + C$$

=
$$\sum_{n,m=1}^{N} p_{nm} || \mathbf{x}_n - \mathbf{x}_m ||^2 + \sum_{n=1}^{N} \log \sum_{m \neq n} \exp(-|| \mathbf{x}_n - \mathbf{x}_m ||^2) + C$$

=
$$E^+(\mathbf{X}) + \lambda E^-(\mathbf{X}) \qquad (\text{In this formulation } \lambda = 1)$$

General Embedding Formulation: Other Special Cases		
_	$E^+({f X})$	E ⁻ (X)
SNE: (Hinton&Roweis,'03)	$\sum_{n,m=1}^{N} p_{nm} \ \mathbf{x}_n - \mathbf{x}_m\ ^2$	$\sum_{n=1}^{N} \log \sum_{m=1}^{N} e^{-\ \mathbf{x}_n - \mathbf{x}_m\ ^2}$
s-SNE: (Cook at al,'07)	$\sum_{n,m=1}^{N} p_{nm} \ \mathbf{x}_n - \mathbf{x}_m\ ^2$	$\log \sum_{n,m=1}^{N} e^{-\ \mathbf{x}_n-\mathbf{x}_m\ ^2}$
t-SNE: (van der Maaten & Hinton,'08)	$\sum_{n,m=1}^{N} p_{nm} \log \left(1 + \ \mathbf{x}_n - \mathbf{x}_m\ ^2\right)$	$\log\sum_{n,m=1}^{N}{(1+\ \mathbf{x}_n-\mathbf{x}_m\ ^2)^{-1}}$
EE: (Carreira-Perpiñán,'10)	$\sum_{n,m=1}^{N} w_{nm}^+ \left\ \mathbf{x}_n - \mathbf{x}_m \right\ ^2$	$\sum_{n,m=1}^{N} w_{nm}^{-} e^{-\ \mathbf{x}_n-\mathbf{x}_m\ ^2}$
LE & LLE: (Belkin & Niyogi,'03) (Roweis & Saul,'00)	$\sum_{\substack{n,m=1\\\text{s.t. constraints}}}^{N} w_{nm}^{+} \ \mathbf{x}_{n} - \mathbf{x}_{m}\ ^{2}$	0
w_{nm}^+ and w_{nm}^- are	affinity matrices elements	<ロ><合><き><き><き><き><き> 7

Optimization Strategy

Look for a search direction \mathbf{p}_k at iteration k as a solution of a linear system $\mathbf{B}_k \mathbf{p}_k = -\mathbf{g}_k$, where \mathbf{g}_k is the current gradient and \mathbf{B}_k is a partial Hessian matrix.

 $\mathbf{B}_{k} = \mathbf{I} \text{ (grad. descent)} \xrightarrow[faster convergence rate]{} \mathbf{B}_{k} = \nabla^{2} E \text{ (Newton's method)}$

We want \mathbf{B}_k :

- contain as much information about the Hessian as possible;
- positive definite (pd);
- ▶ fast to solve the linear system and scale up to larger *N*.

After \mathbf{p}_k is obtained, a line search algorithm finds the step size α for the next iteration $\mathbf{X}_{k+1} = \mathbf{X}_k + \alpha \mathbf{p}_k$. We used backtracking line search.

Structure of the Hessian of the Generalized Embedding

Given a symmetric matrix of weights **W**, we can always define its degree matrix $\mathbf{D} = \text{diag}\left(\sum_{n=1}^{N} w_{nm}\right)$ and its graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{W}$. **L** is positive semi-definite (psd) when entries of **W** are non-negative.

The $Nd \times Nd$ Hessian can be written in terms of certain graph Laplacians:

$$\nabla^{2} E = 4\mathbf{L} \otimes \mathbf{I}_{d}$$

$$\mathbf{L} = \mathbf{L}^{+} - \lambda \mathbf{L}^{-}; \nabla^{2} E^{+}(\mathbf{X}) = \mathbf{L}^{+} \otimes \mathbf{I}_{d}$$

$$\mathbf{L}^{+} \text{ is psd and data-independent}$$
for Gaussian kernel.
$$+8\mathbf{L}^{\times\times}$$

$$data-dependent, \text{ overall not definite,}$$
but has psd diagonal blocks.[†]

$$-16\lambda \operatorname{vec}(\mathbf{X}\mathbf{L}^{q}) \operatorname{vec}(\mathbf{X}\mathbf{L}^{q})^{T}$$
always negative definite.[†]

$$\overset{\dagger}{} \operatorname{exact expressions for } \mathbf{L}^{\times\times} \operatorname{and } \mathbf{L}^{q} \operatorname{are in the paper}$$

Thus, there are several choices for psd parts of the Hessian:

- The best choice depends on the problem.
- ► We focus in particular on the one that does generally well.

9

The Spectral Direction (definition)

 $\mathbf{B}_k = 4\mathbf{L}^+ \otimes \mathbf{I}_d$ is a convenient Hessian approximation:

- equal to the Hessian of the spectral methods: $\nabla^2 E^+(\mathbf{X})$;
- ► always psd ⇒ global convergence under mild assumptions;
- ▶ block-diagonal and has d blocks of N × N graph Laplacian 4L⁺;
- constant for Gaussian kernel. For other kernels we can fix it at some X;
- "bends" the gradient of the nonlinear E using the curvature of the spectral E⁺;

The Spectral Direction (computation)

We need to solve a linear system $\mathbf{B}_k \mathbf{p}_k = \mathbf{g}_k$ efficiently for every iteration (naively $\mathcal{O}(N^3 d)$).

- Cache the (also sparse) Cholesky factor of L⁺ in the first iteration. Now, there are just two triangular systems for each iteration.
- ▶ For scalability, we can make \mathbf{W}^+ even more sparse than it was with a κ -NN graph ($\kappa \in [1, N]$ is a user parameter). This affects only the runtime, convergence is still guaranteed.
- ▶ \mathbf{B}_k is psd ⇒ add small constant μ to the diagonal elements.

	Cost per iteration
Objective function	$\mathcal{O}(N^2d)$
Gradient	$\mathcal{O}(N^2d)$
Spectral direction	$\mathcal{O}(N\kappa d)$

This strategy adds almost no overhead when compared to the objective function and the gradient computation.

The Spectral Direction (pseudocode)

SpectralDirection(X_0, W^+, κ) (optional) Further sparsify \mathbf{W}^+ with κ -NN graph $I^+ \leftarrow D^+ - W^+$ Compute graph Laplacian $\mathcal{O}(N)$ $\mathbf{R} \leftarrow \text{chol}(\mathbf{L}^+ + \mu \mathbf{I})$ compute Cholesky decomposition $\mathcal{O}(N^2\kappa)$ $k \leftarrow 1$ repeat Compute E_k and \mathbf{g}_k Objective function and the gradient $\mathcal{O}(N^2 d)$ $\mathbf{p}_k \leftarrow -\mathbf{R}^{-T}(\mathbf{R}^{-1}\mathbf{g}_k)$ Solve two triangular systems $\mathcal{O}(N\kappa d)$ $\alpha \leftarrow \mathsf{backtracking}$ line search $\mathbf{X}_k \leftarrow \mathbf{X}_{k-1} + \alpha \mathbf{p}_k$ $k \leftarrow k + 1$ until stop return X

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Experimental Evaluation: Methods Compared

- Gradient descent (GD), (Hinton&Roweis, '03)
- Diagonal methods:
 - fixed-point iterations (FP), (Carreira-Perpiñán,'10)
 - ► the diagonal of the Hessian (DiagH); $\mathbf{B}_k = 4\mathbf{D}^+ \otimes \mathbf{I}_d + 8\lambda \mathbf{D}^{xx}$
- Our methods:
 - spectral direction (SD);
 - partial Hessian SD-, solve linear system with conjugate gradient;
- Standard large-scale methods:
 - nonlinear Conjugate Gradient (CG);
 - L-BFGS.

 $\mathbf{B}_k = \mathbf{I}$

$$\mathbf{B}_k = 4\mathbf{D}^+ \otimes \mathbf{I}_d$$

$$\mathbf{B}_{k} = 4\mathbf{L}^{+} \otimes \mathbf{I}_{d}$$
$$\mathbf{B}_{k} = 4\mathbf{L}^{+} \otimes \mathbf{I}_{d} + 8\lambda \mathbf{L}_{i*,i*}^{\mathsf{xx}}$$

<ロ> < 回> < 回> < 目> < 目> < 目> 三 のへで 13

COIL-20. Convergence to the same minimum, EE

Initialize \bm{X}_0 close enough to \bm{X}_∞ so that all methods have the same initial and final points.

(a)

COIL-20. Convergence from random initial X, s-SNE

Run the algorithms 50 times for 20 seconds each with different initialization.

MNIST. t-SNE

 $N = 20\,000$ images of handwritten digits (each a 28×28 pixel grayscale image, D = 784). 1 hour of optimization.

- (同) - (日) - (日)

MNIST. Embedding after 1 hour of *t*-SNE optimization

Animation

17

Conclusions

- We presented a common framework for many well-known dimensionality reduction techniques.
- We showed the role of graph Laplacians in the Hessian and derived several partial Hessian optimization strategies.
- We presented the spectral direction: a new simple, generic and scalable optimization strategy that runs one to two orders of magnitude faster compared to traditional methods.
- The evaluation of E and ∇E remains the bottleneck (O(N²d)) that can be addressed in the future works (e.g. with Fast Multipole Methods).
- Matlab code (very soon): http://eecs.ucmerced.edu/.

Partially supported by NSF CAREER award IIS-0754089.

MNIST. Embedding after 20 min of EE optimization

Animation

(ロト・西ト・ヨト・ヨー うん(

COIL-20. Convergence to the same minimum, s-SNE

We initialized \bm{X}_0 close enough to \bm{X}_∞ so that all methods have the same initial and final points.

(a)

COIL-20: Homotopy optimization for EE

Start with small λ where *E* is convex and follow the path of minima to desired λ by minimizing over **X** as λ increases. We used 50 log-spaced values from 10^{-4} to 10^2 .

Animation