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Introduction

We focus on graph-based dimensionality reduction techniques:

◮ Input is a (sparse) affinity matrix.

◮ Objective function is a minimization over the location of the latent
points.

◮ Examples:
• Spectral methods: Laplacian Eigenmaps (LE), LLE;

✓ have a closed-form solution;
✗ results are often not satisfactory.

• Nonlinear methods: SNE, s-SNE, t-SNE, elastic embedding (EE);

✓ produce good quality embedding;
✗ notoriously slow to train, limited to small data sets.

One reason for slow training is inefficient optimization algorithms that take
many iterations and move very slowly towards a solution.
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COIL-20 Dataset
Rotations of 10 objects every 5◦; input is greyscale images of 128 × 128.

. . .

Elastic Embedding Laplacian Eigenmaps
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Teaser

We are proposing a new training algorithm that:

◮ generalizes over multiple algorithms (s-SNE, t-SNE, EE);

◮ fast (1-2 orders of magnitude compared to current techniques);

◮ allows deep, inexpencive steps;

◮ scalable to larger datasets;

◮ intuitive and easy to implement.
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General Embedding Formulation (Carreira-Perpiñán 2010)

For Y = (y1, . . . , yN) ∈ R
D×N matrix of high-dimensional points

and X = (x1, . . . , xN) ∈ R
d×N matrix of low-dimensional points, define an

objective function:

E (X, λ) = E+(X) + λE−(X) λ ≥ 0

E+ is the attractive term:

◮ often quadratic,

◮ minimal with coincident points;

,

, ☼

☼
E− is the repulsive term:

◮ often very nonlinear,

◮ minimal with points separated infinitely.

,

, ☼

☼

Optimal embeddings balance both forces.
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Example: SNE (Hinton & Roweis 2003)

Define Pn and Qn as distributions for each data point over the neighbors in
high- and low-dimensional spaces respectively:

pnm =
exp(−‖yn−ym‖2

σ2 )
∑N

k=1,k 6=n exp(−
‖yn−ym‖

2

σ2 )
; qnm =

exp(−‖xn − xm‖
2)

∑N
k=1,k 6=n exp(−‖xn − xm‖

2)

The goal is to position points X such that Pn matches the Qn for every n:

ESNE(X) =

N
∑

n=1

D(Pn‖Qn)

=
N
∑

n,m=1

pnm log
pnm

qnm
= −

N
∑

n,m=1

pnm log qnm + C

=
N
∑

n,m=1

pnm ‖xn − xm‖
2 +

N
∑

n=1

log
∑

m 6=n

exp (−‖xn − xm‖
2) + C

= E+(X) + λE−(X) (In this formulation λ = 1)
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General Embedding Formulation: Other Special Cases
E+(X) E−(X)

SNE:
(Hinton&Roweis,’03)

N
∑

n,m=1

pnm ‖xn − xm‖
2

N
∑

n=1

log
N
∑

m=1

e−‖xn−xm‖2

s-SNE:
(Cook at al,’07)

N
∑

n,m=1

pnm ‖xn − xm‖
2 log

N
∑

n,m=1

e−‖xn−xm‖
2

t-SNE:
(van der Maaten &

Hinton,’08)

N
∑

n,m=1

pnm log (1 + ‖xn − xm‖
2) log

N
∑

n,m=1

(1 + ‖xn − xm‖
2)−1

EE:
(Carreira-Perpiñán,’10)

N
∑

n,m=1

w+
nm ‖xn − xm‖

2
N
∑

n,m=1

w−
nme

−‖xn−xm‖
2

LE & LLE:
(Belkin & Niyogi,’03)
(Roweis & Saul,’00)

N
∑

n,m=1

w+
nm ‖xn − xm‖

2

s.t. constraints

0

w+
nm and w

−
nm are affinity matrices elements
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Optimization Strategy

Look for a search direction pk at iteration k as a solution of a linear system
Bkpk = −gk , where gk is the current gradient and Bk is a partial Hessian
matrix.

Bk = I (grad. descent)
more Hessian information
−−−−−−−−−−−−−−−→
faster convergence rate

Bk = ∇2E (Newton’s method)

We want Bk :

◮ contain as much information about the Hessian as possible;

◮ positive definite (pd);

◮ fast to solve the linear system and scale up to larger N.

After pk is obtained, a line search algorithm finds the step size α for the
next iteration Xk+1 = Xk + αpk . We used backtracking line search.
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Structure of the Hessian of the Generalized Embedding
Given a symmetric matrix of weights W, we can always define its degree

matrix D = diag
(

∑N
n=1 wnm

)

and its graph Laplacian L = D−W.

L is positive semi-definite (psd) when entries of W are non-negative.

The Nd × Nd Hessian can be written in terms of certain graph Laplacians:

∇2E= 4L ⊗ Id L = L+ − λL−; ∇2E+(X) = L+ ⊗ Id
L+ is psd and data-independent
for Gaussian kernel.

+8Lxx data-dependent, overall not definite,

but has psd diagonal blocks.†

−16λ vec (XLq) vec (XLq)T always negative definite.†

†exact expressions for Lxx and Lq are in the paper.

Thus, there are several choices for psd parts of the Hessian:

◮ The best choice depends on the problem.

◮ We focus in particular on the one that does generally well.
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The Spectral Direction (definition)

∇2E = 4L ⊗ Id+8Lxx − 16λ vec (XLq) vec (XLq)T

↓
L+−λL−

Bk = 4L+ ⊗ Id is a convenient Hessian approximation:

◮ equal to the Hessian of the spectral methods: ∇2E+(X);

◮ always psd ⇒ global convergence under mild assumptions;

◮ block-diagonal and has d blocks of N × N graph Laplacian 4L+;

◮ constant for Gaussian kernel. For other kernels we can fix it at some X;

◮ “bends” the gradient of the nonlinear E using the curvature of the
spectral E+;
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The Spectral Direction (computation)

We need to solve a linear system Bkpk = gk efficiently for every iteration
(naively O(N3d)).

◮ Cache the (also sparse) Cholesky factor of L+ in the first iteration.
Now, there are just two triangular systems for each iteration.

◮ For scalability, we can make W+ even more sparse than it was with a
κ-NN graph (κ ∈ [1,N] is a user parameter). This affects only the
runtime, convergence is still guaranteed.

◮ Bk is psd ⇒ add small constant µ to the diagonal elements.

Cost per iteration

Objective function O(N2d)
Gradient O(N2d)
Spectral direction O(Nκd)

This strategy adds almost no overhead when compared to the objective
function and the gradient computation.
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The Spectral Direction (pseudocode)

SpectralDirection(X0, W
+, κ)

(optional) Further sparsify W+ with κ-NN graph
L+ ← D+ −W+ Compute graph Laplacian O(N)

R← chol(L+ + µI) compute Cholesky decomposition O(N2
κ)

k ← 1
repeat

Compute Ek and gk Objective function and the gradient O(N2
d)

pk ← −R
−T (R−1gk) Solve two triangular systems O(Nκd)

α ← backtracking line search
Xk ← Xk−1 + αpk
k ← k + 1

until stop
return X
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Experimental Evaluation: Methods Compared

• Gradient descent (GD), Bk = I
(Hinton&Roweis,’03)

• Diagonal methods:
◮ fixed-point iterations (FP), Bk = 4D+ ⊗ Id

(Carreira-Perpiñán,’10)

◮ the diagonal of the Hessian (DiagH); Bk = 4D+ ⊗ Id + 8λDxx

• Our methods:
◮ spectral direction (SD); Bk = 4L+ ⊗ Id
◮ partial Hessian SD–,
solve linear system with conjugate gradient;

Bk = 4L+ ⊗ Id + 8λLxx
i∗,i∗

• Standard large-scale methods:
◮ nonlinear Conjugate Gradient (CG);
◮ L-BFGS.
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COIL-20. Convergence to the same minimum, EE

Initialize X0 close enough to X∞ so that all methods have the same initial
and final points.
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COIL-20. Convergence from random initial X, s-SNE
Run the algorithms 50 times for 20 seconds each with different initialization.

0 100 200 300 400 500
10.1

10.2

10.3

10.4

10.5

 

 

GD

FP

DiagH

SD

SD–

L-BFGS

CG

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e

Number of iterations
Animation

15



MNIST. t-SNE

N = 20000 images of handwritten digits (each a 28× 28 pixel grayscale
image, D = 784). 1 hour of optimization.
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MNIST. Embedding after 1 hour of t-SNE optimization

Fixed-point iteration Spectral direction
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Conclusions

◮ We presented a common framework for many well-known
dimensionality reduction techniques.

◮ We showed the role of graph Laplacians in the Hessian and derived
several partial Hessian optimization strategies.

◮ We presented the spectral direction: a new simple, generic and
scalable optimization strategy that runs one to two orders of
magnitude faster compared to traditional methods.

◮ The evaluation of E and ∇E remains the bottleneck (O(N2d)) that
can be addressed in the future works (e.g. with Fast Multipole
Methods).

◮ Matlab code (very soon): http://eecs.ucmerced.edu/.

Partially supported by NSF CAREER award IIS–0754089.
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MNIST. Embedding after 20 min of EE optimization

Fixed-point iteration Spectral direction
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COIL-20. Convergence to the same minimum, s-SNE

We initialized X0 close enough to X∞ so that all methods have the same
initial and final points.
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COIL-20: Homotopy optimization for EE

Start with small λ where E is convex and follow the path of minima to
desired λ by minimizing over X as λ increases. We used 50 log-spaced
values from 10−4 to 102.

10
−2

10
−1

10
0

10
1

10
210

0

10
1

10
2

10
3

10
4

λ

N
u
m
b
er

of
it
er
at
io
n
s

10
−2

10
−1

10
0

10
1

10
210

−2

10
−1

10
0

10
1

10
2

10
3

 

 

λ

T
im

e,
s

GD
FP

DiagH

SD
SD–
L-BFGS
CG

Animation
21


