
Partial-Hessian Strategies for
Fast Learning of Nonlinear Embeddings

Max Vladymyrov and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science
University of California, Merced

https://eecs.ucmerced.edu

June 29, 2012



Introduction

We focus on graph-based dimensionality reduction techniques:

◮ Input is a (sparse) affinity matrix.

◮ Objective function is a minimization over the location of the latent
points.

◮ Examples:
• Spectral methods: Laplacian Eigenmaps (LE), LLE;

✓ have a closed-form solution;
✗ results are often not satisfactory.

• Nonlinear methods: SNE, s-SNE, t-SNE, elastic embedding (EE);

✓ produce good quality embedding;
✗ notoriously slow to train, limited to small data sets.

One reason for slow training is inefficient optimization algorithms that take
many iterations and move very slowly towards a solution.

2



COIL-20 Dataset
Rotations of 10 objects every 5◦; input is greyscale images of 128 × 128.

. . .

Elastic Embedding Laplacian Eigenmaps

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3



Teaser

We are proposing a new training algorithm that:

◮ generalizes over multiple algorithms (s-SNE, t-SNE, EE);

◮ fast (1-2 orders of magnitude compared to current techniques);

◮ allows deep, inexpencive steps;

◮ scalable to larger datasets;

◮ intuitive and easy to implement.

4



General Embedding Formulation (Carreira-Perpiñán 2010)

For Y = (y1, . . . , yN) ∈ R
D×N matrix of high-dimensional points

and X = (x1, . . . , xN) ∈ R
d×N matrix of low-dimensional points, define an

objective function:

E (X, λ) = E+(X) + λE−(X) λ ≥ 0

E+ is the attractive term:

◮ often quadratic,

◮ minimal with coincident points;

,

, ☼

☼
E− is the repulsive term:

◮ often very nonlinear,

◮ minimal with points separated infinitely.

,

, ☼

☼

Optimal embeddings balance both forces.
5



Example: SNE (Hinton & Roweis 2003)

Define Pn and Qn as distributions for each data point over the neighbors in
high- and low-dimensional spaces respectively:

pnm =
exp(−‖yn−ym‖2

σ2 )
∑N

k=1,k 6=n exp(−
‖yn−ym‖

2

σ2 )
; qnm =

exp(−‖xn − xm‖
2)

∑N
k=1,k 6=n exp(−‖xn − xm‖

2)

The goal is to position points X such that Pn matches the Qn for every n:

ESNE(X) =

N
∑

n=1

D(Pn‖Qn)

=
N
∑

n,m=1

pnm log
pnm

qnm
= −

N
∑

n,m=1

pnm log qnm + C

=
N
∑

n,m=1

pnm ‖xn − xm‖
2 +

N
∑

n=1

log
∑

m 6=n

exp (−‖xn − xm‖
2) + C

= E+(X) + λE−(X) (In this formulation λ = 1)

6



General Embedding Formulation: Other Special Cases
E+(X) E−(X)

SNE:
(Hinton&Roweis,’03)

N
∑

n,m=1

pnm ‖xn − xm‖
2

N
∑

n=1

log
N
∑

m=1

e−‖xn−xm‖2

s-SNE:
(Cook at al,’07)

N
∑

n,m=1

pnm ‖xn − xm‖
2 log

N
∑

n,m=1

e−‖xn−xm‖
2

t-SNE:
(van der Maaten &

Hinton,’08)

N
∑

n,m=1

pnm log (1 + ‖xn − xm‖
2) log

N
∑

n,m=1

(1 + ‖xn − xm‖
2)−1

EE:
(Carreira-Perpiñán,’10)

N
∑

n,m=1

w+
nm ‖xn − xm‖

2
N
∑

n,m=1

w−
nme

−‖xn−xm‖
2

LE & LLE:
(Belkin & Niyogi,’03)
(Roweis & Saul,’00)

N
∑

n,m=1

w+
nm ‖xn − xm‖

2

s.t. constraints

0

w+
nm and w

−
nm are affinity matrices elements

7



Optimization Strategy

Look for a search direction pk at iteration k as a solution of a linear system
Bkpk = −gk , where gk is the current gradient and Bk is a partial Hessian
matrix.

Bk = I (grad. descent)
more Hessian information
−−−−−−−−−−−−−−−→
faster convergence rate

Bk = ∇2E (Newton’s method)

We want Bk :

◮ contain as much information about the Hessian as possible;

◮ positive definite (pd);

◮ fast to solve the linear system and scale up to larger N.

After pk is obtained, a line search algorithm finds the step size α for the
next iteration Xk+1 = Xk + αpk . We used backtracking line search.

8



Structure of the Hessian of the Generalized Embedding
Given a symmetric matrix of weights W, we can always define its degree

matrix D = diag
(

∑N
n=1 wnm

)

and its graph Laplacian L = D−W.

L is positive semi-definite (psd) when entries of W are non-negative.

The Nd × Nd Hessian can be written in terms of certain graph Laplacians:

∇2E= 4L ⊗ Id L = L+ − λL−; ∇2E+(X) = L+ ⊗ Id
L+ is psd and data-independent
for Gaussian kernel.

+8Lxx data-dependent, overall not definite,

but has psd diagonal blocks.†

−16λ vec (XLq) vec (XLq)T always negative definite.†

†exact expressions for Lxx and Lq are in the paper.

Thus, there are several choices for psd parts of the Hessian:

◮ The best choice depends on the problem.

◮ We focus in particular on the one that does generally well.

9



The Spectral Direction (definition)

∇2E = 4L ⊗ Id+8Lxx − 16λ vec (XLq) vec (XLq)T

↓
L+−λL−

Bk = 4L+ ⊗ Id is a convenient Hessian approximation:

◮ equal to the Hessian of the spectral methods: ∇2E+(X);

◮ always psd ⇒ global convergence under mild assumptions;

◮ block-diagonal and has d blocks of N × N graph Laplacian 4L+;

◮ constant for Gaussian kernel. For other kernels we can fix it at some X;

◮ “bends” the gradient of the nonlinear E using the curvature of the
spectral E+;

10



The Spectral Direction (computation)

We need to solve a linear system Bkpk = gk efficiently for every iteration
(naively O(N3d)).

◮ Cache the (also sparse) Cholesky factor of L+ in the first iteration.
Now, there are just two triangular systems for each iteration.

◮ For scalability, we can make W+ even more sparse than it was with a
κ-NN graph (κ ∈ [1,N] is a user parameter). This affects only the
runtime, convergence is still guaranteed.

◮ Bk is psd ⇒ add small constant µ to the diagonal elements.

Cost per iteration

Objective function O(N2d)
Gradient O(N2d)
Spectral direction O(Nκd)

This strategy adds almost no overhead when compared to the objective
function and the gradient computation.

11



The Spectral Direction (pseudocode)

SpectralDirection(X0, W
+, κ)

(optional) Further sparsify W+ with κ-NN graph
L+ ← D+ −W+ Compute graph Laplacian O(N)

R← chol(L+ + µI) compute Cholesky decomposition O(N2
κ)

k ← 1
repeat

Compute Ek and gk Objective function and the gradient O(N2
d)

pk ← −R
−T (R−1gk) Solve two triangular systems O(Nκd)

α ← backtracking line search
Xk ← Xk−1 + αpk
k ← k + 1

until stop
return X

12



Experimental Evaluation: Methods Compared

• Gradient descent (GD), Bk = I
(Hinton&Roweis,’03)

• Diagonal methods:
◮ fixed-point iterations (FP), Bk = 4D+ ⊗ Id

(Carreira-Perpiñán,’10)

◮ the diagonal of the Hessian (DiagH); Bk = 4D+ ⊗ Id + 8λDxx

• Our methods:
◮ spectral direction (SD); Bk = 4L+ ⊗ Id
◮ partial Hessian SD–,
solve linear system with conjugate gradient;

Bk = 4L+ ⊗ Id + 8λLxx
i∗,i∗

• Standard large-scale methods:
◮ nonlinear Conjugate Gradient (CG);
◮ L-BFGS.

13



COIL-20. Convergence to the same minimum, EE

Initialize X0 close enough to X∞ so that all methods have the same initial
and final points.

10
0

10
1

10
2

10
3

10
4

1

1.2

1.4

1.6

1.8

Number of iterations

O
b
je
ct
iv
e
fu
n
ct
io
n

10
−1

10
0

10
1

10
2

 

 

Runtime (seconds)

GD
FP
DiagH
SD
SD–
L-BFGS
CG

14



COIL-20. Convergence from random initial X, s-SNE
Run the algorithms 50 times for 20 seconds each with different initialization.

0 100 200 300 400 500
10.1

10.2

10.3

10.4

10.5

 

 

GD

FP

DiagH

SD

SD–

L-BFGS

CG

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e

Number of iterations
Animation

15



MNIST. t-SNE

N = 20000 images of handwritten digits (each a 28× 28 pixel grayscale
image, D = 784). 1 hour of optimization.

5 10 15 20 25 30

16.68

17.04

17.41

17.79

18.18

18.57

18.97

19.39

19.81

 

 

Number of iterations

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e

FP

SD
SD–

L-BFGS
CG

0 5 10 15 20 25 30 35 40 45 50 55 60

Runtime (minutes)

16



MNIST. Embedding after 1 hour of t-SNE optimization

Fixed-point iteration Spectral direction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−40 −30 −20 −10 0 10 20 30 40 50

−40

−30

−20

−10

0

10

20

30

40

Animation
17



Conclusions

◮ We presented a common framework for many well-known
dimensionality reduction techniques.

◮ We showed the role of graph Laplacians in the Hessian and derived
several partial Hessian optimization strategies.

◮ We presented the spectral direction: a new simple, generic and
scalable optimization strategy that runs one to two orders of
magnitude faster compared to traditional methods.

◮ The evaluation of E and ∇E remains the bottleneck (O(N2d)) that
can be addressed in the future works (e.g. with Fast Multipole
Methods).

◮ Matlab code (very soon): http://eecs.ucmerced.edu/.

Partially supported by NSF CAREER award IIS–0754089.

18



MNIST. Embedding after 20 min of EE optimization

Fixed-point iteration Spectral direction

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Animation
19



COIL-20. Convergence to the same minimum, s-SNE

We initialized X0 close enough to X∞ so that all methods have the same
initial and final points.

10
0

10
1

10
2

10
3

10
4

10.15

10.2

10.25

10.3

10.35

Number of iterations

O
b
je
ct
iv
e
fu
n
ct
io
n
,
s-
S
N
E

10
−1

10
0

10
1

10
2

 

 

Runtime (seconds)

GD
FP
DiagH
SD
SD–
L-BFGS
CG

20



COIL-20: Homotopy optimization for EE

Start with small λ where E is convex and follow the path of minima to
desired λ by minimizing over X as λ increases. We used 50 log-spaced
values from 10−4 to 102.

10
−2

10
−1

10
0

10
1

10
210

0

10
1

10
2

10
3

10
4

λ

N
u
m
b
er

of
it
er
at
io
n
s

10
−2

10
−1

10
0

10
1

10
210

−2

10
−1

10
0

10
1

10
2

10
3

 

 

λ

T
im

e,
s

GD
FP

DiagH

SD
SD–
L-BFGS
CG

Animation
21


