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1 Abstract
Stochastic neighbor embedding (SNE) and related nonlinear man-
ifold learning algorithms achieve high-quality low-dimensional rep-
resentations of similarity data, but are notoriously slow to train.
We propose a generic formulation of embedding algorithms that
includes SNE and other existing algorithms, and study their re-
lation with spectral methods and graph Laplacians. This allows
us to define several partial-Hessian optimization strategies, cha-
racterize their global and local convergence, and evaluate them
empirically. We achieve up to two orders of magnitude speedup
over existing training methods with a strategy (which we call the
spectral direction ) that adds nearly no overhead to the gradient
and yet is simple, scalable and applicable to several existing and
future embedding algorithms.

2 General Embedding Formulation
For Y ∈ R

D×N - high-dimensional data set and X ∈ R
d×N its its low-

dimensional projection we can formulate several well-known dimen-
sionality reduction techniques as:

E(X;λ) = E+(X) + λE−(X) λ ≥ 0

where E+ is an attractive term, often quadratic psd and minimal with
coincident points, and E− is a repulsive term, often nonlinear and
minimal when points separate infinitely. Special cases include:

•Symm. Stochastic Neighbor Embedding (s-SNE) and t-SNE de-
fine a posterior probability distributions P and Q in X and Y spaces
resp. for a given kernel function K(‖xn − xm‖

2). The objective func-
tion minimizes the KL divergence between the two (λ is equal to 1).

•Elastic Embedding (EE) goes without distributions and is simpler.

• Laplacian Eigenmaps (LE) and Locally Linear Embedding (LLE)
minimize only attractive term (equivalent to λ = 0), but add quadratic
constraints to eliminate the trivial solution X = 0.

Call dnm = ‖xn − xm‖
2. Then, the objective functions can be reformu-

lated as :

s-SNE: E+ =
N
∑

n,m=1

pnmdnm E− = log
N
∑

n,m=1

e−dnm

t-SNE: E+ =
N
∑

n,m=1

pnm log (1 + e−dnm) E− = log
N
∑

n,m=1

(1 + e−dnm)−1

EE: E+ =
N
∑

n,m=1

w+
nmdnm E− =

N
∑

n,m=1

w−nme
−dnm

LE & LLE: E+ =
N
∑

n,m=1

w+
nmdnm E− = 0

3 Partial-Hessian Strategies
We search for a descent search direction as a solution to Bkpk = −gk, where gk

is the gradient at iteration k and Bk is a pd matrix. We want Bk to be a psd part
of the Hessian such that it contains as much Hessian information as possible, it
is fast to compute and it scales up to larger N .
Given a graph Laplacian L = D −W with D = diag

(

∑N
n=1wnm

)

as a degree
matrix (L is psd if the entries of W are non-negative). Then the Hessian of
generalized embeddings is a Nd×Nd matrix given by:

∇2E = 4L⊗ Id + 8Lxx − 16λ vec (XLq) vec (XLq)T

where Id is the d × d identity matrix, and the weights of corresponding graph
Laplacians depend on the particular method:

wnm wxx
in,jm wq

nm

s-SNE pnm − λqnm λqnm(xin − xim)(xjn− xjm) −qnm
t-SNE K(pnm − λqnm) K2(2λqnm− pnm)(xin − xim)(xjn− xjm) −K

2qnm
EE w+

nm − λw−nme
−dnm λw−nme

−dnm(xin − xim)(xjn− xjm) 0

Note that in both cases the weights pnm and qnm as well as w+
nm and w−nm are

always positive and wxx
in,jm has a constant sign for i = j.

4 The Spectral Direction
The partial Hessian constructed from the attractive Hessian Bk = ∇2E+(X) =
4L+⊗Id compromises the best between deep descent and efficient computation,
and yields what we call the spectral direction:

• it guaranties to be globally convergent from
any initialization.

• it is block-diagonal and consists of d identi-
cal blocks of N ×N graph Laplacian L+;

• it is constant for Gaussians kernels and can
be made constant for other kernels, thus it
is computed just once for all iterations and
values of homotopy parameter λ;

•we can further sparsify L+ through κ-
nearest-neighbor graph:

κ = N ;Bk = L+ more sparsity
−−−−−−−→ κ = 0;Bk = D+

SpectralDirection(X0, W+, κ)
L+← D+ −W+

Sparsify L+ with κ-NN graph
R← chol(L+)
k ← 1
repeat

Compute gk and Ek

pk ← −R
−T (R−1gk)

α← backtracking line search
Xk ← Xk−1 + αpk

k ← k + 1
until stop
return X

•we precompute the Cholesky factorization 4L+ = RTR for O(13N
3) and then

solve two triangular systems RT (Rpk) = −gk for every iteration k
(

O(N 2d)
)

.
This is much faster than solve the linear system

(

O(N 3d)
)

for each iteration;

•we “bend” the exact gradient of the nonlinear E using the curvature of the
spectral E+.

5 Experimental Evaluation
In the experiments we compared: gradient descent (GD), fixed-point
diagonal iterations (FP), the diagonal of the full Hessian (DiagH), spec-
tral direction (SD), partial Hessian (SD–), nonlinear Conj. Grad. (CG)
and L-BFGS;
Method: GD FP DiagH SD SD–
Bk: I 4D+ 4D+ + 8λDxx

i∗,i∗ 4L+ 4L+ + 8λLxx
i∗,i∗

Bkpk = −gk: – Exact Exact trian. sys. lin. conj. grad.

1. COIL-20. Rotation sequences of 10 objects every 5 degrees; each data point is a greyscale image of 128 × 128, so Y

has N = 720 points in D = 16 384 dimensions. We used SNE affinities with perplexity k = 20.

Convergence to the same minimum from the same initial X.
Initialize X0 close to X∞ so all methods have the same final point.

10
0

10
1

10
2

10
3

10
4

1

1.2

1.4

1.6

1.8

O
bj

ec
tiv

e
fu

nc
tio

n,
E

E

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10.15

10.2

10.25

10.3

10.35

Number of iterations

O
bj

ec
tiv

e
fu

nc
tio

n,
s-

S
N

E

10
−1

10
0

10
1

10
2

 

 

Runtime (seconds)

GD
FP
DiagH
SD
SD–
L-BFGS
CG

Convergence from random X0 to possibly different minima.
Run from 50 different random points for 20 seconds each.
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Number of iterations, s-SNE

Homotopy optimization for EE. Used 50 log-spaced values of λ
from 10−4 to 102 and minimized E at each λ value until the relative
error decrease was less than 10−6 or we reached 104 iterations.

Method: GD FP DiagH SD SD– L-BFGS CG
E evals 143 237 26 219 26 235 5 183 2775 6 816 16 600

Time 9 291 2 015 2 016 402 703 756 2 154
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2. MNIST. N = 20 000 MNIST handwritten digits (each a 28 × 28 pixel grayscale image, i.e., D = 784). Perplexity k = 50.
Run the EE and t-SNE optimization methods for 1 hour each. For the SD we used κ = 7.
Elastic Embedding (EE) t-Stochastic Neighbor Embedding (t-SNE)
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6 Conclusions
•We presented general formulation of such methods as SNE, s-SNE, t-SNE,

EE, LE and LLE , and also suggest new ones.

•We showed the role of graph Laplacians in the gradient and Hessian, and de-
rived several partial-Hessian optimization strategies.

•We presented a new simple, generic and scalable optimization strategy based
on the Cholesky factors of the (sparsified) attractive Laplacian. The preferred
method is able to achieve 1–2 orders of magnitude speed-up compared to
traditional methods.

•Matlab implementation is available online at authors’ websites.
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