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Rotation sequences of 10 objects every 5 degrees; each data point is a greyscale image of 128 x 128, so0 Y
nas N = 720 points in D = 16 384 dimensions. We used SNE affinities with perplexity k£ = 20.

1. COIL-20.

Convergence from random X, to possibly different minima.
Run from 50 different random points for 20 seconds each.

1 Abstract 3 Partial-Hessian Strategies

Convergence to the same minimum from the same Initial X.

Stochastic neighbor embedding (SNE) and related nonlinear man-  We search for a descent search direction as a solution to B,p; = —g, Where g, Initialize XO‘CIose t? XOOSF) all methods have the same final point.
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includes SNE and other existing algorithms, and study their re-  Given a graph Laplacian L = D — W with D = diag (Z;L wnm) as a degree | g B s || w3 314
lation with spectral methods and graph Laplacians. This allows matrix (L is psd if the entries of W are non-negative). Then the Hessian of o’ - CG * 2
us to define several partial-Hessian optimization strategies, cha- generalized embeddings is a Nd x Nd matrix given by: 8 10.2| f’_;.l.z
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empirically. We achieve up to two orders of magnitude speedup V'E = 4L @ I+ 8L™ — 16A vec (X L) vec (XLY) 0 100 200 300 400 500 0 100 200 300 400 500 1o
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spectral direction ) that adds nearly no overhead to the gradient  Laplacians depend on the particular method: Homotopy optimization for EE.  Used 50 log-spaced values of A | Z 10.35
and yet is simple, scalable and applicable to several existing and W, Wit o from 10~* to 10? and minimized £ at each ) value until the relative ‘f,’, 04l
future embedding algorithms. SSSNE  por — A )\Qnm<x27:7 — o) @ — T | — CIZT; error decrease was less than 107° or we reached 10* iterations. | § ~
t-SNE | K (Dum — Mum) | K2(2AG0m — Prm) (@in — Tim ) (@0 — Tjm) | — I G Method:) GD FP DiagH SD SD- L-BFGS CG § 10.25/
EFE w' — \w—_e %m Nw— e Dm(p. — 2. V. — . 0 E evals 143237 26219 26235 5183 2775 6816 16600 0
. . nm nm nm ( m zm)( Jn ]m) _ 5 10.2f
General Embeddmg Formulation Note that in both cases the weights p,,,,, and ¢,,, as well as w, and w,_ . are fime | 9291 2015 2016 402 703 o6 21od = <
DN L | | P always positive and wj’ ;,, has a constant sign for i = ;. 5 10150 oSS e L S e
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where E7 is an often quadratic psd and minimal with i - - : 2 I+ M S 4 3 10° | l
ICTE _ e 2} p | The partial Hessian constructed from the attractive Hessian B, = V-E*(X) = N 't = 10° | @%
coincident points, and £~ Is a repulsive term, often nonlinear and  41,+ @ T, compromises the best between deep descent and efficient computation, = { H g W " 10t | Sl N
minimal when points separate infinitely. Special cases include: and yields what we call the spectral direction: R / % = ; A S | :
¢ Symm. Stochastic Neighbor Embedding (s-SNE nd ¢-SNE d _ SpectralDirection(Xo, W, x) -5 510 ‘,\,/\/ L E 0] )
>ymim. ast JHbor =Mbedding (- ) and o- ©" it guaranties to be globally convergent from Lt +« Dt — W+ s ‘ - — DiagH — GD
fine a posterior probability distributions P and () in X and Y spaces o . . o 4 | : I
. . 9 N any initialization. Sparsify Lt with k-NN graph c 10Y _ SD FP
resp. for a given kernel function K (||x,, — x,,||"). The objective func- o | _ denti. R < chol(L") = L-BFGS SD
tion minimizes the KL divergence between the two (A is equal to 1). e it Is block-diagonal and consists O.f d identi- < 0 Ll — CG
Elastic Embedding (EE) goes without distributions and is simpler cal blocks of V> N graph Laplacian L*;  # ¢ 1 e 10 10 T e e >
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e Laplacian Eigenmaps (LE) and Locally Linear Embedding (LLE)
minimize only attractive term (equivalentto A = 0), but add quadratic
constraints to eliminate the trivial solution X = 0.

Call d,,,,, = ||x, — X,||". Then, the objective functions can be reformu-

Compute g;. and £,

pr — —R (R 'g)

« <— backtracking line search
X — X1+ apy

be made constant for other kernels, thus it
IS computed just once for all iterations and
values of homotopy parameter A;

ewe can further sparsify L™ through k-

2 M N |ST N = 20000 MNIST handwritten digits (each a 28 x 28 pixel grayscale image, i.e., D = 784). Perplexity £ = 50.
. * Run the EE and ¢-SNE optimization methods for 1 hour each. For the SD we used Kk = 7.

Elastic Embedding (EE) t-Stochastic Neighbor Embedding (¢-SNE)
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In the experiments we compared: gradient descent (GD), fixed-point ~ ® We showed the role of graph Laplacians in the gradient and Hessian, and de- R R TR A S I B T S B R T D R R e A,
diagonal iterations (FP), the diagonal of the full Hessian (DiagH), spec- rived several partial-Hessian optimization strategies. | ST SNk R S AP I e Y i N AL
tral direction (SD), partial Hessian (SD-), nonlinear Conj. Grad. (CG) e We presented a new simple, generic and scalable optimization strategy based B A R LA I A ATy RO A R R AT L S
and L-BFGS; on the Cholesky factors of the (sparsified) attractive Laplacian. The preferred B A R A RS S e R S
Method: GD FP DiagH SD SD— method Is able to achieve 1-2 orders of magnitude speed-up compared to H A L ’ PR TR - A
By I 4D* 4D*+8AD7%, 4L*  4L*+8A\L#,  traditional methods. SEIPP ST [ ] IEARE R
Bipr = —8gk:| — Exact Exact trian. sys. lin. conj. grad. e Matlab implementation is available online at authors’ websites. I 1 8
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