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Laplacian eigenmaps (LE) (Belkin & Niyogi 2002)

Given affinities W (e.g. Gaussian) for data points y1, . . . ,yN ∈ R
D,

their latent coordinates XL×N = (x1, . . . ,xN) are obtained as:

min ELE(X) =
N∑

n,m=1

wnm ‖xn − xm‖
2 s.t. translation & scale constraints on

❖ Discourages placing far apart latent points xn, xm that
correspond to similar data points yn, ym, but places no direct
constraint on pairs associated with distant data points.

❖ While it can capture the global structure of the manifold, it often
leads to distorted maps, particularly if multiple manifolds exist:
large clusters of points collapse, local clusters and gaps,
boundary effects.

❖ Global optimum from spectral problem: eigenvectors of the
N ×N graph Laplacian L = D−W with D = diag (

∑
m wnm).
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Laplacian eigenmaps: Swiss roll
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Laplacian eigenmaps: COIL-20 dataset

Rotations of 20 objects every 5◦; yn = greyscale image of 128× 128.

. . . . . .

X from Laplacian eigenmaps X from SNE

Plots from van der Maaten & Hinton 2008 p. 3



Stochastic neighbour embedding (SNE) (Hinton & Roweis 2003)

pnm =
exp (−d2

nm)∑
n6=m′ exp (−d2

nm′)
, pnn = 0; qnm =

exp (−‖xn − xm‖
2)∑

n6=m′ exp (−‖xn − xm′‖2)

ESNE(X) =
N∑

n=1

D (Pn‖Qn) =
N∑

n,m=1

pnm log
pnm

qnm

❖ Tries to match the latent-space distributions Qn over
neighbours to the data-space ones Pn.

❖ Significantly better embeddings than LE, particularly when
multiple manifolds exist.

❖ E is very nonlinear: local optima, difficult optimisation.

Hinton & Roweis 2003: “[The SNE] cost function cleanly enforces
both keeping the images of nearby objects nearby and keeping the
images of widely separated objects relatively far apart”.
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A relation between LE and SNE

But in fact ESNE(X) equals (up to constants):

ESNE(X) = · · · =
N∑

n,m=1

pnm ‖xn − xm‖
2

︸ ︷︷ ︸
data-dependent term ①

+
N∑

n=1

log
∑

n6=m

exp (−‖xn − xm‖
2)

︸ ︷︷ ︸
data-independent term ②

❖ Term ① is like LE.

❖ Term ② is a “prior” that pushes apart all latent point pairs
equally, irrespectively of whether their high-dimensional
counterparts are close or far in data space.

So SNE enforces keeping the images of nearby objects nearby
(like LE) while pushing all images apart from each other. This prior
is what makes SNE improve significantly over LE.
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A better point-separating prior term

The previous observation suggests a better “prior”:

❖ a simpler expression with a similar point-separating effect

❖ data-dependent: separate xn, xm for distant yn, ym

❖ strength controlled with a parameter λ ≥ 0

which we define as follows:

λ

N∑

n,m=1

w−
nm ‖yn − ym‖

2 exp (−‖xn − xm‖
2)

where w−
nm are graph weights, possibly sparse.
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The Elastic Embedding (EE) model

min E(X; λ) =
N∑

n,m=1

w+

nm ‖xn − xm‖
2+λ

N∑

n,m=1

w−
nm exp (−‖xn − xm‖

2)

where w−
nm = w−

nm ‖yn − ym‖
2 and we have two graphs:

❖ One with attractive weights W+ = (w+
nm)

(normalised) Gaussian affinities, geodesic distances, etc.

❖ One with repulsive weights W− = (w−
nm)

e.g. w−
nm = 1 so w−

nm = ‖yn − ym‖
2.

EE symmetrises the constraints of Laplacian eigenmaps, where
both types of mistakes are penalised: placing far apart latent points
that correspond to similar data points, and placing close together
latent points that correspond to dissimilar data points.
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Behaviour of the embedding X(λ) as a function of λ

Squared diameter of X(λ) and
illustrative stages of map development:
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Behaviour of the embedding X(λ) as a function of λ

EE, λ = 10−6 EE, λ = 101
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Behaviour of the embedding X(λ) as a function of λ

Learned affinities wnm = w+
nm − λw̃−

nm for a point in the Swiss roll centre:

λ = 10−2: Gaussian λ = 101: Mexican-hat
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Behaviour of the embedding X(λ) as a function of λ

❖ The embedding X(λ) satisfies the stationary point equation

∂E

∂X
= 4XL = 4X(D+ −W+

︸ ︷︷ ︸
L+

−λ(D̃− − W̃−

︸ ︷︷ ︸
eL−

)) = 0

wnm = w+

nm − λw̃−
nm w̃−

nm = w−
nm exp (−‖xn − xm‖

2)

✦ W are learned affinities, and define a learned graph
Laplacian L = L+ − λL̃−.

✦ If λ is large enough, W is not positive definite and has
some negative entries.

✦ X is in the nullspace of L (“spectral problem”).

❖ The repulsion in the prior term in E drops off rapidly, so the
embedding X has a characteristic scale at each λ that
increases with λ. The initial X should have the right scale.
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Behaviour of the embedding X(λ) as a function of λ

❖ X(λ) undergoes a series of bifurcations where an eigenvalue of the
Hessian of E becomes negative. At some of these dim (X) increases.

❖ At the first bifurcation λ = λ∗

1, dim (X) grows from 0 to 1, and X expands
along the trailing eigenvector of L+ − λ∗

1L
− (similar to a 1D LE embedding).

We have upper and lower bounds for λ∗

1:

max

(
λ+

2

λ−

N

, min
n,m

w+
nm

w−

nm

)
≤ λ∗

1 ≤ min

(
λ+

2

λ−

2

, . . . ,
λ+

N

λ−

N

,
L+

11

L−

11

, . . . ,
L+

NN

L−

NN

)
.

❖ As λ increases, X unfolds globally and reorganises locally, representing
better the global and local manifold structure. This is the region of λ where
the best embeddings occur.

❖ For large λ, the points distribute approximately equidistant from each other
locally (hex grid in 2D) while maintaining the global structure of the
manifold, and the map scale increases logarithmically with λ.

❖ The learned affinities start as Gaussian for small λ and become
Mexican-hat functions as λ increases. p. 12



Learning the EE embedding

Several options:

1. Homotopy:
❖ increase λ from λ∗

1 suffic. slowly while minimising E over X

❖ achieves very good optima, but is slow.

2. Fixed λ:
❖ init. X from a spectral method (rescaled to match the scale at λ)

❖ fast, but optimum dependent on initial X.

3. Homotopy with E s.t. quadratic constraints on X as in LE:
❖ X = LE for λ = 0, which is a better initial point than X = 0

❖ more difficult constrained optimisation.

Other than not increasing λ too fast, no special user parameters
required (momentum or learning rate, amount of jitter, etc.)
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Minimising E over X

Gradient descent, conjugate gradients: very slow, requires tiny
steps (this also applies to SNE); reason: E is ill-conditioned.
Search directions derived from a fixed-point equation (a la Jacobi,
Gauss-Seidel, etc.):

❖ Rearrange stationary point eq. as splitting G = X(A + B) = 0
with A sym pd, B sym.

❖ Fixed-point it. X← −XBA−1 not convergent⇒ use direction
∆ = −XBA−1 −X in a line search X← X + η∆ for η ≥ 0.

❖ ∆ is descent. If cond (A) upper bounded + l.s. satisfies Wolfe
conditions⇒ global convergence (from any initial X0 ∈ R

L×N ).

❖ Some splittings are many times faster than gradient descent. In
particular A = 4D+ (computable in O(NL)) requires no line
search at all (η = 1) except when λ is close to a bifurcation.

Ongoing: even better directions with a diag. pd approx. to Hessian.
Cost per iteration: O(LN2), or O(LN) with sparse graphs.
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Out-of-sample mappings

❖ Given a new point y ∈ R
D, we solve the original EE problem over (X x) and

(Y y) s.t. keeping the embedding X fixed:

E′(x,y) = 2
N∑

n=1

(
w+(y,yn) ‖x− xn‖

2
+ λw−(y,yn) exp

(
− ‖x− xn‖

2
))

init. to the closest (xn,yn), with kernels induced from the affinity kernels that
were used in the EE training (using the same neighbourhood structure):

w+(y,yn) = exp
(
− 1

2
‖(y − yn)/σ‖

2
)

w−(y,yn) = w̃−

n ‖y − yn‖
2

❖ Project: F(y) = arg minx E′(x,y). Reconstruct: f(x) = arg miny E′(x,y).

❖ Nonparametric (implicit) solution with the form of a nonconvex l.c. of (Y,X)

(the weights can be negative):

F(y) = x =

N∑

n=1

wn(x)
∑N

n′=1
wn′(x)

xn f(x) = y =

N∑

n=1

ζn(y)
∑N

n′=1
ζn′(y)

yn.

This allows to extrapolate beyond the dataset.

❖ Optimisation: Gauss-Newton for F, search directions from fixed-point
iteration or diagonal pd Hessian approx. for f . Beats gradient descent.

Example
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COIL-20 dataset

Y: (N = 720)× (D = 16 384). All methods randomly initialised. L = 2.

X from EE (λ = 1)
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COIL-20 dataset: EE out-of-sample mapping results

Training: even-numbered images; testing: odd-numbered images.

F: y = ∈ R
16 384 → x ∈ R
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testing

f : x ∈ R
2 → y = ∈ R

16 384
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Conclusions

❖ Our motivation: nonlinear manifold learning algorithms can far
outperform spectral methods if we design simple, meaningful
objective functions and we find good local optima efficiently.

❖ We show this with a new method, the elastic embedding. EE
deals symmetrically with the data and latent points, penalising
placing far apart latent points from similar data points, and
placing close together latent points from dissimilar data points.

❖ EE learns at the same time the embedding and, implicitly, the
affinities; the latter resemble Mexican-hat functions and might
perform better than Gaussian affinities with spectral methods.

❖ Our insights carry over to SNE, t-SNE and related methods:
homotopy over λ, efficient search directions with global convergence,
out-of-sample mappings, learned affinities.

Matlab code: http://ees.umered.edu

Work supported by NSF CAREER award IIS–0754089.
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