
Conclusion
We have developed an old but ne-
glected algorithm by providing a reli-
able stopping criterion and an accel-
eration, and applied it to image seg-
mentation. GBMS produces results
comparable to state-of-the-art meth-
ods such as GMS and spectral clus-
tering at a fraction of their computa-
tion and is very simple to implement.
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Experiments with image segmentation
Dataset: xn = (in, jn, In) (greyscale) or xn = (in, jn, L∗n, u∗n, v∗n) (colour) where (i, j) is the pixel’s spatial
position and I or (L∗, u∗, v∗) are prescaled to pixel units. No pre- or postprocessing of clusters (e.g.
removal of small clusters). Best segmentations for GMS appear for σ ≈ 1

5×(image side); GBMS needs a
somewhat smaller σ.
Both GMS and GBMS produce excellent segmentations (though these can differ). Accelerated GBMS
takes effectively only 4–5 iterations (each O(N 2D)) and is 5×–60× faster than GMS (which takes 20–
hundreds of iterations).

GMS GBMS and accelerated GBMS
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Original image GBMS segmentation Number of iterations
Image GMS GBMS Acc. GBMS
cameraman 124× 124 71.5 18 4.6
hand 137× 110 36.4 14 4.8

Effective number of points in acc. GBMS
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Accelerated GBMS algorithm
At each iteration, replace clusters already formed with a single point of
mass = no. points in cluster. The algorithm is now an alternation be-
tween GMS blurring steps and connected-component reduction steps,
and is equivalent to the original GBMS but faster. The effective number
of points N (τ ) (thus the computation) decreases very quickly.
Computational cost: k1 is the average number of iterations per point
for GMS and k2 is the number of iterations for GBMS (equal to that of
accelerated GBMS). In the experiments, all iterations are normalised to
GBMS iterations (= 2N 2D) so the figures can be compared directly.

GMS GBMS Accelerated GBMS
2N2Dk1

3
2N

2Dk2
3
2D

∑k2
τ=1 (N (τ−1))2

Further acceleration techniques applicable: fast Gauss transform, kd-
trees, subsampling, making W sparse (by truncating the Gaussian or
by using a proximity graph).

7GBMS & spectral clust.
GBMS can be written as repeated products X ←
XP with the random-walk matrix P = WD−1 equiv-
alent to the graph Laplacian (W: Gaussian affini-
ties, D: degree matrix, P: posterior prob. p(n|xm)).
In phase 1 P is quickly changing as points clus-
ter. In phase 2 P is almost constant (and per-
fectly blocky) so GBMS implicitly extracts the lead-
ing eigenvectors (power method) like spectral clus-
tering. Thus GBMS is much faster than computing
eigenvectors (about 5 matrix-vector products are
enough).
Since P is a positive matrix it really has a single
leading eigenvector (Perron-Frobenius th.) with con-
stant components, so eventually all points collapse.
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Convergence rate
GBMS shrinks a Gaussian cluster towards its mean
with cubic convergence rate (see proof in paper), much
faster than GMS’s linear rate. The stdev s along each
direction decreases as s(τ+1) = 1

1+(σ/s(τ))2
s(τ ). Rea-

son: since the dataset shrinks, effectively the band-
width σ increases. The local principal component of
the data collapses far slower than other directions.
This explains the practical behaviour shown by GBMS:
1. Clusters collapse extremely fast (clustering).
2. After a few iterations only the local principal compo-

nent survives, resulting in temporary linearly-shaped
clusters (denoising).

Number of GBMS iterations τ necessary to achieve
s(τ ) < tol as a function of the bandwidth σ for s(0) = 1:
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Stopping criterion
Behaviour of GBMS:
Phase 1: points merge into clusters of coincident points (a few iterations); we want to stop here.
Phase 2: clusters keep approaching and merging (a few to hundreds of iterations); slowly erases clustering structure.
Simply checking ‖X(τ ) −X(τ−1)‖ < tol does not work because the points are always moving. Instead, consider the
histogram of updates {‖x(τ )

n − x
(τ−1)
n ‖}Nn=1. Though the histograms change as points move, in phase 2 the entropy

does not change (the histogram bins change their position but not their values)⇒ stop then.
τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6
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Gaussian blurring mean-shift (GBMS)
This is the algorithm that Fukunaga & Hostetler really proposed (gone largely unnoticed). Same
iterative scheme, but now the data points move at each iteration. Result: sequence of progres-
sively shrunk datasets X(0),X(1), . . . converging to a single, all-points-coincident cluster.

repeat Iteration loop
for m ∈ {1, . . . , N} For each data point

∀n: p(n|xm)←
exp

(

−1
2‖(xm−xn)/σ‖

2
)

∑N
n′=1 exp

(

−1
2‖(xm−xn′)/σ‖

2
)

ym←
∑N

n=1 p(n|xm)xn One GMS step
end
∀m: xm← ym Update whole dataset

until stop
connected-components({xn}

N
n=1,min diff) Clusters

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

τ = 6 τ = 7 τ = 8 τ = 9 τ = 10 τ = 11

3Gaussian mean-shift (GMS)
Given dataset X = {xn}

N
n=1 ⊂ R

D, define a Gaussian kernel density
estimate with bandwidth σ:

p(x) =
1

N

N
∑

n=1

K

( ∥

∥

∥

∥

x− xn

σ

∥

∥

∥

∥

2 )

K(t) = e−t/2

GMS is an iterative algorithm to find a mode of p:
• it has no step size and is an EM algorithm with global, linear con-

vergence (Carreira-Perpiñán & Williams 03)
• clustering: xn, xm in same cluster if they converge to same mode
• nonparametric clustering; σ determines the number of clusters
• popular in computer vision (segmentation, tracking; Comaniciu &

Meer)
• based on Fukunaga & Hostetler ’75 (also Cheng ’95, Carreira-

Perpiñán ’00, Comaniciu & Meer ’02, etc.)

for n ∈ {1, . . . , N} For each data point
x← xn Starting point
repeat Iteration loop

∀n: p(n|x)←
exp

(

−1
2‖(x−xn)/σ‖

2
)

∑N
n′=1 exp

(

−1
2‖(x−xn′)/σ‖

2
) Post. prob. (E step)

x←
∑N

n=1 p(n|x)xn Update x (M step)
until x’s update < tol

zn← x Mode
end
connected-components({zn}

N
n=1,min diff) Clusters

2Abstract
We revisit Gaussian blurring mean-shift (GBMS),
a procedure that iteratively blurs a dataset by
moving each data point according to the Gauss-
ian mean-shift algorithm (GMS). (1) We give
a criterion to stop the procedure as soon as
clustering structure has arisen and show that
this reliably produces image segmentations as
good as those of GMS but much faster. (2) We
prove that GBMS has convergence of cubic or-
der with Gaussian clusters (much faster than
GMS’s, which is of linear order) and that the lo-
cal principal component converges last, which
explains the powerful clustering and denoising
properties of GBMS. (3) We show a connection
with spectral clustering that suggests GBMS is
much faster. (4) We further accelerate GBMS
by interleaving connected-components and blur-
ring steps, achieving 2×–4× speedups without
introducing an approximation error. In summary,
our accelerated GBMS is a simple, fast, non-
parametric algorithm that achieves segmenta-
tions of state-of-the-art quality.
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