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We revisit Gaussian blurring mean-shift (GBMS), Given dataset X — {x,}_, c RP, define a This is the algorithm that Fukunaga & Hostetler really proposed (gone largely unnoticed). Same
a procedure that iteratively blurs a dataset by with : iterative scheme, but now . Result: sequence of progres-
moving each data point according to the Gauss- . : sively shrunk datasets X(°) X(1) .. converging to a single, all-points-coincident cluster.
: : : : 1 —
lan mean-shift algorlthm (GMS) (1) We give p(x) = N Z K( - UXn ) K(t) = e~ t/? repeat lteration loop
a criterion to stop the procedure as soon as n=1 forme{l,...,N} For each data point

. . 2
clustering structure has arisen and show that GMSis an ; Y plnlxm) — — (=31l (xm—x0) /0 |I*) 2

. . . . 1

this rellably prOdUCeS Image SegmentatIOnS asS e it has no step size and is an P n'=1 AP (_§H(Xm_xn,>/0|| >
good as those of GMS but much faster. (2) We (Carreira-Perpifian & Williams 03) ﬁm — > =1 P(n|xm)xn One GMS step
prove that GBMS has convergence of cubic or- e clustering: x;,, x,, in same cluster if they converge to same mode %

. . m: Xm <— Ym Update whole dataset
der with Gaussian clusters (much faster than e nonparametric clustering; o determines the number of clusters until stop
GMS'’s, which is of linear order) and that the lo- e popular in computer vision (segmentation, tracking; Comaniciu & connected-components({x,}"_,,nin diff) Clusters
cal principal component converges last, which Meer)
explains the powerful clustering and denoising e based on Fukunaga & Hostetler 75 (also Cheng "95, Carreira- =0 =1 T=3 T=4 T=5
properties of GBMS. (3) We show a connection Perpinan ‘00, Comaniciu & Meer 02, etc.) e
with spectral clustering that suggests GBMS is forn e {1,.... N} For each data point . * #:Q —_
much faster. (4) We further accelerate GBMS X ¢ Xp, Starting point .
by interleaving connected-components and blur- repeat Iteration loop o o .

. . . . 1 - 2 . o
ring steps, achieving .2><—.4>< speedups without vni p(n[x) < N@XP( 2H<T x,)/0]°) : Post. prob. (E step) . N - o .
introducing an approximation error. In summary, i (—Hlx=x.)/o°)
our accelerated GBMS is a simple, fast, non- X — 3 =1 P(n|%)Xn Update x (M step) o o . O O O
. . . until x’s update < to1 £ . 7 # T £t .t o
parametric algorithm that achieves segmenta- . e« Mode
. . n
tions of state-of-the-art quality. end
connected-components({z;, }*\_,,nin diff) Clusters

4‘ Stopping criterion

Experiments with image segmentation
Behaviour of GBMS:

Dataset: x,, = (in, jn, In) (greyscale) or x,, = (in, jn, L, u;, v;) (colour) where (i, ;) is the pixel’s spatial

Phase 1: points merge into clusters of coincident points (a few iterations); » , ! .
Phase 2: clusters k hi 9 . fow to hundreds of iterati  slow ustering struct position and [ or (L*, u*,v*) are prescaled to pixel units. No pre- or postprocessing of clusters (e.qg.
ase 2: clusters keep approaching and merging (a few to hundreds of iterations); slowly erases clustering structure. removal of small clusters). Best segmentations for GMS appear for o ~ %x(image side); GBMS needs a

Simply checking HXW — X(T—UH < tol does not work because the points are always moving. Instead, consider the somewhat smaller o.
. Though the histograms change as points move, in phase 2 the entropy Both GMS and GBMS produce excellent segmentations (though these can differ). Accelerated GBMS

does not change (the histogram bins change their position but not their values) = stop then. takes effectively only 4-5 iterations (each O(N?D)) and is 5x—60x faster than GMS (which takes 20—
=0 =1 =9 =3 =4 =5 =6 hundreds of iterations).
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with convergence rate (see proof in paper), much = ° L S :
faster than GMS’s linear rate. The stdev s along each % 5 10 15 20 % 5 10 5 20 0 5 2 5
direction decreases as s(7t1) = — L __4(7). Rea- T T
1+(0/s(7)

son: since the dataset shrinks, effectively the band-
width o increases. The

GBMS & spectral clust. 7 Accelerated GBMS algorithm Conclusion

This explains the practical behaviour shown by GBMS:

1. Clusters collapse extremely fast ( )- GBMS can be written as repeated products X « At each iteration, replace clusters already formed with a single point of ~ e have developed an old but ne-
2. After a few iterations only the local principal compo- XP with the equiv- mass = no. points in cluster. The algorithm is now an glected algorlthm b_y providing a reli-
nent survives, resulting in temporary linearly-shaped  alent to the graph Laplacian (W: Gaussian affini- ,  able stopping criterion and an accel-
clusters ( ). ties, D: degree matrix, P: posterior prob. p(n|x,)). and is equivalent to the original GBMS but faster. The effective number erat'?']{g and g%ﬁi'/:gd I tg Image Sel?_
Number of GBMS iterations = necessary to achieve In phase 1 P is quickly changing as points clus-  of points N (7) (thus the computation) decreases very quickly. | cr;)enr]‘ E; Irggie - state?cg?-t#g-easrtrrensgths-
<(T) < +o1 as a function of the bandwidth o for s(0) — 1 ter. In phase 2 P is almost constant (and per- . k1 Is the average number of iterations per point P
\ - fectly blocky) so GBMS implicitly extracts the lead-  for GMS and k- is the number of iterations for GBMS (equal to that of ~ ©ds such as GMS and spectral clus-
| o o |] ing eigenvectors ( ) like spectral clus-  accelerated GBMS). In the experiments, all iterations are normalisedto ~ t€ring at a fraction of their computa-
2 | tering. Thus GBMS is much faster than computing GBMS iterations (= 2N2D) so the figures can be compared directly. tion and is very simple to implement.
“ eigenvectors (about 5 matrix-vector products are GMS GBMS  Accelerated GBMS
T | enough). ON?Dk,  3N2Dky,  3DS Y (N(T-D)2 Partially supported by NSF CAREER
10y Since P is a positive matrix it really has a single | 2 2 T=1 award 11S—0546857.
| leading eigenvector (Perron-Frobenius th.) with con- Further accelergtlon technlques applicable: fast G_auss transform, kd-
1o . 1‘ . : stant components, so eventually all points collapse. trees, subsampling, making W sparse (by truncating the Gaussian or

by using a proximity graph).



