Solving Recurrence Relations using Machine Learning, with Application to Cost Analysis

Maximiliano Klemen¹, Miguel Ángel Carreira-Perpiñán² and Pedro Lopez-Garcia^{1,3}

¹IMDEA Software Institute, Spain ²University of California, Merced, USA ³Spanish Council for Scientific Research (CSIC)

10th Workshop on Horn Clauses for Verification and Synthesis (HCVS) April 23, 2023, Paris, France (co-located with ETAPS)

Introduction and Motivation

- Motivating application: automatic static cost analysis/verification of Horn-clause programs \rightarrow e.g., the CiaoPP system.
 - + Allows analysis of other languages/IRs via transformation into Horn Clauses.
 - + (Ciao) Prolog → direct translation,
 - + but also C, Java (source/bytecode), ISA, LLVM IR, ...
- Resources: non-func. numerical properties about the execution of a program.
 - Examples: resolution steps, execution time, energy consumption, # of calls to a predicate, # of network accesses, # of transactions, . . .
- Goal of static analysis:
 estimating the resource usage of the execution of a program without running
 it with concrete data, as function of input data sizes and possibly other
 parameters.

Typical size metrics \rightarrow actual value of a number, the length of a list, the number of constant and function symbols of a term, etc.

- Resource analysis is very useful:
 - Automatic program optimization.
 - Verification of resource-related specifications.
 - Detection of performance bugs, help guiding software design, ...
 Example: developing energy-efficient software.

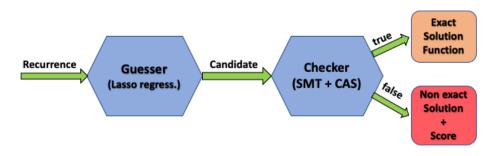
Introduction and Motivation

- These techniques strongly depend on solving (or safely approximating) recurrence relations → bottleneck.
- Using Computer Algebra Systems (CAS) or specialized solvers poses several difficulties and limitations for some recurrences:
 - Contain complex expressions or recursive structures.
 - Don't have the form required by such solvers
 - \rightarrow e.g., an input data size variable does not decrease, but increases.
- As a result, ad-hoc techniques need to be developed for such cases.

Our Proposal: Guess and Check Approach

Novel, general method for solving arbitrary, constrained recurrence relations:

- Guess: machine-learning sparse regression techniques.
- Check: Combination of an SMT-solver and a CAS.



```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

• Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) := X = 0.

p(X, Y) := X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

• CiaoPP first infers size relations for the different arguments of predicates.

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP first infers size relations for the different arguments of predicates.
- Assume a calling mode where first argument is input and second one output.

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP first infers size relations for the different arguments of predicates.
- Assume a calling mode where first argument is input and second one output.
- It will try to infer the size of the output argument as a function of the size of the input argument: $S_p(x)$.

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP first infers size relations for the different arguments of predicates.
- Assume a calling mode where first argument is input and second one output.
- It will try to infer the size of the output argument as a function of the size of the input argument: $S_p(x)$.
- Using x = size(X) = X (actual value of X), size relations are set up:

$$S_{p}(x) = 0$$
 if $x = 0$
 $S_{p}(x) = S_{p}(S_{p}(x-1)) + 1$ if $x > 0$

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP first infers size relations for the different arguments of predicates.
- Assume a calling mode where first argument is input and second one output.
- It will try to infer the size of the output argument as a function of the size of the input argument: $S_p(x)$.
- Using x=size(X)=X (actual value of X), size relations are set up: $S_p(x)=0$ if x=0 $S_p(x)=S_p(S_p(x-1))+1$ if x>0
- CiaoPP's modular solver fails to find a closed-form function for it.

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP first infers size relations for the different arguments of predicates.
- Assume a calling mode where first argument is input and second one output.
- It will try to infer the size of the output argument as a function of the size of the input argument: $S_p(x)$.
- Using x=size(X)=X (actual value of X), size relations are set up: $S_p(x)=0$ if x=0 $S_p(x)=S_p(S_p(x-1))+1$ if x>0
- CiaoPP's modular solver fails to find a closed-form function for it.
- It is a nested recurrence that cannot be solved by most state-of-the-art solvers.

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP first infers size relations for the different arguments of predicates.
- Assume a calling mode where first argument is input and second one output.
- It will try to infer the size of the output argument as a function of the size of the input argument: $S_p(x)$.
- Using x=size(X)=X (actual value of X), size relations are set up: $S_p(x)=0$ if x=0 $S_p(x)=S_p(S_p(x-1))+1$ if x>0
- CiaoPP's modular solver fails to find a closed-form function for it.
- It is a nested recurrence that cannot be solved by most state-of-the-art solvers.
- Our proposed approach obtains $S_p(x) = x$ (exact solution).


```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

• Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

• CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - \rightarrow (in the example, number of resolution steps, and

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1  is X - 1, p(X1, Y1), p(Y1, Y2), Y  is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)

```
p(X, 0) := X = 0.

p(X, Y) := X > 0, X1  is X - 1, p(X1, Y1), p(Y1, Y2), Y  is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_{p}(x) = 1$$
 if $x = 0$
 $C_{p}(x) = C_{p}(x-1) + C_{p}(S_{p}(x-1)) + 1$ if $x > 0$

Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_{p}(x) = 1$$
 if $x = 0$
 $C_{p}(x) = C_{p}(x-1) + C_{p}(S_{p}(x-1)) + 1$ if $x > 0$

Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_p(x) = 1$$
 if $x = 0$
 $C_p(x) = C_p(x-1) + C_p(S_p(x-1)) + 1$ if $x > 0$

Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) := X = 0.

p(X, Y) := X > 0, X1  is X - 1, p(X1, Y1), p(Y1, Y2), Y  is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_{p}(x) = 1$$
 if $x = 0$
 $C_{p}(x) = C_{p}(x-1) + C_{p}(x-1) + 1$ if $x > 0$

Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_p(x) = 1$$
 if $x = 0$
 $C_p(x) = 2 C_p(x-1) + 1$ if $x > 0$

Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_p(x) = 1$$
 if $x = 0$
 $C_p(x) = 2 C_p(x-1) + 1$ if $x > 0$

• Plugin the closed form $S_p(x) = x$ inferred by our approach, CiaoPP obtains $C_p(x) = 2^{x+1} - 1$.

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - \rightarrow (in the example, number of resolution steps, and assuming the builtins >/2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_p(x) = 1$$
 if $x = 0$
 $C_p(x) = 2 C_p(x-1) + 1$ if $x > 0$

- Plugin the closed form $S_p(x) = x$ inferred by our approach, CiaoPP obtains $C_p(x) = 2^{x+1} 1$.
- Without our approach CiaoPP would infer $S_p(x) = \infty$ and $C_p(x) = \infty$.

```
p(X, 0) :- X = 0.

p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

- CiaoPP uses the size relations to infer the computational cost of a call to p/2, denoted $C_p(x)$
 - → (in the example, number of resolution steps, and assuming the builtins > /2 and is/2 have zero cost)
- It sets up the following recurrence:

$$C_p(x) = 1$$
 if $x = 0$
 $C_p(x) = 2 C_p(x-1) + 1$ if $x > 0$

- Plugin the closed form $S_p(x) = x$ inferred by our approach, CiaoPP obtains $C_p(x) = 2^{x+1} 1$.
- Without our approach CiaoPP would infer $S_p(x) = \infty$ and $C_p(x) = \infty$.
- Not being able to solve a "simple" recurrence can cause arbitrarily large losses of precission in size/cost analysis.

Guess: First Stage of our Recurrence Solving Method

• Given the previous recurrence, with $S_p(x) \equiv f(x)$:

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

- ullet We use sparse linear regression to "guess" a candidate solution $\hat{f}(ar{x})$ for it.
- We use a set of "base functions" T, e.g.:

$$\mathcal{T} = \{\lambda x.x, \lambda x.x^2, \lambda x.x^3, \lambda x.\lceil \log_2(x) \rceil, \lambda x.2^x, \lambda x.x \cdot \lceil \log_2(x) \rceil \}$$

- Currently, T is fixed → base functions that are representative of the common complexity orders.
- We'll comment later about plans to obtain it.
- Model obtained: linear combination of terms t_i in T:

$$\hat{f}(\bar{x}) = \beta_0 + \beta_1 \ t_1(\bar{x}) + \beta_2 \ t_2(\bar{x}) + \dots + \beta_n \ t_n(\bar{x})$$

- β_i 's: coefficients (real numbers) estimated by regression
- Goal: only a few coefficients are nonzero.

Guess Stage: Example

- 1. Generate a training set S.
 - Randomly generate input values to the recurrence $\to X_{\mathsf{train}} = \{\bar{x}_1, \dots, \bar{x}_k\}$.
 - For each input value $\bar{x} \in X_{\text{train}}$, generate a training case s:

$$s = \langle b, c_1, \ldots, c_n \rangle$$

 c_i : result (a scalar) of evaluating the base function $t_i \in T$ for input value $\bar{x} \to c_i = [\![t_i]\!]_z$ for $1 \le i \le n$

b (dependent value): result (a scalar) of evaluating the recurrence for $\bar{x} \to b = f(\bar{x})$

• Example: if $\bar{x} = \langle 5 \rangle$, then

$$\begin{array}{rcl} s & = & \langle \mathbf{f}(\mathbf{5}), [\![x]\!]_5, [\![x^2]\!]_5, [\![x^3]\!]_5, [\![\lceil \log_2(x) \rceil]\!]_5, \ldots \rangle \\ & = & \langle \mathbf{5}, 5, 25, 125, 3, \ldots \rangle \end{array}$$

Guess Stage: Example (contd.)

- 2. Perform sparse linear regression using S:
 - Result: (column) vector $\bar{\beta}$ of coefficients and an independent coefficient β_0 .
 - Lasso regularization on the coefficients β_i .
 - ℓ_1 : penalty to encourage coefficients whose associated base functions have a small correlation with the dependent value to be exactly zero.
 - The level of penalization is controlled by a hyperparameter $\lambda \geq 0$.
 - \rightarrow found via cross-validation on a separate validation set (generated similarly as the training set X_{train}).
- 3. Obtain a measure R^2 of the accuracy of the estimation:
 - \rightarrow Using a test set X_{test} of input values to the recurrence (generated similarly to X_{train}).
- 4. Round to zero the coefficient less than a given threshold ϵ .
 - ightarrow to discard the corresponding base functions.
 - \rightarrow We call it the " ϵ -rounding": $rm_{\epsilon}(\bar{\beta}^T)$
- 5. The resulting closed-form is

$$\hat{f}(\bar{x}) = rm_{\epsilon}(\bar{\beta}^T) \cdot E(T, \bar{x}) + \beta_0$$

- \rightarrow $E(T,\bar{x})$: vector of the terms in T with the arguments bound to \bar{x} .
- Both the Lasso regularization and the zero ϵ -rounding discard many terms from T in the final closed-form function.

Guess Stage: Example (contd.)

- 6. Perfom standard linear regression (without Lasso regularization)
 - on the same training set S, but
 - different T: removing from T the base functions corresponding to the coefficients β_i made zero previously (by Lasso and ε-rounding).
 - In our example, we obtain (with $\epsilon = 0.001$):

$$\hat{f}(x) = 1.0 x$$
 and $R^2 = 1$

- Since $R^2 = 1$, then $\hat{f}(x) = x$ is a candidate closed-form solution
 - $\,\rightarrow\,$ exact prediction of the recurrence for the test set.
- If it was $R^2 < 1$, then $\hat{f}(x)$ would be an approximation.
 - \rightarrow Still, can be useful in some applications (e.g., granularity control in parallel/distributed computing).

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = f(f(x - 1)) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = f(f(x 1)) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = f(x 1) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = f(x 1) + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = x 1 + 1))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = x))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = x))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\neg \forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = x))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence

$$f(x) = 0$$
 if $x = 0$
 $f(x) = f(f(x-1)) + 1$ if $x > 0$

$$\forall x ((x=0 \implies f(x)=0) \land (x>0 \implies f(x)=f(f(x-1))+1))$$

- References to the target f(x) are replaced by the candidate $\hat{f}(x) = x$. $\exists x \neg ((x = 0 \implies x = 0) \land (x > 0 \implies x = x))$
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable $\rightarrow \hat{f}(x) = x$ is an exact solution for f(x).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., $\hat{f}(x) = x$ if $x \ge 0$.

Implementation and Evaluation

- Implemented a prototype and evaluated it with recurrences that are generated by CiaoPP's cost analysis
 - our approach can find exact, verified, closed-form solutions, in a reasonable time for recurrences that cannot be solved by CiaoPP.
 - Potentially, arbitrarily large gains in static cost analysis accuracy.
- Our approach solves recurrences that current state-of-the-art CASs cannot (e.g., Wolfram Mathematica, Sympy).
- Our prototype always returns a closed form and either:
 - indicates if such closed form is an exact solution of the recurrence (i.e., if it has been formally verified), or
 - otherwise, gives the accuracy of the estimation (score) obtained in the guess (ML) phase.

Experimental Results: Times (seconds)

Bench	Recurrence	CF	CFNew	T (s)
merge-sz	$f(x,y) = \begin{cases} max(f(x-1,y), \\ f(x,y-1)) + 1 & \text{if } x > 0 \land y > 0 \\ x & \text{if } x > 0 \land y \leq 0 \\ y & \text{if } x \leq 0 \land y > 0 \end{cases}$ $f(x,y) + f(x,y) + f(x,y)$	_	x + y	0.92
merge	$f(x,y) = \begin{cases} max(f(x-1,y), \\ f(x,y-1)) + 1 & \text{if } x > 0 \land y > 0 \\ 0 & \text{otherwise} \end{cases}$	_	$\max(0, x+y-1)$	0.71
nested	$f(x) = \begin{cases} f(f(x-1)) + 1 & \text{if } x > 0 \end{cases}$	_	x	0.13
open-zip	$f(x,y) = \begin{cases} f(x-1,y-1)+1 & \text{if } x > 0 \land y > 0 \\ f(x,y-1)+1 & \text{if } x \leq 0 \land y > 0 \\ f(x-1,y)+1 & \text{if } y \leq 0 \land x > 0 \\ 0 & \text{otherwise} \end{cases}$ $f(x,y) = \begin{cases} f(x-y,y)+1 & \text{if } x \leq y > 0 \\ 0 & \text{otherwise} \end{cases}$ $f(x,y) = \begin{cases} f(x-y,y)+1 & \text{if } x \geq y \\ 0 & \text{otherwise} \end{cases}$ $f(x,y) = \begin{cases} f(x-y,y)+1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ $f(x,y) = \begin{cases} max(y,f(x-1,y))+1 & \text{if } x > 0 \\ y & \text{otherwise} \end{cases}$	_	$\max(x, y)$	0.12
div	$f(x,y) = \begin{cases} f(x-y,y) + 1 & \text{if } x >= y \\ 0 & \text{otherwise} \end{cases}$	_	$\left\lfloor \frac{x}{y} \right\rfloor$	0.13
div-ceil	$f(x,y) = \begin{cases} f(x-y,y) + 1 & \text{if } x >= y \\ 1 & \text{if } x < y \land x > 0 \\ 0 & \text{otherwise} \end{cases}$	-	$\left\lceil \frac{x}{y} \right\rceil$	0.12
s-max	$f(x,y) = \begin{cases} max(y, f(x-1, y)) + 1 & \text{if } x > 0 \\ y & \text{otherwise} \end{cases}$	x + y	x + y	0.12
s-max-1	$f(x,y) = \begin{cases} max(y, f(x-1, y+1)) + 1 & \text{if } x > 0 \\ y & \text{otherwise} \\ f(x-1, y) + 1 & \text{if } x > 0 \land y > 0 \end{cases}$	-	2x + y	0.14
sum-osc	$f(x,y) = \begin{cases} f(x-1,y) + 1 & \text{if } x > 0 \land y > 0 \\ f(x+1,y-1) + y & \text{if } x \le 0 \land y > 0 \\ 1 & \text{otherwise} \end{cases}$	_	$x + \frac{y^2}{2} + \frac{3y}{2}$	0.13

Conclusions

- Novel approach for solving or approximating arbitrary, constrained recurrence relations.
 - guess a candidate closed-form solution
 - → sparse linear regression via Lasso regularization and cross-validation.
 - check that such candidate is actually a solution
 - → SMT-solver and CAS combination.
- However, the guess stage doesn't guarante that an exact solution can be found (for the training set).
- Even if an exact solution is found, it is not always possible to verify it in the check stage.
- Nevertheless, approximated solutions can be useful in some applications (e.g., granularity control in parallel/distributed computing)
- The experimental results with our prototype are quite promising.

Future Work

- Fully integrate our novel solver into the CiaoPP system, combining it with its current set of back-end solvers
 - → more extensive experimentation
- Refine and improve our algorithms in several directions.
 - ullet Automatically infer the set T of base functions by using different heuristics.
 - Perform an automatic analysis of the recurrence we are solving, to extract some features that allow selection of the terms that most likely are part of the solution.
 - For example, if the recurrence has a nested, double recursion, then we can select a quadratic term, etc.
 - Also, machine learning techniques may be applied to learn a good set of base functions from some features of the programs.

Thank you for your attention!