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Introduction and Motivation

Motivating application: automatic static cost analysis/verification of
Horn-clause programs → e.g., the CiaoPP system.

+ Allows analysis of other languages/IRs via transformation into Horn Clauses.
+ (Ciao) Prolog → direct translation,
+ but also C, Java (source/bytecode), ISA, LLVM IR, ...

Resources: non-func. numerical properties about the execution of a program.
Examples: resolution steps, execution time, energy consumption, # of calls to
a predicate, # of network accesses, # of transactions, . . .

Goal of static analysis:
estimating the resource usage of the execution of a program without running
it with concrete data, as function of input data sizes and possibly other
parameters.

Typical size metrics → actual value of a number, the length of a list, the
number of constant and function symbols of a term, etc.

Resource analysis is very useful:
Automatic program optimization.
Verification of resource-related specifications.
Detection of performance bugs, help guiding software design, ...
Example: developing energy-efficient software.
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Introduction and Motivation

These techniques strongly depend on solving (or safely approximating)
recurrence relations → bottleneck.

Using Computer Algebra Systems (CAS) or specialized solvers poses several
difficulties and limitations for some recurrences:

Contain complex expressions or recursive structures.
Don’t have the form required by such solvers

→ e.g., an input data size variable does not decrease, but increases.

As a result, ad-hoc techniques need to be developed for such cases.
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Our Proposal: Guess and Check Approach

Novel, general method for solving arbitrary, constrained recurrence relations:

Guess: machine-learning sparse regression techniques.

Check: Combination of an SMT-solver and a CAS.
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The Context: Static Cost Analysis (CiaoPP)

Consider following Horn-clause program, in Prolog syntax:

p(X, 0) :- X = 0.
p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.

CiaoPP first infers size relations for the different arguments of predicates.

Assume a calling mode where first argument is input and second one output.

It will try to infer the size of the output argument as a function of the size of
the input argument: Sp(x).

Using x = size(X ) = X (actual value of X ), size relations are set up:
Sp(x) = 0 if x = 0
Sp(x) = Sp(Sp(x − 1)) + 1 if x > 0

CiaoPP’s modular solver fails to find a closed-form function for it.

It is a nested recurrence that cannot be solved by most state-of-the-art
solvers.

Our proposed approach obtains Sp(x) = x (exact solution).
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p(X, 0) :- X = 0.
p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.

CiaoPP uses the size relations to infer the computational cost of a call to
p/2, denoted Cp(x)

→ (in the example, number of resolution steps, and
assuming the builtins > /2 and is/2 have zero cost)

It sets up the following recurrence:
Cp(x) = 1 if x = 0
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Plugin the closed form Sp(x) = x inferred by our approach,
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Not being able to solve a “simple” recurrence can cause arbitrarily large
losses of precission in size/cost analysis.
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M. Klemen, M.A. Carreira-Perpiñán, Pedro Lopez Solving Recurrence Relations using Machine Learning HCVS 2023, Paris, France 6 / 16



The Context: Static Cost Analysis (CiaoPP)

Consider following Horn-clause program, in Prolog syntax:

p(X, 0) :- X = 0.
p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.

CiaoPP uses the size relations to infer the computational cost of a call to
p/2, denoted Cp(x)

→ (in the example, number of resolution steps, and
assuming the builtins > /2 and is/2 have zero cost)

It sets up the following recurrence:
Cp(x) = 1 if x = 0
Cp(x) = Cp(x − 1) + Cp(x − 1) + 1 if x > 0

Plugin the closed form Sp(x) = x inferred by our approach,

CiaoPP obtains Cp(x) = 2x+1 − 1.

Without our approach CiaoPP would infer Sp(x) =∞ and Cp(x) =∞.

Not being able to solve a “simple” recurrence can cause arbitrarily large
losses of precission in size/cost analysis.
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Guess: First Stage of our Recurrence Solving Method

Given the previous recurrence, with Sp(x) ≡ f (x):
f (x) = 0 if x = 0
f (x) = f (f (x − 1)) + 1 if x > 0

We use sparse linear regression to “guess” a candidate solution f̂ (x̄) for it.

We use a set of “base functions” T , e.g.:

T = {λx .x , λx .x2, λx .x3, λx .dlog2(x)e, λx .2x , λx .x · dlog2(x)e}

Currently, T is fixed → base functions that are representative of the common
complexity orders.
We’ll comment later about plans to obtain it.

Model obtained: linear combination of terms ti in T :

f̂ (x̄) = β0 + β1 t1(x̄) + β2 t2(x̄) + · · ·+ βn tn(x̄)

βi ’s: coefficients (real numbers) estimated by regression
Goal: only a few coefficients are nonzero.
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Guess Stage: Example

1. Generate a training set S .

Randomly generate input values to the recurrence → Xtrain = {x̄1, . . . , x̄k}.
For each input value x̄ ∈ Xtrain, generate a training case s:

s = 〈b, c1, . . . , cn〉

ci : result (a scalar) of evaluating the base function ti ∈ T for input value x̄

→ ci = [[ti ]]x̄ for 1 ≤ i ≤ n

b (dependent value): result (a scalar) of evaluating the recurrence for x̄

→ b = f (x̄)

Example: if x̄ = 〈5〉, then

s = 〈f(5), [[x ]]5, [[x
2]]5, [[x

3]]5, [[dlog2(x)e]]5, . . .〉
= 〈5, 5, 25, 125, 3, . . .〉
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Guess Stage: Example (contd.)

2. Perform sparse linear regression using S :
Result: (column) vector β̄ of coefficients and an independent coefficient β0.
Lasso regularization on the coefficients βi .
`1: penalty to encourage coefficients whose associated base functions have a
small correlation with the dependent value to be exactly zero.
The level of penalization is controlled by a hyperparameter λ ≥ 0.
→ found via cross-validation on a separate validation set (generated similarly as

the training set Xtrain).

3. Obtain a measure R2 of the accuracy of the estimation:
→ Using a test set Xtest of input values to the recurrence (generated similarly to

Xtrain).

4. Round to zero the coefficient less than a given threshold ε.
→ to discard the corresponding base functions.
→ We call it the “ε-rounding”: rmε(β̄T )

5. The resulting closed-form is

f̂ (x̄) = rmε(β̄
T ) · E (T , x̄) + β0

→ E(T , x̄): vector of the terms in T with the arguments bound to x̄ .

Both the Lasso regularization and the zero ε-rounding discard many terms
from T in the final closed-form function.
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Guess Stage: Example (contd.)

6. Perfom standard linear regression (without Lasso regularization)

on the same training set S , but
different T : removing from T the base functions corresponding to the
coefficients βi made zero previously (by Lasso and ε-rounding).

In our example, we obtain (with ε = 0.001):
f̂ (x) = 1.0 x and R2 = 1

Since R2 = 1, then f̂ (x) = x is a candidate closed-form solution

→ exact prediction of the recurrence for the test set.

If it was R2 < 1, then f̂ (x) would be an approximation.

→ Still, can be useful in some applications (e.g., granularity control in
parallel/distributed computing).
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Check: Second Stage of our Recurrence Solving Method

Verify whether the guessed candidate function is actually a solution for the
recurrence.

Example: the recurrence
f (x) = 0 if x = 0
f (x) = f (f (x − 1)) + 1 if x > 0

is encoded as a first order logic formula
∀x (( x = 0 =⇒ f (x) = 0 ) ∧ ( x > 0 =⇒ f (x) = f (f (x − 1)) + 1 ))

References to the target f (x) are replaced by the candidate f̂ (x) = x .
∀x (( x = 0 =⇒ f (x) = 0 ) ∧ ( x > 0 =⇒ f (x) = f (f (x − 1)) + 1 ))

If the negation of such formula is unsatisfiable, then the candidate function is
an exact solution.

We use an SMT-solver to check satisfiability.

It is unsatisfiable → f̂ (x) = x is an exact solution for f (x).

Sometimes, it is necessary to consider a precondition for the domain of the
recurrence, which is also included in the encoding. E.g., f̂ (x) = x if x ≥ 0.
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Implementation and Evaluation

Implemented a prototype and evaluated it with recurrences that are
generated by CiaoPP’s cost analysis

our approach can find exact, verified, closed-form solutions, in a reasonable
time for recurrences that cannot be solved by CiaoPP.
Potentially, arbitrarily large gains in static cost analysis accuracy.

Our approach solves recurrences that current state-of-the-art CASs cannot
(e.g., Wolfram Mathematica, Sympy).

Our prototype always returns a closed form and either:

indicates if such closed form is an exact solution of the recurrence (i.e., if it
has been formally verified), or
otherwise, gives the accuracy of the estimation (score) obtained in the guess
(ML) phase.
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Experimental Results: Times (seconds)

Bench Recurrence CF CFNew T (s)

merge-sz f (x, y) =


max(f (x − 1, y),

f (x, y − 1)) + 1 if x > 0 ∧ y > 0

x if x > 0 ∧ y ≤ 0

y if x ≤ 0 ∧ y > 0

− x + y 0.92

merge f (x, y) =


max(f (x − 1, y),

f (x, y − 1)) + 1 if x > 0 ∧ y > 0

0 otherwise

− max (0, x + y − 1) 0.71

nested f (x) =

{
f (f (x − 1)) + 1 if x > 0

0 otherwise
− x 0.13

open-zip f (x, y) =


f (x − 1, y − 1) + 1 if x > 0 ∧ y > 0

f (x, y − 1) + 1 if x ≤ 0 ∧ y > 0

f (x − 1, y) + 1 if y ≤ 0 ∧ x > 0

0 otherwise

− max (x, y) 0.12

div f (x, y) =

{
f (x − y , y) + 1 if x >= y

0 otherwise
−

⌊
x
y

⌋
0.13

div-ceil f (x, y) =


f (x − y , y) + 1 if x >= y

1 if x < y ∧ x > 0

0 otherwise

−
⌈

x
y

⌉
0.12

s-max f (x, y) =

{
max(y , f (x − 1, y)) + 1 if x > 0

y otherwise
x + y x + y 0.12

s-max-1 f (x, y) =

{
max(y , f (x − 1, y + 1)) + 1 if x > 0

y otherwise
− 2x + y 0.14

sum-osc f (x, y) =


f (x − 1, y) + 1 if x > 0 ∧ y > 0

f (x + 1, y − 1) + y if x ≤ 0 ∧ y > 0

1 otherwise

− x + y2

2 + 3y
2 0.13
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Conclusions

Novel approach for solving or approximating arbitrary, constrained recurrence
relations.

guess a candidate closed-form solution

→ sparse linear regression via Lasso regularization and cross-validation.

check that such candidate is actually a solution

→ SMT-solver and CAS combination.

However, the guess stage doesn’t guarante that an exact solution can be
found (for the training set).

Even if an exact solution is found, it is not always possible to verify it in the
check stage.

Nevertheless, approximated solutions can be useful in some applications (e.g.,
granularity control in parallel/distributed computing)

→ Our approach always produces an accuracy measure

The experimental results with our prototype are quite promising.
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Future Work

Fully integrate our novel solver into the CiaoPP system, combining it with its
current set of back-end solvers

→ more extensive experimentation

Refine and improve our algorithms in several directions.

Automatically infer the set T of base functions by using different heuristics.
Perform an automatic analysis of the recurrence we are solving, to extract
some features that allow selection of the terms that most likely are part of the
solution.
For example, if the recurrence has a nested, double recursion, then we can
select a quadratic term, etc.
Also, machine learning techniques may be applied to learn a good set of base
functions from some features of the programs.

M. Klemen, M.A. Carreira-Perpiñán, Pedro Lopez Solving Recurrence Relations using Machine Learning HCVS 2023, Paris, France 15 / 16



Thank you for your attention!
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