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ABSTRACT

Vector quantization is a fundamental model for image coding, but

large codebooks require a long training and encoding time. This

can be sped up with tree-structured codes. We propose the use of

sparse oblique decision trees, which have hyperplane splits with few

nonzero weights in the decision nodes. Such trees can be trained on a

dataset of image patches using tree alternating optimization. Exper-

imentally with different datasets, we show these trees consistently

achieve a low distortion, close to that of a flat codebook, and a much

faster encoding, exceeding other tree-structured vector quantizers.

Index Terms— Vector quantization, tree-structured codes,

oblique regression trees, tree alternating optimization.

1. INTRODUCTION

Vector quantization (VQ) is a fundamental method for image cod-

ing, where a patch in an image (considered as a vector in a Eu-

clidean space) is approximately represented by one of a finite set of

K vectors (the codebook). The usual way to determine a good code-

book is by optimizing a loss function, typically the squared distortion

(squared Euclidean distance), over a large collection of patches ex-

tracted from an image dataset. This is commonly optimized by the

k-means algorithm, which monotonically decreases the loss by alter-

nately updating the codebook vectors and the set of patches assigned

to each codebook vector. With a large, diverse image dataset and a

large enough number of codebook vectors K, the distortion can be

reduced as desired. However, the cost both of training and encoding

a test patch is proportional to K, since we have to find the closest

codebook vector to the test vector (by computing K distances).

A convenient way to speed this up is by using a tree-structured

codebook having one codebook vector in each leaf. Encoding re-

quires traversing a single root-leaf path, rather than scanning all K
leaves, which has a logarithmic rather than linear cost on K. This

has two critical difficulties. One is how to define the decision nodes

of the tree, so that the partition induced in the patch vector space is

flexible enough to model complex data distributions, but the compu-

tational cost remains low. The other is how to learn such a tree from

data, which is a nonconvex, nondifferentiable optimization problem.

As tree model, we use a sparse oblique regression tree. This is

a binary, complete tree of depth ∆, where each decision node uses a

sparse hyperplane split (with few nonzero weights) to route the patch

down its left or right child. Each leaf contains a constant, codebook

vector. This partitions the space into convex polytopes, each defined

by the intersection of the halfspaces in the root-leaf path, and is quite

different from the Voronoi partition induced by regular VQ.

To train this tree (i.e., the hyperplane parameters and the code-

book vectors) we rely on a recent algorithm, Tree Alternating Opti-

mization (TAO) [1, 2], in what we think is its first application to VQ.
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To do this, we reformulate the usual VQ squared distortion over a fi-

nite codebook with flat assignment variables so that the codebook is

defined by the tree output, i.e., its 2∆ leaves. This means the assign-

ments have a hierarchical structure, implicit in the decision nodes.

We evaluate our method on several image datasets and compare

it with k-means and several tree-structured VQ methods, showing

significant improvements in terms of distortion (which remains close

to that of a flat, unconstrained codebook) and encoding time.

2. RELATED WORK

The traditional way to learn regression trees is based on greedy re-

cursive partitioning algorithms such as CART [3] or C5.0 [4], typi-

cally using axis-aligned decision nodes (which split based on a sin-

gle input feature). These algorithms do not optimize a loss over the

whole tree and they produce overly large, yet inaccurate trees, since

axis-parallel partitions are a poor model for high-dimensional data.

The TAO algorithm [1] monotonically decreases an arbitrary objec-

tive function over an arbitrary parametric tree model (such as axis-

aligned or oblique) by iteratively optimizing over one node at a time.

This produces trees that are much smaller and accurate. We use here

the regression verison of TAO [2].

Tree-structured vector quantization (TSVQ) constructs a code-

book by hierarchically partitioning the multi-dimensional feature

space [5, 6, 7]. The tree structure enables significantly faster encod-

ing via a root-to-leaf traversal. For a sufficiently balanced tree, en-

coding complexity scales logarithmically with the number of leaves.

TSVQ is typically constructed using a heuristic greedy recursive

partitioning approach, where splits (either oblique or axis-aligned)

are chosen based on some predefined metrics [8, 9, 10] or randomly

[11]. The tree is grown until some stopping criteria is met and

then pruned to achieve optimal distortion-rate trade-off [12, 13].In

image processing, segmentation-based coding is a common tech-

nique where an image is partitioned into regions, and quantization is

applied to each segment separately. This approach is especially ef-

fective for image and medical image compression, enabling adaptive

encoding based on local characteristics [14, 13, 5, 10].

Tree-structured codebooks promise a logarithmic rather than lin-

ear speedup over a flat codebook, but for this to work well the tree

should be balanced and trained to optimize the distortion.

3. VECTOR QUANTIZATION WITH SPARSE OBLIQUE

DECISION TREES

3.1. Sparse oblique decision trees

We consider a binary tree of depth ∆ with a set of decision nodes

D and leaf nodes L. Each decision node i ∈ D contains a routing

function gi(x;θi): R
D → {lefti, righti} ⊂ {D ∪ L}. We

use linear routing function gi(x;θi) = lefti if wT
i x + w0i < 0,

otherwise righti, where θi = {wi, w0i} is learnable. Each leaf



node j ∈ L contains codebook vector µj . The tree’s parameters

are Θ = {(wi, w0i)}i∈D ∪ {µj}j∈L and a tree routing function is

T(xn;Θ) that directs a patch xn from a root to a single leaf and

predicts a corresponding codeword µj .

3.2. Tree-structured vector quantization

We formulate the tree-structured VQ problem as follows:

min
Θ

N
∑

n=1

‖xn −T(xn;Θ)‖2 + λ
∑

i∈D

‖wi‖1 (1)

where the ℓ1 regularization term promotes sparsity in the decision

node hyperplanes, which brings up computational savings in mem-

ory and time. Problem (1) can be seen as generalizing the regular

squared distortion over a dataset of patches {xn}
N
n=1 ⊂ R

D from a

flat codebook to a hierarchical one. We do optimize the same loss

(left term in (1)) and we do have a codebook (the constant vectors

{µj}j∈L at the leaves of the tree T). But the assignment of a patch

xn to a codebook vector µj is not anymore a free, independent vari-

able (as in k-means); it is implicit in the tree structure and decision

nodes. Thus, the region of patch space that is assigned to a codebook

vector is not a Voronoi cell, but a trainable polytope.

In tree-structured vector quantization, the root-to-leaf path de-

termines the codeword by sequentially partitioning the input space

through decision nodes until a specific leaf is reached. The code-

book size is given by the number of leaves L. A sparsity parameter λ
controls the weight sparsity and, if large enough, can prune the tree;

thus, the codebook size (hence, the code rate) is primarily controlled

by ∆ and secondarily by λ (hyperparameters). The total number of

parameters in the vector quantizer is at most twice the codebook size

(covering both decision and leaf parameters) but is often lower due

to sparsity in decision nodes.

3.3. Learning the sparse oblique tree with the TAO algorithm

From a machine learning point of view, problem (1) can also be seen

simply as fitting a regression tree to a dataset where the inputs equal

the outputs. We can use the recently proposed Tree Alternating Op-

timization (TAO) algorithm to find a local optimum. For a fixed-

structure oblique tree T(x;Θ) with initial parameters (random or

one produced by greedy-recursive partitioning algorithms), TAO di-

rectly optimizes the objective function (1). TAO relies on two key

theorems. First, the separability condition states that the objective

can be optimized independently and in parallel over non-descendant

nodes (of the same depth), a result of hard decision boundaries. Sec-

ond, the reduced problem over a node ensures that optimizing the

objective for a given node i simplifies to a well-defined problem in-

volving only the node’s parameters and the subset of patchesRi that

reach it. For a decision node i ∈ D problem (1) is reduced to a

weighted 0/1 loss binary classification problem:

min
θi

∑

n∈Ri

L(yn, gi(xn;θi)) + λ ‖wi‖1 (2)

Here, yn ∈ {lefti,righti} is a pseudolabel indicating the ’best’

child that minimizes loss for xn by passing it to left and right sub-

tree of a node i, and L(·, ·) is a weighted 0/1 loss based on the loss

difference between the two children. Optimizing an oblique node is

generally NP-hard but can be efficiently approximated using a surro-

gate loss, such as cross-entropy (logistic regression). The top-level

objective (1) is guaranteed to decrease monotonically by accepting

Algorithm 1: Learning a tree-structured vector quantizer

with TAO

input training set {xn}
N
n=1;

initial tree T(·;Θ) of depth ∆;

for depth d = 0 to ∆ do

for i ∈ nodes at depth d do

if i is a leaf then
µi ← fit a constant regressor at a leaf eq. (3)

with patches inRi as targets;

else

θi ← fit a weighted binary classifier (eq. (2));

end

end

end

return trained tree T

updates only if they improve (2), though this is rarely needed in prac-

tice [2].

For a leaf j ∈ L the problem (1) is reduced to an original loss

(squared distortion) between the codeword of a leaf µj and the leaf’s

reduced set Rj . It can be solved by finding a mean (similar to k-

means):

min
µj

∑

n∈Rj

∥

∥xn − µj

∥

∥

2
(3)

When applied to problem (1), TAO is reminiscent of k-means:

the update of the codebook vectors is identical, but the update of the

assignment variables (in k-means) and the decision node parameters

(TAO) is very different.

3.4. Computational complexity: training and encoding

For a dataset of patches {xn}
N
n=1 ⊂ R

D , a complete tree of

depth ∆ with K leaves has a root node optimization complexity of

O(∆DN)+O(cDN)(pseudolabel assignment and binary classifier

fitting with c iterations). Decision nodes at each level ∆i can be

optimized in parallel within O(∆iDN) + O(cDN), leading to a

total complexity of at most O(∆2DN) + O(c∆DN). In practice,

warm-starting logistic regression with previous TAO weights signif-

icantly reduces training time. For large trees with a large codebook

size K, decision node training is approximately O(DN log2 K),
much faster than k-means’ O(DNK). Leaf optimization matches

k-means’ centroid step at O(ND).
Test patch encoding is O(D logK) for a tree-structured vector

quantizer (root-to-leaf path) versus O(DK) for k-means. Thus,

both the training and the encoding benefit from a logarithmic

speedup over k-means, which is more important with large K
(as needed for low distortion).

4. EXPERIMENTS

Experimental results demonstrate that our proposed approach con-

sistently outperforms other methods (RP-tree [11], PCA-tree [9] and

k-means) in terms of encoding time. Furthermore, it achieves much

lower distortion for a given bit rate compared to other tree-based

methods, we demonstrate it on 5 RGB image datasets: Kodak, The

Oxford-IIIT Pet, Oxford 102 Flower, Urban100, Describable Tex-

tures Dataset (DTD). For larger datasets we selected a subset of

images. Additionally, we demonstrate improved image quality of

proposed quantization approach for different bit rates and different

patch sizes.
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Table 1. Comparison of quantization methods on 4 RGB image datasets. Each dataset is represented by (N,D), where N is the sample count

and D size of flattened patch. We run experiments with varying codebook sizes per channel (KR, KG,KB), reporting MSE, MFLOPs, and

tree depth ∆ per channel. MFLOPs∗ and ∆∗ denote metrics needed for other methods to match our distortion. Bold marks the best results.
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Fig. 1. Distortion (MSE) vs bit rate (Rate-Distortion curve) for dif-

ferent patch size (from left to right 5×5 and 15×15) of each method

(TAO-tree, k-means, PCA-tree and RP-tree) on Kodak dataset.

We implement all methods in Python 3.8. To train linear clas-

sifier in decision nodes of our method and k-means, we used

scikit-learn’s implementation [15] with LIBLINEAR [16].

Our algorithm starts with a complete tree of depth ∆ and ran-

dom median splits at decision nodes. All VQ algorithms minimize

squared distortion on P×P image patches extracted from collection

of images. Following a multi-codebook quantization approach, we

train three quantizers (one per RGB channel), similar to product

quantization [17], and concatenate the quantized outputs. Typically

k-means achieves equal or lower distortion (ignoring cases of poor

local optima) due to unconstrained assignments but has the slowest

encoding time.

4.1. Encoding time

In this study, we assessed inference (encoding) time using the Ko-

dak dataset. Images were divided into patches of different sizes

(5 × 5, 10 × 10 and 15 × 15) and encoded. Measurements were

averaged across all images in the dataset. We report two met-

rics per image: the actual encoding time, recorded using Python’s

time.perf counter and averaged over five runs, and the num-

ber of floating point operations (FLOPs).

Figure 2 shows that trees trained with our proposed approach

consistently has much faster encoding compared to all other meth-

ods. First two columns of fig. 2 shows the comparison to k-means.

The computational complexity of k-means encoding is O(KD),
while our trees operate at O(sD logK), where s represents a spar-

sity coefficient. As the codebook size K increases, the difference in

encoding time between our trees and k-means becomes substantial,

exceeding 100 times faster for K ≈ 20000 and over 1000 times

faster in terms of FLOPs.

The last two columns of Figure 2 compare our method to other

tree-based models, showing that our trees are up to 30% faster in en-

coding time and up to three times faster in FLOPs. This significant

speed-up is primarily due to two factors: proper optimization and

sparsity. Due to proper optimization our trees achieve the same dis-

tortion with much smaller depth and number of leaves. Therefore,

in both PCA-trees and RP-trees samples need to travel much bigger

root-to-leaf path. Additionally, our approach enables the learning

of sparse oblique trees, which significantly decreases the number of

parameters in decision nodes. Notably, the smaller gap in encoding

time between our method and others is partly attributed to the use of

vectorization in NumPy, which enhances vector operations but does

not fully leverage sparsity. Incorporating proper sparse vectoriza-

tion in our quantization method could potentially yield even greater

improvements in encoding time.

4.2. Quantitative analysis

Table 1 demonstrate comparison of various methods in terms of dis-

tortion (MSE), tree depth ∆, and MFLOPs for different codebook
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Fig. 2. Dependence between average inference time (encoding time) and floating-point operations of each method (TAO-tree, k-means, PCA-

tree and RP-tree) and distortion for 1 image from Kodak dataset for different patch size. We show average codebook size per channel of our

trees. First row patch size 5× 5, second –10× 10, third – 15× 15.

size across 4 datasets. Across all datasets without exception our trees

achieve significantly lower distortion compared to other tree-based

methods – up to 30% lower compared to PCA-tree and 2 times lower

compared to RP-tree – at both low and high bit rates. Furthermore,

to match our performance, both greedy algorithms must grow much

deeper trees, further widening the MFLOPs gap. While k-means, be-

ing unrestricted by a hierarchical structure, can achieve lower distor-

tion, it does so at the expense of much higher MFLOPs, sometimes

up to 1000 times more.

4.3. Dependence on bit rates and patch sizes

We perform multiple experiments to evaluate and compare algo-

rithms across various bit rates and patch sizes, focusing on distor-

tion and image quality metrics. Figure 1 illustrates the relationship

between distortion and bit rate (Rate-Distortion curve) for various

quantization algorithms for different patch sizes. Each curve repre-

sents the performance of a different algorithm, showing how distor-

tion decreases as the bit rate increases. The figure highlights that

our proposed method consistently achieves lower distortion at com-

parable bit rates, indicating more efficient quantization. At higher

bit rates, the Rate-Distortion curve of our method approaches that of

k-means.

Figure 3 illustrates the quality of quantized images generated by

various methods across different bit rates. The results clearly show

that the RP-tree struggles to effectively learn the codebook. Conse-

quently, the reconstructed images shows significant noise, with in-

correct color reconstruction at lower bit rates, rendering the boat in

the foreground unrecognizable. At higher bit rates, it manages to

capture some details, such as portions of the sky’s gradient and the

general outline of the boat. However, the resulting image remains

significantly affected by noise. While the PCA-tree performed no-

tably better in reducing noise, it still fails to capture the diversity of

patches effectively. As a result, the reconstructed images lack de-

tail and are affected by the gridding effect, characterized by blocky

artifacts and a loss of fine details (it is noticeable in the sky). In

contrast, our trees successfully captured the majority of details in

the quantized images. They consistently achieve results closest to

k-means across all bit rates in terms of both distortion and image

quality.

Finally, Figure 4 illustrates the impact of patch size on image

quality. As the patch size increases, the image becomes more sus-

ceptible to blocking artifacts. Larger patch sizes require significantly

more bits to capture the details of various patches because the algo-

rithms encode each patch as a single codeword. In contrast, smaller

patch sizes (e.g., 5×5) allow both algorithms to capture finer details

and result in better image reconstruction. However, as shown in Fig-

ure 2, the primary advantage of using a larger patch size is the faster

encoding.

5. CONCLUSION

A good tree encoder for image patches should be powerful enough

to define partitions of input space that are flexible enough to achieve

low distortion while allowing for fast decoding, and be adaptive so

it can be learned automatically from image datasets. We have pro-

posed to achieve this with a new type of vector quantizer, sparse

oblique regression trees, trained with the tree alternating optimiza-

tion algorithm. The rate-distortion performance of our oblique tree

codes is better than that of previous tree-structured codes and close

to that of a flat codebook, but with a much faster decoding.
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the image from Kodak dataset. Distortion (MSE) and bit rate is on top of each image.
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