OBLIQUE DECISION TREES AS AN IMAGE MODEL FOR CUBIST IMAGE RESTYLING

Edric Chan'

Magzhan Gabidolla*

Miguel A. Carreira-Perpifidn*

T Great Oak High School, Temecula, CA, USA
* Dept. Computer Science & Engineering, University of California, Merced. Merced, CA, USA

ABSTRACT

We propose the use of oblique decision trees and forests, origi-
nally a supervised machine learning approach, as a model of a single
image. This results in a hierarchical partition into constant-color
polygons (“poxels™) that best approximates the source image. The
tree or forest can be trained using a recent algorithm that applies al-
ternating optimization over the nodes of a tree and the trees of a for-
est. In this paper, we use this for aesthetic effects, such as restyling
an image to look like a cubist painting or a stained-glass window.
We illustrate this with multiple examples and compare it with the
results achieved by Generative Al and Neural Style Transfer.

Index Terms— Decision trees, hierarchical piecewise-constant
function, poxel, image representation, non-photorealistic rendering.

1. INTRODUCTION

Image processing techniques have long been used to manipulate
images and achieve various effects. Recent years have seen the
widespread development of machine learning models for this pur-
pose, mostly based on deep neural networks. Here, we propose, we
believe for the first time, to use oblique trees and forests as a model
for a single image. Decision trees have existed for a long time in
machine learning as predictive models for supervised settings, but
traditional tree learning algorithms are quite suboptimal and limited
in the form of the trees they can train for practical use (usually axis-
aligned). Having a model that can better approximate images and
being able to optimize it well is critical, even if the goal is purely
aesthetic, because we need to have a sufficiently faithful represen-
tation of the source image that we can then manipulate for artistic
goals. Our idea is motivated by the recent development of effective
algorithms to learn tree-structured models for arbitrary choices of
loss function and tree type [1, 2].

An oblique tree approximates a source image (considered as
function from 2D to color space) by a hierarchical piecewise-
constant function, where each piece is a convex, colored polygon
that we will call poxel (for polygon pixel), and whose fidelity can
be controlled by the model size (tree depth and number of trees).
Such a representation has multiple uses, such as image segmentation
and compression, but here we focus on aesthetic effects, which have
applicability in software packages such as PhotoShop or for game
and film production effects. The output image, which is a vector
graphics object rather than a bitmap, is strikingly reminiscent of cu-
bist paintings such as those of Picasso and other artists (see fig. 2).
Other effects are also possible, such as the style of stained-glass
windows. In general, our work opens the door for further manipu-
lations based on the poxel representation. However, we emphasize

*E. Chan is a senior at Great Oak High School. His contribution to this
work took place during an internship at UC Merced in summer 2024. The
last two authors are partially supported by NSF award I1S-2007147.

that we are not trying to imitate faithfully these styles, each of which
is created using specific tools and procedures (originally not digital).
The images we create are the result of a specific image model and
optimization algorithm and have their own style.

Throughout the paper, we will use the term cubist tree or forest
to refer to our model or to images generated with it.

2. RELATED WORK

Our work has relations with multiple areas, which we briefly review.

Machine learning (ML). Our work is primarily an adaptation of a
supervised ML model for image representation and manipulation.
Decision trees and forests have a long history in statistics and ML,
where they have been used mostly with the goal of prediction on test
data, e.g. classification. They have been traditionally learned using
greedy recursive partitioning (such as CART [3] or C5.0 [4]). This
does not optimize a global loss function and is practically limited
to axis-aligned trees (which split based on a single feature), so it
produces large, unbalanced trees with low accuracy. The Tree Alter-
nating Optimization (TAO) algorithm, reviewed later, does optimize
an arbitrary combination of loss and tree model (such as oblique de-
cision nodes), which produces higher accuracy with smaller trees.

Style transfer is a form of non-photorealistic rendering that ma-
nipulates a “content” image so it resembles the visual style of a
“style” image. It can be used for aesthetic effects. Early work was
based on patch-based texture synthesis [5, 6]. Neural Style Transfer
(NST) [7] and its variations [8, 9] define the result by optimizing a
weighted loss with the content and style images, but where each im-
age is represented by features produced by a certain layer (capturing
different image statistics) of a pretrained convolutional neural net.

Generative Al (GenAl) is a very recent, fast moving area, which
includes different techniques, such as generative adversarial net-
works, variational autoencoders and diffusion models [10, 11]. They
use deep neural nets to define a probability distribution over images
from which samples can be generated, e.g. conditioned on a text
prompt. This results in impressive images, though they often display
unrealistic features and different samples show huge variability, so it
is difficult to control the result obtained, even after iterated prompt-
ing. Training the neural nets in both NST and GenAl requires huge
costs in terms of data, GPU hardware, storage and time.

Our approach has a restricted scope: it learns from a single im-
age in a few seconds, which strongly determines the output image,
and the user has significant control via a few hyperparameters.

Image processing. Many approaches exist to process images with
different goals, from blurring, denoising or edge detection, to more
complex ones such as segmentation or registration, and using tech-
niques from local filters to partial differential equations [12, 13, 14].
Closer to us are quadtrees [15, 16, 17], but they are limited in both



their shape and ability to fit an image. Our work can be seen as
a sophisticated form of image processing that seeks a hierarchical
piecewise-constant representation over polygons of a source image
by optimizing a global objective function.

Computer graphics. Non-photorealistic rendering (NPR) [18, 19,
20, 21, 22] consists of techniques that enable expressive styles for
digital art, inspired by other artistic modes such as painting and
drawing, technical illustration and scientific visualization, and ani-
mated cartoons, among others. A specific type of NPR is stroke-
based rendering (SBR) [23], which is based on (semi)automatically
placing discrete elements such as paintbrush strokes or stipples to
achieve some goal, for example to resemble the style of an oil paint-
ing. SBR methods have as primary application the manipulation of
images for aesthetic effects. They have been implemented in many
commercial packages and used in entertainment, such as game and
film production effects. Some SBR techniques use greedy, local al-
gorithms that place strokes on a real image as they go; this is fast, but
achieves worse results than optimizing a global objective function
that trades off the error of the resulting image vs the source image
with the number of strokes. This produces results spanning a spec-
trum between abstract and realistic. Other approaches use low-level
image processing, such as the Sobel operator and anisotropic and
edge-preserving filters; other rendering primitives beyond strokes
(regions, tiles, hatch marks); and combine it with segmentation [19].
Several approaches are based on Voronoi tessellations [24, 25], e.g.
by placing a set of centroids in the image plane according to some
criterion to define a Voronoi partition of the image and then col-
oring each cell. This tends to create honeycomb-like patterns with
uniform-sized cells, due to the definition of Voronoi cells. A final
type of approaches are photomosaics and jigsaw image mosaics (e.g.
[26]), in which an image is approximated by a collection of smaller
images. In [27] a kd-tree (a multidimensional data structure) is used
to partition video into blocks.

Our work can be seen as a new SBR technique that, given a
source image, uses hierarchical poxels as “strokes” to minimize the
image error subject to a maximum number of strokes. Note our pox-
els can have a highly variable shape which adapts to the underlying
image color and edges.

3. IMAGE MODEL: HIERARCHICAL POXELS

3.1. Animage model as a regression problem

An image can be seen as a function from R? (sampled on a 2D grid)
to some other space: R if grayscale, R? if color (RGB or a perceptual
space such as LAB), or even a higher-dimensional space if represent-
ing each pixel as, say, a texture or SIFT feature vector. Throughout,
we will focus on a 3D color space for definiteness. Thus, the N-
pixel image can be considered a labeled dataset {(x,,yn)}h—1 C
R? x R3, and a model of the image may be obtained by a least-
squares regression of a mapping 7: R? — R® with parameters ©:

mine 32, [[yn — 7 (%n; ©)]|*. M

7 can then be applied to any point in R?, not just the grid points, and
thus color the Euclidean 2D space. Fig. 1 illustrates the approach.

3.2. Oblique decision trees and forests

As model T, we use either a single oblique re%gession tree or an
ensemble (forest) of 7" of them, F(x) = £ >, 7(x;0;). We
consider binary, complete trees of depth A, thus having 22 leaves.
An oblique regression tree contains two types of nodes: decision

Fig. 1. Learning an oblique regression tree to represent a single im-
age. Plot I: an input image, as a grid of points x, € R? (input
features) each with a color y,, € R? (output labels). Plot 2: an
oblique regression tree of depth 3 learned on this dataset. Plot 3: the
partition of the 2D space induced by the tree. Plot 4: the partition
with each leaf polygon colored by the leaf label (poxels).

nodes and leaves. A decision node i sends an input instance x down
its right child if wix + w;o > 0, else down its left child, where
(wi, wio) € R? x R are the weight vector and bias of a hyperplane
(actually a line, in 2D). A leaf j does the actual prediction for x,
which is a constant vector B; € R3, regardless of x.

Geometrically, the tree defines a nested, hierarchical partition
of the 2D grid, with each leaf defining a convex polygon (with at
most A sides, the intersection of the halfspaces given by the A splits
along its root-leaf path) of constant color—a hierarchical piecewise-
constant function. This is our hierarchical poxels image model. The
forest defines a partition that is the intersection of the individual tree
partitions, hence it has up to 272 convex polygons (although this is
a very coarse upper bound).

This is a good model for images for several reasons. First, a
piecewise-constant function is a reasonable model for images be-
cause natural images typically do consist of objects that can be ap-
proximated by (sufficiently many) constant-color regions. Second,
in a hierarchical model the polygons share sides, so it uses fewer pa-
rameters than if we had to represent each polygon on its own. This
is not a very limiting restriction, and it also makes it easier and faster
to draw the partition (by drawing the splits recursively). The overall
quality of the model will depend on its size (A, T'). With a good op-
timization (shown below), the polygons adapt to represent approx-
imate level sets in the image, and their sides approximately match
image contours, such as object boundaries.

3.3. Single tree optimization with TAO

Due to space limitations, we give a brief description of the training
algorithms; more details can be found in [1, 2]. The Tree Alternating
Optimization (TAO) algorithm optimizes an arbitrary objective func-
tion, such as eq. (1), over the parameters © of a tree of fixed struc-
ture but arbitrary node models, such as axis-aligned or (our case)
oblique. Each iteration monotonically decreases the objective until
convergence, and consists of updating each node on its own given
the rest are fixed. There are two reasons why this is effective. First,
assume we want to optimize jointly over all nodes at the same depth
(given all other nodes are fixed). This is mathematically equivalent
to optimizing each node at that depth independently (separability
condition). It simplifies the optimization, makes the steps down the
objective function larger and introduces significant parallelism. Sec-
ond, the problem of optimizing a single node given the rest are fixed
takes a special form (the reduced problem) that is conveniently solv-
able, at least approximately. For a leaf node j, the optimal p; is
the mean of the y,, vectors for points (pixels) reaching that leaf (its
reduced set); this means a poxel’s optimal color is the average color
of the pixels it contains. For a decision node 4, the optimal w;, wio
are the solution of a weighted 0/1 loss classification problem defined
over the reduced set points, each labeled with whatever child pro-



duces the lower objective function value downstream, and weighted
with that value. That is, the split tries to send each point down so it
is best predicted by the rest of the tree. This is an NP-hard problem,
but it can be well approximated by a surrogate loss; we use a logistic
regression. Occasionally, the surrogate classifier may have a higher
weighted 0/1 loss than the current parameters, in which case we skip
the update for this node, to ensure monotonic decrease.

While this seems complex, the final algorithm operates in a sim-
ple way. At each iteration, we visit each node from the leaves up-
wards to the root and update its parameters, by either computing
a mean vector (if a leaf) or fitting a binary classifier (if a decision
node). Its computational complexity is O(NA?) [1], i.e., linear on
the image size IV, and thus scalable.

Convergence is to a local optimum that depends on the initial
tree parameters, which we take as a random median tree: starting
from the root, we pick its weight vector orientation at random and
set its bias to the median (so it partitions the points 50/50). We repeat
this recursively down the tree, so each leaf receives N2~ points.
This already produces a nice effect, but further iterations better adapt
it to the source image.

Our current implementation is for a multicore CPU (not GPU). It
uses C and OpenMP for parallel processing, and LIBLINEAR [28]
for logistic regression. This is already fast enough to process an
image in a few seconds in a laptop. However, this can be improved
substantially by noting that the uniform, 2D nature of the grid makes
some optimizations possible (such as storing parameters with few
bits and using a scan over orientations rather than LIBLINEAR).

3.4. Forest optimization with FAO

To optimize eq. (1) over a forest F rather than a tree 7, we use the
Forest Alternating Optimization (FAO) algorithm [2]. Each FAO it-
eration over the whole forest consists of two steps. One consists of
applying alternating optimization one tree at a time (given the rest
of the trees are fixed). This can be done with TAO because, in (1),
Yy~ minus the fixed trees’ prediction can be taken as a fixed label (ef-
fectively, the residual error) that the tree we optimize over needs to
predict. The other step consists of optimizing over the output vectors
of all leaves of all 7" trees jointly given the decision nodes are fixed.
This is a quadratic problem whose solution is given by a linear sys-
tem. As with TAO, all these steps guarantee monotonic decrease of
the objective function until convergence.

The final algorithm is again simple. At each iteration, we update
each tree with TAO, and we solve a linear system over all the leaves.
Its computational complexity is O(NTA? + (T2%)?) [2], i.e., also
linear on the image size.

3.5. Postprocessing of the tree or forest

Having trained a tree or forest with TAO or FAO, respectively, we
have our image model, which contains implicitly the poxels. In order
to make them explicit, for plotting or for manipulation with software
such as PhotoShop, we construct all the polygons and save them as
an EPS file, using a Python implementation. This is a vector graphics
object and can be rendered at any resolution.

4. USER PARAMETERS AND CONTROL: EFFECTS

Although, at heart, we use a ML algorithm, the goals for achieving
aesthetic effcts are different from those of a ML (or image process-
ing) task. For the latter, usually one wishes a high degree of autom-
atization. For example, the final ML model would be the one that
achives best generalization in a validation set. But for an artist or

special effects designer, some amount of control and interactivity of
the result is critical. We can achieve this by tuning various user pa-
rameters (and by combining our image model with traditional image
manipulation software). Given this, the automatic part is achieved by
the optimization algorithm, producing a best fit to the source image
based on those parameters—that is, making the image as realistic as
possible but within the design rules we impose.

The “cubist” appearance of our generated images is due to parti-
tioning the source image into poxels, each of which optimally seeks
to cover a homogeneous region of the image, often corresponding to
part of an object, and to align with its contours or object boundaries.
Having more poxels will produce a more faithful approximation to
the source image, spanning a spectrum between a constant-color im-
age (a tree of depth 0) and a photorealistic one (a deep tree); the
more interesting effects occur away from those extremes.

An oblique tree includes as special case an axis-aligned tree,
where the split uses a single feature, thus being either horizontal or
vertical, and generating rectangular poxels. However, this is a much
more limited model for images (whose contours can have arbitrary
orientations). While we do not show them here, axis-aligned trees do
produce interesting, blocky Mondrian-like effects, but they require
much larger trees and hence many more poxels to approximate the
image, and the produce jagging artifacts'.

The user parameters and their effect is as follows:

Tree depth A and number of trees 7' These control the size of the
model: 22 poxels for a single tree and up to 272 for T > 1
(empirically, this is closer to a factor times 22). With few
poxels, the result is cartoon-like. The bigger the model, the
more photorealistic the result. Using multiple trees gives an
appearance of “broken glass” compared to using one tree.

Seed This sets the state of the pseudorandom number generator and
thus the initial, random median tree. This can be used to add
a small amount of randomness to the result, akin to the fact
that a human artist would never draw the same identical pic-
ture twice. With video, it could be used to create a form of
rotoscopic animation, as in the “Waking Life”” 2001 film. On
the other hand, for video or animation we can achieve frame-
to-frame coherence by initializing the model for each frame
from the trained model for the previous frame (warm-start).
This also speeds up the optimization (/21-2 iterations/frame).

Number of iterations As the TAO/FAO algorithm iterates from the
initial tree, it approaches the optimal result. Like the seed,
this provides a form of randomness.

Line width of the poxel boundaries This is useful to show more
clearly the poxels, but also to produce an appealing effect
reminiscent of stained-glass windows, such as those in Eu-
ropean gothic cathedrals.

We rescale the source image down to a maximum of 100 pixels per
dimension (width or height) and run TAO/FAO on that. This speeds
up the algorithm and does not change much the results, because use-
ful values of A and T (producing the more interesting effects) mean
that the number of poxels is quite smaller than the number of pixels.
There are additional effects we can achieve, but they are out of
the scope of this paper. Many of them rely on the use of a mask
(automatic or user-selected) so that the tree or forest is learned on
only the pixels within the mask. This makes it possible to combine
multiple cubist models with original pixels of the source image, for
example a figure vs a background, or to use them in other ways.

I'The visual aspect is similar to Treemaps [29], a visualization technique
for hierarchical data, whose aesthetic beauty has been recognized before
(https://treemapart.wordpress.com).


https://treemapart.wordpress.com

Fig. 2. Mona Lisa (Leonardo da Vinci), Starry Night (Van Gogh)
and a cubist painting, Les Demoiselles d’Avignon (Picasso).

0.14

0.12

SNSNS

0.1

0.08

0.06

0.04

0 3 6 9
iterations

12 15 0 4 8 12 16 20 0 2 4 6 8 10 12 14
iterations depth

Fig. 3. RMSE over TAO/FAO iterations and training time per itera-
tion for Mona Lisa, for different depth A and number of trees 7.

5. EXPERIMENTS

We show a selection of effects on paintings, photographs and car-
toons. Zoom into the images to see individual polygons.

Our experiments were ran in a Linux laptop with processor In-
tel Core i9 2.2 GHz with 24 cores and 32 GB of RAM (using only
CPUs, not GPU). In all cases, we use RGB space and reduce the
source image to a maximum size of 100x 100 pixels before training.
This results in at most around 10* poxels, for A < 14 and T < 3.

Fig. 2 shows several images we use. In terms of quantitative
evaluation, fig. 3 shows the RMSE and training time. The RMSE
decreases monotonically over iterations of TAO and FAO. A near-
optimum result occurs by around 5 iterations, typically. The training
time in a laptop is just a few seconds unless the tree is very deep.
Fig. 4 shows how the poxels change shape significantly upon train-
ing, as they adapt to the source image.

Fig. 5 shows the effect of the initial random tree (by changing the
seed), which injects a bit of randomness in the result. Fig. 6 shows
the effect of varying the depth A and number of trees 7" for a pho-
tograph. As the number of poxels increases, the cubist image moves
from cartoonish, to a “cubist” appearance, to increasingly more real-
istic. Using multiple trees produces an effect of glassy reflections. If
atree is deep enough to have more leaves than pixels (A > log, N),
then it can fit the source image exactly (in fact, the initial random me-
dian tree already does so). However, the corresponding poxels are
not necessarily squares centered at the pixels. Thus, when plotting
the cubist tree image on the entire 2D plane, it looks like a distorted
version of the source image, which achieves an interesting effect.
This starts being noticeable as an increasingly jagged, noisy aspect
as A or T become large, as in the example for A = 12, T = 1 in
fig. 6 or the Starry Night example for A = 14, T = 1 in fig. 12.

Our image model produces a vector graphics object, consisting
of geometric objects defined by mathematical formulas (color-filled
polygons in our case, mostly). This gives shapes that can be scaled
to any size without loss of quality. This is unlike bitmap graphics
(such as those produced by neural style transfer and diffusion mod-

initial

final

W

Fig. 4. Initial (random median trees) and final result (after TAO/FAO
converge) for Mona Lisa, as poxels and boundaries, for two models.

Fig. 5. Left: source image. Rest: cubist tree images using different
seeds (for A = 6, T = 3). Combining these images into a video
produces an jittery effect reminiscent of rotoscopic animation; see
https://youtu.be/TXPmOmwda_A.

els), which have a finite resolution, and show pixelation and jagging
effects if zooming in sufficiently. Fig. 7 illustrates this by show-
ing a highly zoomed-in region for both the source and cubist image.
The resulting geometric objects can also be manipulated (with a vec-
tor graphics editor such as Adobe Illustrator, CoreIDRAW, Inkscape,
etc.) in various ways, e.g. to rearrange or merge the polygons, change
their color or texture, transform them, etc. Fig. 7 (right plot) illus-
trates this. Consequently, our approach (possibly in conjunction with
other design tools) could be used for vector art for illustrations rang-
ing from small size, such as company logos on business cards, to
very large size, such as posters and billboards; as well as for printing
on clothing, bags, stickers or even tattoos.

Fig. 8 shows how drawing the poxel boundaries with thick lines
achieves a stained-glass window effect (compare with a real window
shown on the right). Fig. 11 shows how individual trees combine into
a forest. Fig. 12 shows a selection of cubist tree and forest images
obtained from various photographs, paintings and cartoons.

Finally, for comparison purposes, figs. 9 and 10 show an attempt
to generate images with cubist or stained-glass style using Neural
Style Transfer and Stable Diffusion. The results are quite odd, al-
though interesting in their own way.

6. CONCLUSION

We have repurposed oblique decision trees and forests as a model
that best approximates a source image by a hierarchical piecewise-
constant function. They can be trained in seconds in a laptop using
the TAO and FAO algorithms. Their visual aspect can be controlled
with several user parameters to achieve various image effects, as in
cubist and stained-glass artwork. This opens the door to other effects
based on manipulating the set of poxels. We are also working on
applying this model to image compression and image segmentation.


https://youtu.be/TXPmOmw4a_A

source image

=12,T =1
"‘!1

Fig. 6. Cubist tree and forest results using different depth A and
number of trees 7" for a source photograph (©Edric Chan).

cubist tree
output, edited

source image
(bitmap 98 x 100)

Fig. 7. Plots 1-2: source image and zoomed-in region (mouth and
nose). The original pixels are clearly visible. Plots 3—4: cubist tree
output and zoomed-in region in the same area. The (infinite-reso-
lution) poxels are visible. Plot 5: cubist tree output edited with

Inkscape to color some of the polygons in the background in green,
and to move away some of the polygons in one eye to the right side.

cubist tree output
(vector graphics)

Fig. 8. Stained-glass window effect (left, using A = 6 and 7" = 1)
for a source photograph (middle, ©Edric Chan). For reference, on
the right we show a photograph of an actual stained-glass window.

o | . - S o

SR NN

Xy AN Vi ) \ G
Fig. 9. Using Neural Style Transfer [7] to restyle two content images
(Mona Lisa and Starry Night) with the style of the cubist painting
in fig. 2 (left) and the stained-glass window in fig. 8 (right). We
use the implementation inhttps://huggingface.co/spaces/Hexii/

Neural-Style-Transfer.

“X in cubist style”

= ¥y S Sa= 1 €2 'e % e DUZSN

Fig. 10. Generating images with Stable Diffusion with a text
prompt where X is Mona Lisa or Starry Night (one sample for

each prompt). We used Stable Diffusion 2.1 (the current text-
to-image model from StabilityAl) at nttps://huggingface.co/
spaces/stabilityai/stable-diffusion.

Fig. 11. Starry Night using a forest of T' = 3 trees of depth A = 4.
We show how the individual trees, each having 2° = 16 poxels, add
up to the final forest, having 158 poxels (above: boundaries, below:
poxels). Unlike the forest, the trees have little resemblance to the
source image and differ considerably from each other.

A=14,T=1

A=10,T=1 A=9T=1

Fig. 12. Art gallery. Can you guess the original paintings, drawings
or photographs?


https://huggingface.co/spaces/Hexii/Neural-Style-Transfer
https://huggingface.co/spaces/Hexii/Neural-Style-Transfer
https://huggingface.co/spaces/stabilityai/stable-diffusion
https://huggingface.co/spaces/stabilityai/stable-diffusion

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

7. REFERENCES

Miguel A. Carreira-Perpifian and Pooya Tavallali, “Alternat-
ing optimization of decision trees, with application to learn-
ing sparse oblique trees,” in Advances in Neural Informa-
tion Processing Systems (NeurIPS), S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds. 2018, vol. 31, pp. 1211-1221, MIT Press, Cambridge,
MA.

Miguel A. Carreira-Perpifian, Magzhan Gabidolla, and Arman
Zharmagambetov, ‘“Towards better decision forests: Forest
Alternating Optimization,” in Proc. of the 2023 IEEE Com-
puter Society Conf. Computer Vision and Pattern Recognition
(CVPR’23), Vancouver, Canada, June 18-22 2023, pp. 7589—
7598.

Leo J. Breiman, Jerome H. Friedman, R. A. Olshen, and
Charles J. Stone, Classification and Regression Trees,
Wadsworth, Belmont, Calif., 1984.

J. Ross Quinlan, C4.5: Programs for Machine Learning, Mor-
gan Kaufmann, 1993.

Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Cur-
less, and David H. Salesin, “Image analogies,” in Proc. of
the 28th Annual Conference on Computer Graphics and Inter-
active Techniques (SIGGRAPH 2010), Lynn Pocock, Ed., Los
Angeles, CA, Aug. 12-17 2010, pp. 327-340.

Alexei A. Efros and William T. Freeman, “Image quilting
for texture synthesis and transfer,” in Proc. of the 28th An-
nual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 2010), Lynn Pocock, Ed., Los Angeles,
CA, Aug. 12-17 2010, pp. 341-346.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “Im-
age style transfer using convolutional neural networks,” in
Proc. of the 2016 IEEE Computer Society Conf. Computer
Vision and Pattern Recognition (CVPR’16), Las Vegas, NV,
June 26 — July 1 2016, pp. 2414-2423.

Kristin J. Dana, Computational Texture and Patterns: From
Textons to Deep Learning, Synthesis Lectures on Computer
Vision. Morgan & Claypool Publishers, 2018.

Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye,
Yizhou Yu, and Mingli Song, “Neural style transfer: A re-
view,” IEEE Trans. Visualization and Computer Graphics, vol.
26, no. 11, pp. 3365-3385, Nov. 2020.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and
Mubarak Shah, “Diffusion models in vision: A survey,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 45, no.
9, pp. 10850-10869, Sept. 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Run-
sheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan
Yang, “Diffusion models: A comprehensive survey of methods
and applications,” ACM Computing Surveys, vol. 56, no. 4, pp.
105:1-39, Apr. 2024.

Rafael C. Gonzalez and Richard E. Woods, Digital Image Pro-
cessing, Prentice-Hall, second edition, 2002.

William K. Pratt, Introduction to Digital Image Processing,
CRC Publishers, 2013.

Tony F. Chan and Jianhong (Jackie) Shen, Image Process-
ing and Analysis: Variational, PDE, Wavelet, and Stochastic
Methods, Other Titles in Applied Mathematics. SIAM Publ.,
2005.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

Rahul Shukla, Pier Luigi Dragotti, Minh N. Do, and Mar-
tin Vetterli, ‘Rate-distortion optimized tree-structured com-
pression algorithms for piecewise polynomial images,” [EEE
Trans. Image Processing, vol. 14, no. 3, pp. 343-359, Mar.
2005.

Gabriel Peyré, “A review of adaptive image representations,”
IEEE J. Selected Topics in Signal Processing, vol. 5, no. 5, pp.
896-911, Sept. 2011.

Adam Scholefield, , and Pier Luigi Dragotti, “Quadtree struc-
tured image approximation for denoising and interpolation,”
IEEE Trans. Image Processing, vol. 23, no. 3, pp. 1226-1239,
Mar. 2016.

Bruce Gooch and Amy Gooch, Non-Photorealistic Rendering,
A. K. Peters, Ltd., 2001.

Jan Eric Kyprianidis, John Collomosse, Tinghuai Wang, and
Tobias Isenberg, “State of the “art”: A taxonomy of artistic
stylization techniques for images and video,” IEEE Trans. Vi-
sualization and Computer Graphics, vol. 19, no. 5, pp. 866—
885, May 2013.

Florian Nolte, Andrew Melnik, and Helge Ritter, “Stroke-
based rendering: From heuristics to deep learning,”
arXiv:2302.00595, Dec. 30 2022.

Paul Rosin and John Collomosse, Eds., Image and Video-
Based Artistic Stylisation, Number 42 in Computational Imag-
ing and Vision. Springer-Verlag, 2013.

Thomas Strothotte and Stefan Schlechtweg, Non-
Photorealistic Computer Graphics: Modeling, Rendering, and
Animation, Morgan Kaufmann, 2002.

Aaron Hertzmann, “A survey of stroke-based rendering,” IEEE
Computer Graphics & Applications, vol. 23, no. 4, pp. 70-81,
July — Aug. 2003.

Adrian Secord, “Weighted Voronoi stippling,” in Proc. Work-
shop on Non-Photorealistic Animation and Rendering (NPAR
2002), Annecy, France, June 3-5 2002, pp. 37-43.

III Kenneth E. Hoff, John Keyser, Ming Lin, Dinesh Manocha,
and Tim Culver, “Fast computation of generalized Voronoi
diagrams using graphics hardware,” in Proc. of the 26th Annual
Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1999), Warren Waggenspack, Ed., Los Angeles,
CA, Aug. 8-13 1999, pp. 277-286.

Alejo Hausner, “Simulating decorative mosaics,” in Proc. of
the 28th Annual Conference on Computer Graphics and Inter-
active Techniques (SIGGRAPH 2010), Lynn Pocock, Ed., Los
Angeles, CA, Aug. 12-17 2010, pp. 573-580.

Allison W. Klein, Peter-Pike J. Sloan, Adam Finkelstein, and
Michael F. Cohen, “Stylized video cubes,” in Proc. of the
ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation (SCA 2002), San Antonio, TX, July 21-22 2002, pp.
15-22.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin, “LIBLINEAR: A library for large
linear classification,” J. Machine Learning Research, vol. 9,
pp. 1871-1874, Aug. 2008.

Ben Shneiderman, “Tree visualization with tree-maps: 2-d
space-filling approach,” ACM Trans. Graphics, vol. 11, no.
1, pp. 92-99, Jan. 1992.



	 Introduction
	 Related work
	 Image model: hierarchical poxels
	 An image model as a regression problem
	 Oblique decision trees and forests
	 Single tree optimization with TAO
	 Forest optimization with FAO
	 Postprocessing of the tree or forest

	 User parameters and control: effects
	 Experiments
	 Conclusion
	 References

