
SAMPLING THE “INVERSE SET” OF A NEURON

Suryabhan Singh Hada Miguel Á. Carreira-Perpiñán
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ABSTRACT

With the recent success of deep neural networks in computer vision,

it is important to understand the internal working of these networks.

What does a given neuron represent? The concepts captured by a

neuron may be hard to understand or express in simple terms. The

approach we propose in this paper is to characterize the region of

input space that excites a given neuron to a certain level; we call this

the inverse set. This inverse set is a complicated high dimensional

object that we explore by an optimization-based sampling approach.

Inspection of samples of this set by a human can reveal regularities

that help to understand the neuron. This goes beyond approaches

which were limited to finding an image which maximally activates

the neuron [1] or using Markov chain Monte Carlo to sample images

[2], but this is very slow, generates samples with little diversity and

lacks control over the activation value of the generated samples. Our

approach also allows us to explore the intersection of inverse sets of

several neurons and other variations.

Index Terms— Interpretability, deep neural networks, GANs.

1. INTRODUCTION

In the last few years, deep neural networks have shown great success

in solving problems in the field of computer science. This leads to a

surge in the usage of deep neural networks in real-life applications,

making it very important to understand the working of deep neural

networks. Some machine learning models are readily interpretable,

i.e., by looking at the parameters and structure of the model, we can

understand the prediction for a given input. However, this is not

the case with deep networks, where the parameters of the model are

interleaved in a very complex way. It is very difficult to make the

prediction just by looking at the model’s parameters.

In a broader sense, we can divide the deep networks’ inter-

pretability research into two categories: 1) produce an explanation

in the input space that explains network prediction for a given input,

and 2) understand what information is retained by the network.

In the first category, we want to understand the network decision

for a given instance; it is called local explanation [3]. Methods like

[4, 5, 6] approximate the deep network locally with a much simple

model like decision trees or linear model; and using these simple

models, they provide an explanation in terms of input segments (like

superpixels in an image). Other works provide similar explanations

via sensitivity analysis [7, 8]. One can also find the training instances

that most affect the prediction for a given test image [9, 10].

Our work belongs to the second category, where we want to un-

derstand what information is retained by the network. This provides

a global explanation, i.e., the explanations are independent of the

given input. Currently available techniques that are used to under-

stand the parameters of a trained deep neural network involve two

major approaches: feature inversion and activation maximization.

Feature inversion attempts to project the output of a layer to the in-

put space, to understand what each layer of the network has learned.

This is done by backpropagation, gradient descent or training a net-

work [11, 12, 13, 14]. On the other hand, activation maximization

involves maximizing the response of a neuron in the network for an

input, as done by [15, 1, 16, 17, 18], and more. A quite different ap-

proach is based on building a global mimic via a decision tree [19].

Although these approaches work well, they have two major

drawbacks. First, they do not consider that the real-life images do

not usually have high activations [17]. Thus, producing images that

have a very high activation value does not solve the problem en-

tirely to understand what real-life images are preferred by a neuron.

Second, they do not account for the fact that multiple images can

maximally activate the same neuron. Authors in [18] tried to ad-

dress this problem by initializing the input image with the mean of a

cluster of training images for activation maximization. However, the

generated images are noisy and not much diverse. Later, [2] used

their plug and play model to generate comparatively diverse and

more realistic images using the Markov chain Monte Carlo based

sampling approach. Although authors in [2] generate more diverse

samples for a single neuron compared to all the previous work, they

do not address the issue that real-life images do not usually have

high activations. There is no control over the activation value of the

generated samples. Besides their Markov chain Monte Carlo based

sampling approach is very slow.

In this work, we propose an approach that can improve our abil-

ity to understand the behavior of neurons by addressing the draw-

backs mentioned above. We achieve this by characterizing the region

of input space that excites a given neuron to a certain level; we call

this the inverse set. In the next section, we describe our approach to

address the issues mentioned above.

2. THE INVERSE SET OF A NEURON

2.1. The inverse set of a neuron: definition

We say an input x is in the inverse set of a given neuron having

a real-valued activation function f if it satisfies the following two

properties:

z1 ≤ f(x) ≤ z2 x is a valid input (1)

where z1, z2 ∈ R are activation values of the neuron. x being a

valid input means the image features are in the valid range (say, pixel

values in [0,1]) and it is a realistic image (we explain this later).

For a simple model, the inverse set can be calculated analyti-

cally. For example, consider a linear model with weight vector (w),

bias (b), logistic activation function σ(wT
x+ b) and all valid inputs

to have pixel values between [0,1]. For z2 = 1 (maximum activation

value) and 0 < z1 < z2, the inverse set will be the intersection of

the half space w
T
x+ c ≥ σ−1(z1) and the [0,1] hypercube.

In general, for deep neural networks, we approximate the inverse

set with a sample that covers it in a representative way. A simple
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Fig. 1. Samples generated using our sampling approach for the neuron number 981 in the fc8 layer of the CaffeNet [20], which represents

volcano class. Each row contains 10 samples picked from 500 samples generated with activation range mentioned on the left side. Generated

samples are not just photo-realistic but also very diverse in nature, characterizing input space around certain activation very well. Unlike

previous approaches [18, 2]; generated samples not just only contains volcanoes but they also contain lava flowing through water and on land,

and the ash cloud after the volcanic eruption. These kind of samples never have been seen before. The first row that contains samples of high

activation and the last row which have samples with low activation, both have volcanoes but the presence of lava and smoke create a huge

difference in activation value of the neuron. Giving us a clear understanding how the amount of the lava and smoke impact the activation of

the neuron, higher the amount of lava and smoke more the activation.

way to do this is to select all the images in the training set that satisfy

eq. (1), but this may rule out all images. A neuron may “like” certain

aspects of a training image without being sufficiently activated by it,

or, in other words, the images that activate a given neuron need not

look like any specific training image. Therefore, we need an efficient

algorithm to sample the inverse set.

2.2. Sampling the inverse set: an optimization approach

To generate the maximum activation image, the problem can be

mathematically formulated as:

argmax
x

f(x) +R(x). (2)

Here, real-valued function f gives the activation value of the given

neuron for an input image x. R is a regularizer that makes sure that

the generated image x looks like a real image. This is the same ob-

jective function used in [1, 16, 18], and others, where, R is replaced

by their hand-crafted regularizers. As mentioned in [18], it mostly

produces the same images for a given neuron. However, to construct

the sample S = {x1, · · · ,xn} that covers the inverse set, gener-

ated images should be different from each other. So, we propose

the following formulation to construct S of size n as a constrained

optimization problem:

argmax
x1,··· ,xn

n∑

i,j=1

‖xi − xj‖
2

2
s.t. z1 ≤ f(x1), . . . , f(xn) ≤ z2. (3)

This makes sure that the samples are different from each other and

also satisfy eq. (1). However, this generates noisy-looking samples.

To make them realistic we use an image generator network G, which

has been empirically shown to produce realistic images [21] when a

feature vector c is passed as an input. Then we get:

argmax
c1,··· ,cn

n∑

i,j=1

‖G(ci)−G(cj)‖
2

2

s.t. z1 ≤ f(G(c1)), . . . , f(G(cn)) ≤ z2. (4)

We observe that using Euclidean distances directly on the gener-

ated images G(c) is very sensitive to small changes in their pix-

els. Instead, we compute distances on a low-dimensional encoding

E(G(c)) of the generated images, where E is obtained from the first

layers of a deep neural network trained for classification. Then we

have our final formulation of the optimization problem over the n

samples G(c1), . . . ,G(cn):

argmax
c1,c2,··· ,cn

n∑

i,j=1

‖E(G(ci))−E(G(cj))‖
2

2

s.t. z1 ≤ f(G(c1)), . . . , f(G(cn)) ≤ z2. (5)

Now to generate the samples, initialize c with random values and

then optimize eq. (5) using the augmented Lagrangian [22].
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Fig. 2. The first, third and fifth row contains 10 samples picked from 500 samples generated by our sampling approach to cover the inverse set

for the neuron number 981 (represents volcano class), 947 (represents cardoon class) and 1000 (represents toilet paper class) respectively. All

three neurons are from layer fc8 of CaffeNet [20]. For the first row (volcano class) the activation range is [50,60], for the third (cardoon class)

and the fifth row (toilet paper class) the range is [40,50]. The second, fourth and sixth row shows samples generated for the same neurons by

sampling approach from [2]. Activation range for the samples from [2] is not guaranteed to be in any fixed range like ours.

Neuron in fc8 Ours PPGN [2]

981(volcano class) 5.58 4.82

947(cardoon class) 6.00 4.99

1000(toilet paper class) 5.83 4.79

Table 1. Comparison between the proposed method and PPGN;

in terms of mean pairwise Euclidean distance between the codes

(E(G(ci))) of the generated samples (all 500 samples in fig. 2).

Higher values mean generated samples are more diverse.

In theory eq. (5) is enough to generate the sample S. But in prac-

tice, as the n gets larger, which is required to correctly sample the

inverse set, eq. (5) poses two issues. First, because of the quadratic

complexity of the objective function over the number of samples n,

it is computationally expensive to generate many samples. Second,

since it involves optimizing all code vectors (c) together, for larger

n it is not possible to fit all in the GPU memory. In the next sec-

tion, we describe a much faster and less computationally demanding

approach to create the inverse set.

2.3. Sampling in feasible region

To sample the set S (eq. (5)) efficiently, we apply two approxima-

tions. First, we solve the problem in an inexact but good enough way.

The sum-of-all-pairs objective is not a strict necessity; it is really a

mechanism to ensure the diversity of the samples and coverage of

the inverse set. We observe that this is already achieved by stopping

the optimization algorithm once the samples enter the feasible set,

by which time they already are sufficiently separated.

Second, we create the samples incrementally, K samples at a

time (with K ≪ n). For the first K samples (which we call seeds

(C0)) we optimize eq. (5), initializing the code vectors (c) with ran-

dom values and stopping as soon as all K samples are in the feasible

region. These samples are then fixed. The next K samples are gen-

erated by the following equation:

argmax
c1,c2,··· ,cK

K∑

i,j=1

‖E(G(ci))−E(G(cj))‖
2

2
+

K∑

i=1

|C0|∑

y=1

‖E(G(ci))−E(G(cy))‖
2

2

s.t. z1 ≤ f(G(c1)), . . . , f(G(cK)) ≤ z2 and cy ∈ C0. (6)

The first part of the equation
∑K

i,j=1
‖E(G(ci))−E(G(cj))‖

2

2

is similar to that of eq. (5), forces the samples to be apart from

each other. On the other hand, the second part of the equation∑K

i=1

∑|C0|
y=1

‖E(G(ci))−E(G(cy))‖
2

2
makes sure that the gen-

erated samples are far apart from the previous ones. The constraints

keeps the generated samples in the feasible region.

Now to pick next K samples, we initialize them to the previous

K samples (C0) and take a single gradient step in the augmented La-

grangian optimization of eq. (6). This gives K new samples (G(ci))
which we fix, and the process is repeated until we generate the de-

sired n samples. Note that, here we are not trying to optimize any-

thing. We are using eq. (6) to take steps inside the feasible region. It

is like taking a random walk, but here we are taking steps inside the

feasible region in a way that the next step gives the samples which

are different from each other as well as from the ones we already

have. Another good part of this approach is that unlike the previous

sampling approaches, eq. (6) allows us to pick samples in parallel



neuron #664, [50,60] neuron #862, [50,60] Inverse set Intersection

Fig. 3. The sample images from left to right are from the inverse set of neuron 664 (monastery class), of neuron 862 (toilet seat class) and of

their intersection, all in the activation range [40,50]. Both neurons are from layer fc8 of CaffeNet.

which further increases the speed of sampling 1.

3. EXPERIMENTS

All previous works to understand the neural networks took CaffeNet

[20] a minor variant of AlexNet [23] as the main subject. So, we

also used a pre-trained CaffeNet [20] for our experiments, which had

been trained on ImageNet dataset [24]. We use Matcovnet [25] for

all our experiments. Using previous papers’ [17, 2], naming conven-

tion we will also call last three fully connected layers in CaffeNet

[20] as fc6, fc7, and fc8. fc8 is the last layer before softmax. In

all our experiments E is pre-trained CaffeNet [20]. However, the

network has been shortened to the fc6 layer which is the first fully

connected layer. The output of the E is a vector of size 4096. G is

a pre-trained generative network from [2] 2. G 3 has been trained to

generate images from a feature vector of size 4096 more specifically

output of fc6 layer of CaffeNet [20].

To do a fair comparison with [2], we pick the neuron 981 which

represents “Volcano” class. We run our algorithm for six times to

generate 500 samples to cover inverse set for this neuron correspond-

ing to different activation levels. Fig. 1 shows results of this exper-

iment. We pick 10 samples from generated 500 samples for each

[z1, z2]. Unlike the previous visualization approaches [2, 17, 18]

(second row of fig. 2 ), the generated samples are far more diverse

and rich in information. Our approach allows us to look at the sam-

ples which excite the neuron at different activation levels; this was

not possible before. In doing so, it uncovers samples which have

never been seen before. For instance, images which do not even

contain volcano, instead contain lava flowing through water, but still

excite the neuron.

Fig. 2 shows some of the samples generated by our algorithm for

a certain activation range with some other neurons and their compar-

ison with [2]. To do a fair comparison with [2], we generate samples

as it is described in the supplementary section of the paper [2]. We

run 10 sampling chains conditioned on various classes each for 200

steps, to produce 2000 samples for each class. We picked 1 sample

from each 200 steps to provide as much diversity as possible in the

samples. Second row shows the generated samples for neuron num-

ber 947 which represents “Cardoon” class for z2 = 50 and z1 = 40.

The generated samples not only have more diverse color distribu-

tion compared to the [2] (fig. 2 fourth row) but also show samples of

different shapes and sizes, that can only be seen in real-life images.

To further test whether our sampling truly generates diverse

samples or not, we pick a rather difficult class: “Toilet paper”, neu-

ron number 1000. The reason for the difficulty is as the realistic

1In most of our experiments K = 10 and n = 500. It took 85 gradient
step of eq. (6) to generate rest of the 490 (n − K) samples with K = 10

seeds. These are just a few extra gradient steps than the minimum required
49 gradient steps.

2https://github.com/Evolving-AI-Lab/ppgn
3The only reason we use same network as [2] is to do fair comparison of

diversity in the generated images. Proposed method is independent of G, so
it can be replaced with any state-of-the-art generative network.

looking samples cannot just differ by having a different color like

in the case of “Cardoon” class; they all should have the white color.

Sampling method should pick the samples which are of different

shape or quantity. The fifth row in fig. 2 shows our results. The

generated samples are very diverse; they not only show just a toilet

roll or toilet rolls hanged with a hanger but also show packed toilet

rolls. In fact, samples contain packages with different shapes, la-

bels, and even quantity. The first and ninth sample in the fifth row

of fig. 2 shows rolls packed in two packages but have altogether

different packaging labels, while the third sample shows toilet rolls

packed in 3 packages which also have different packaging label than

other two. Our sampling method was even able to pick samples such

that the number of toilet rolls is different, as shown in the second,

fourth and tenth sample. These type of samples can only be seen in

real-life images thus showing how perfectly our sampling method

covers the inverse set. On the other hand, samples generated by

using PPGN [2] (sixth row of fig. 2) mostly contain rolls which are

standalone or attached to a holder, clearly not much diverse. This

diversity also translates numerically, as shown in table 1. Our ap-

proach also allows us to visualize the intersection of multiple inverse

sets [26]. We show one such example in fig. 3.

4. DISCUSSION

Admittedly, the goal of understanding what a neuron in a deep neural

network may be representing is not a well defined problem. It may

well be that a neuron does represent a specific concept, but one which

is very difficult to grasp for a human; or that one should look at what

a group of neurons may be representing. That said, for some neurons

their preferred response does correlate well with intuitive concepts

or classes, such as the volcano or monastery examples we give. Our

approach is to characterize a neuron’s preference by a diverse set of

examples it likes, which is something that people sometimes do in

order to explain a subjective concept to each other. Also, it may be

possible to extract specific concepts from this set of examples using

data analysis techniques.

5. CONCLUSION

In conclusion, we propose a very simple, yet effective generalized

approach to understand the neurons in a deep neural network: an

approach that does not involve activation maximization or feature

inversion, but instead characterizes the region of input space around

different activation values of the neuron of interest. Thus overcom-

ing the shortcomings of current visualization approaches and pro-

viding a great deal of understanding what parts of an image are re-

sponsible for impacting the activation of a neuron. This eventually

helps us to have a much better understanding about the nature of a

neuron in deep neural networks. We also provide a simpler, faster,

and hyper-parameter free sampling method which generates far more

diverse samples than previously proposed methods. Our sampling

method also has more general applicability; just by modifying the

constraints, it can also be used for high dimensional sampling in

other domains.

https://github.com/Evolving-AI-Lab/ppgn
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