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1 Motivation and summary

• With the recent success of deep neural networks

in computer vision, it is important to understand

the internal working of these networks. What

does a given neuron represent? The concepts

captured by a neuron may be hard to under-

stand or express in simple terms.

• We solve this by characterizing the region of in-

put space that excites a given neuron to a cer-

tain level; we call this the inverse set.

• This inverse set is a complicated high dimen-

sional object that we explore by an optimization-

based sampling approach. Inspection of sam-

ples of this set by a human can reveal regulari-

ties that help to understand the neuron.

The inverse set of a neuron:

definition

• We say an input x is in the inverse set of a given

neuron having a real-valued activation function

f if it satisfies the following two properties:

z1 ≤ f (x) ≤ z2 x is a valid input (1)

where z1, z2 ∈ R are activation values of the

neuron.

• In general for deep neural networks we approx-

imate the inverse set with a sample that covers

it in a representative way.

2 Sampling the inverse set
of a neuron

• To create a sample x1, . . . , xn that covers the inverse set, we trans-

form eq. (1) into a constrained optimization problem:

arg max
x1,x2,··· ,xn

n
∑

i ,j=1

∥

∥xi − xj

∥

∥

2

2
s.t. z1 ≤ f (x1), . . . , f (xn) ≤ z2.

• The objective function ensures that the samples are different from

each other and satisfy eq. (1).

• It has two issues. The generated images are noisy and are very

sensitive to small changes in their pixels.

• To counter the first issue, we use generator network G to gener-

ate images from a code vector c. Next, for the second issue we

compute distances on a low-dimensional encoding E(G(c)) of the

generated images constructed by an encoder E. This gives us

our final formulation for generating n samples.

arg max
c1,c2,··· ,cn

n
∑

i ,j=1

∥

∥E(G(ci))− E(G(cj))
∥

∥

2

2

s.t. z1 ≤ f (G(c1)), . . . , f (G(cn)) ≤ z2.

• It is computationally expensive to generate many samples due to

the quadratic complexity of the objective function over the number

of samples n. We use the following two approximations to make it

faster.

− We stop the optimization algorithm once the samples enter the

feasible set, as, by that time, the samples are already separated.

− We create the samples incrementally, K samples at a time (with

K ≪ n). We optimize the objective function for the first K sam-

ples, initializing the code vectors c with random values. These

samples are then fixed. The next K samples use the objective

plus their distances to the previous K samples. We initialize

them with the previous K samples and take a single gradient

step in the feasible region. The resultant samples are the new

K samples.

3 Experiments

Six inverse sets with different activation range for the neuron #

981 in fc8 layer of the CaffeNet, which represents volcano class.

Both the first and last row have volcanoes, but lava and smoke

create a huge difference in the activation value of the neuron. The

activation value of the neuron is proportional to the amount of lava

and smoke.
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Sampling the intersection of two inverse sets. The sample images

from left to right are from the inverse set of neuron # 664 (class

monastery), of neuron # 862 (class toilet seat), and of their inter-

section, all in the activation range [50,60]. Both neurons are from

layer fc8 of CaffeNet.

neuron #664, [50,60] neuron #862, [50,60] Inverse set Intersection


