
BEYOND FLOPS IN LOW-RANK COMPRESSION OF NEURAL NETWORKS:
OPTIMIZING DEVICE-SPECIFIC INFERENCE RUNTIME

Yerlan Idelbayev Miguel Á. Carreira-Perpiñán

Department of Computer Science and Engineering, University of California, Merced
{yidelbayev, mcarreira-perpinan}@ucmerced.edu

http://eecs.ucmerced.edu

ABSTRACT

Neural network compression has become an important practical step

when deploying trained models. We consider the problem of low-

rank compression of the neural networks with the goal of optimizing

the measured inference time. Given a neural network and a target de-

vice to run it, we want to find the matrix ranks and the weight values

of the compressed model so that network runs as fast as possible on

the device while having best task performance (e.g., classification

accuracy). This is a hard optimization problem involving weights,

ranks, and device constraints. To tackle this problem, we first im-

plement a simple yet accurate model of the on-device runtime that

requires only a few measurements. Then we give a suitable formu-

lation of the optimization problem involving the proposed runtime

model and solve it using alternating optimization. We validate our

approach on various neural networks and show that by using our esti-

mated runtime model we achieve better task performance compared

to FLOPs based methods for the same runtime budget on the actual

device.

Index Terms— inference-targeted compression, device-targeted

compression, low-rank compression, rank selection, neural network

compression

1. INTRODUCTION

The state-of-the-art neural network solutions to many computer vi-

sion and machine learning problems have prompted a widespread

deployment of these models on small, close-to-user devices like

phones, smartwatches, and other IoT devices. With modern sizes

and computational demands of the neural networks (having millions

of weights and requiring GFLOPs of compute), the deployment

onto an IoT device poses a question of model compression: how to

efficiently compress a large network to a small device so that it fits

into the underlying hardware/quality-of-service constraints and yet

performs as good as possible.

Often, an important target of compression is on-device infer-

ence time: for many tasks (e.g., real-time audio/video enhancement),

a too high inference time is unacceptable. Different compression

schemes have been proposed to address the inference time speed-

up; however, most of the works handle it indirectly through a proxy

optimization target: the total number of floating-point operations

(FLOPs). While a smaller FLOPs count is indicative of a faster in-

ference time, there is no one-to-one correspondence between these

quantities. For example, on our testbed, the 727 MFLOPs version

of the AlexNet (trained on ImageNet) runs a single image inference

in 328 ms. In comparison, the CIFAR10 version of VGG16 has 314

We thank NVIDIA Corporation for several GPU donations.

MFLOPs, which is 2.32× fewer than AlexNet; yet, it runs 6.07×
faster (54 ms) illustrating that on-device runtime does not only de-

pend on the total FLOPs. Indeed, the inference runtime is the func-

tion of the neural network’s overall structure and the hardware char-

acteristics (e.g., frequency of CPU/GPU, size of the cache, memory

speed), and it cannot be extrapolated from a single FLOPs-count

number.

We consider the problem of inference-targeted compression of a

neural network for a given device and adopt the low-rank compres-

sion as our method of choice. While such a scheme has a history

of usage for network compression problems to reduce FLOPs and

size of the networks (see sec. 1.1), we show that it can be effectively

used to directly target the on-device inference time of compressed

models due to the following. First, as we discuss in section 2, the

low-rank scheme gives rise to a simple yet accurate device-runtime

model that can be used to a precise estimation of the actual inference

time of the compressed model. Second, the computational reduc-

tions of low-rank compression are realizable without specific hard-

ware support (unlike, for instance, elementwise pruning [1]): if the

layer with weights W is compressed with r-rank matrix UV
T, then

forward pass of Wx through that layer can be implemented as a

forward pass through a sequence of layers with weights VT and U.

The problem we are solving is challenging: we need to find the

best configuration of ranks (one rank per layer, integer values) and

corresponding low-rank weights (floating-point values) so that net-

work has the fastest on-device inference time while maintaining its

original task performance. Assuming we have K layers with M pos-

sible ranks per layer, the problem involves selection over the set of

MK distinct rank configurations. However, as we show in section 3,

a suitable formulation of this problem using the proposed device-

runtime model admits an efficient algorithm involving alternation of

simple steps: a step over weights of the neural networks (solved by

stochastic gradient descent, SGD) and a step over the rank config-

urations (solved by enumeration). In section 4 we experimentally

validate our approach’s effectiveness by compressing the AlexNet

and VGG16 to have fast inference time on the ARM Cortex-A57

CPU of the NVIDIA’s Jetson Nano embedded computing platform.

In the remainder of this section, we give a brief overview of

related work (sec. 1.1), and discuss the application of low-rank to

the convolutional layers (sec. 1.2).

1.1. Related work

The low-rank methods have been long used for the purposes of com-

pression and speeding-up the inference of neural networks. The prior

methods [2–7] did not include the rank selection into the optimiza-

tion problem and rather relied on setting the ranks upfront by various

heuristics (e.g., select a certain portion of rank per layer, or thresh-



CPU Quad-core ARM Cortex-A57, 1.4 GHz

GPU 128 CUDA cores at 0.9 GHz

RAM 4 GB 64-bit LPDDR4, 1.6 GHz

OS Ubuntu 18.04.5 LTS

Kernel GNU/Linux 4.9.140-tegra

Storage 128 GB microSDXC memory card

Software PyTorch v1.6.0, ONNXRuntime v1.4.0

Table 1. Specifications of NVIDIA’s Jetson Nano Developer kit used

as our target testbed. While it has a built-in GPU, we used the CPU

inference time (parallelized on two threads) as our compression goal.

old using a cumulative sum of singular values) and then optimize the

low-rank weights using SGD. The results of low-rank compression

can be drastically improved if the rank selection is included in the

optimization by means of regularization [8, 9] or pruning constraints

on the ranks [10, 11]. Along with the low-rank methods, the usage

of tensor decompositions has been studied as well [12, 13].

Several works use the resulting number of FLOPs as an opti-

mization criterion when optimizing over the ranks [9, 10, 14, 15].

However, we are not aware of any methods that directly optimize

the on-device inference speed.

1.2. Low-rank compression of convolutional layers

When an m × n matrix W is compressed via an r-rank matrix,

it can be written as W = UV
T where matrices U and V are of

dimensions m×r and n×r. Such transformation is easily applicable

to the fully connected layers, however, the weights of convolutional

layers come as 4D tensors: for example, with NCWH format (as

in PyTorch) the weights are stored as a tensor of dimension n ×
c × d × d. Here, n is the number of convolutional filters, c is the

number of input image channels, and d × d is the spatial resolution

of the filter. To apply the low-rank compression, this tensor must be

reshaped into a matrix. Several reshapes have been studied in the

literature: the scheme 1 [5, 16] reshapes the tensor into a matrix of

nd2 × c, the scheme 2 [4, 9, 11] reshapes the tensor into a matrix of

nd × cd. The advantage of these particular reshaping schemes lies

in the implementation of low-rank convolution: both schemes can

be implemented as a sequence of smaller convolutional layers (with

appropriate shapes).

2. DEVICE RUNTIME MODEL

Assume we are given a neural network with K layers and the weights

W = {W1,W2, . . . ,WK} where Wk is a weight matrix (or ten-

sor) of the kth layer. The weights W implicitly define a computa-

tional graph for an inference pass through the network. When we

execute this graph on the given hardware, we can measure the infer-

ence time. Throughout this paper, we define the inference time as

the total time required to complete a forward pass of a single image

through the computational graph, and call itR(W).
In our model, we assume that the total inference time R(W) is

the sum of the inference times through each of the K layers since

layers have to be processed sequentially:

R(W) = R1(W1) +R2(W2) + · · ·+RK(WK). (1)

Here, each of the Rk(Wk) measures the total inference time

through a layer k: this involves the time to load the weights and

the inputs, actual computation time, and time to unload the output.

R7(r) measurements for AlexNet True vs. modeled inference time

0 200 400 600 800 1000
0

2

4

6

8

measurements

regression

ti
m

e,
m

s

r, rank
100 150 200 250 300 350

100

150

200

250

300

350

m
o
d
el

ed
ti

m
e,

m
s

on-device time, ms

Fig. 1. Left: Measurements and regression fit to model the inference

time as a function of rank for the 7th layer of AlexNet. Right: Plot

of the actual, on device inference time for 100 randomly sampled

low-rank configurations of AlexNet vs. the predictions of our model

R(r). On these samples, the mean average error was 3.03 ms.

In reality, the right hand side of eq. (1) is an upper bound to the total

runtime R(W): when the computational graph is executed opti-

mally, some weights and inputs can be prefetched and layer-to-layer

computations can be pipelined, thus, finishing earlier than the sum

of separate inferences through each layer.

When we compress the network using the low-rank decompo-

sition, the kth layer is compressed by an rk-rank matrix, and the

forward pass through the layer can be implemented as a sequence of

fully-connected or convolutional layers (sec. 1.2). Since the compu-

tational graph is defined by the shape of the weight matrices, and not

by the weight values, we conclude that the inference time through a

layer k is a function of the rank, and our model simplifies as:

R(W) = R(r) = R1(r1) +R2(r2) + · · ·+RK(rK). (2)

We make several observations. First, due to a small number of

possible ranks per layer, we can directly measure the value ofRk(r)
on the device. Essentially,Rk(r) is a lookup table with a single mea-

surement for each r. Second, the proposed model is computation-

ally efficient and avoids a combinatorial number of measurements.

Assuming there are M possible ranks per layer (rk = 1, . . . ,M ),

rather than making MK measurements for all possible rank config-

uration we only need MK on-device measurement in total.

Even though we need to consider M ranks per layer, collecting

the inference times might be time consuming and impractical. Par-

ticularly, the measurements need to be repeated many times to reduce

the noise, however, too many measurements at a time might induce

the thermal throttling1 of the target device which adds inconsisten-

cies to the model, and measurements need to be taken at intermittent

intervals.

Due to the aforementioned considerations, in the actual imple-

mentation of the proposed model we collected the low-rank infer-

ence measurements at certain rank intervals and then fit a regression

curve. To make the measurements, we use highly-optimized imple-

mentation of forward pass through ONNX runtime. When we used

the CPU of Jetson Nano Developer board as our target device (see

Table 1), we noticed that measurements within each layer follow a

line trend except for some outliers (which are presumably caused by

noise). Therefore, we computed an ℓ1-fit and used the fitted lines as

our Rk functions, see left of Fig. 1. In our experiments, we found

that ℓ1-fitted regression can model rank-dependent device runtime

pretty accurately across all layers.

1https://en.wikipedia.org/wiki/CPU_throttling



How good is our model? To answer this question, we sampled

random rank configurations for the AlexNet architecture by choosing

each layer’s rank uniformly (out of possible ones) and measured the

true inference speeds of the sampled architectures. On the right of

Fig. 1 we compare true inference times to the modeled inference

times. As we can see, the difference between our model and the true

inference time is minuscule: the average difference on the sampled

low-rank architectures was 3.03 milliseconds.

3. RUNTIME-TARGETED LOW-RANK COMPRESSION

Having developed the device runtime model R(r) for a given K-

layer network with weights W = {W1, . . . ,WK}, now we give

a low-rank compression formulation that targets the inference time

on the given device. We denote the network’s task loss (e.g., cross-

entropy) as L and define the following optimization problem of

min
W,r
L(W) + λR(r) s.t. rank (Wk) = rk, k = 1 . . .K, (3)

where the term λR(r) with user-chosen λ > 0 controls the amount

of desired reduction of the inference time.

The problem given by eq. (3) is a mixed-integer optimization

involving the floating-point weights of the neural network and the

integer rank values. Typically, even the neural network part on its

own (without the rank constraints) requires many iterations over the

training dataset to be properly optimized (with SGD), and combi-

nation with rank constraints makes it truly challenging. Fortunately,

this formulation falls into the category of model compression as con-

strained optimization problems [17] and admits an efficient solution

based on the Learning-Compression (LC) algorithm [9, 14, 15, 18].

To derive the LC algorithm corresponding to our formulation, let

us equivalently rewrite the constraints by introducing the auxiliary

variables Θk for each k = 1, . . . ,K as

rank (Wk) = rk ⇐⇒ Wk = Θk, rank (Θk) = rk,

and then apply penalty method [19, ch.17] to the matrix terms (i.e.,

Wk = Θk) while driving µ→∞ (norms are Frobenius):

min
W,Θ,r

L(W) +
µ

2

K∑

k=1

‖Wk −Θk‖
2 + λR(r)

s.t. rank (Θk) = rk, k = 1, . . . ,K.

(4)

We use the quadratic penalty to simplify the derivations; however,

in practice, we use the augmented Lagrangian method, which has an

additional step over the vector of Lagrange multipliers. If we apply

alternating optimization over variables W and {Θ, r} we obtain the

substeps that can be efficiently handled:

• Learning (L) step. The step over W has the form of:

min
W

L(W) +
µ

2

K∑

k=1

‖Wk −Θk‖
2
.

• Compression (C) step: The step over Θ and r separates into

K smaller substeps due to the form ofR (eq. 2):

min
Θk,rk

µ

2
‖Wk −Θk‖

2 + λRk(rk) s.t. rank (Θk) = rk.

Algorithm 1 LC algorithm to jointly learn weights and ranks when

applying the low-rank compression to on-device inference speed.

input K-layer neural net with weights W = {W1, . . . ,WK},
hyperparameter λ, device runtime modelR.

W = (W1, . . . ,WK)← argmin
W
L(W) reference net

r = (r1, . . . , rK)← 0 ranks
Θ = (Θ1, . . . ,ΘK)← 0 auxillary variables
for µ = µ1 < µ2 < · · · < µT

W← argmin
W

L(W) +
µ

2

K∑

k=1

‖Wk −Θk‖
2

L step

for k = 1, . . . ,K C step

Θk, rk ← argmin
Θk,rk

µ

2
‖Θk −Wk‖

2 + λRk(rk)

if ‖W −Θ‖ is small enough then exit the loop

return W,Θ, r

3.1. Solutions of L and C steps

The L-step problem is a standard neural network training (learning)

with added ℓ2 regularization. We solve it using SGD. The C-step

problem can be interpreted as finding best low-rank approximation

(compression) to the matrix Wk in the presence of a cost function

over the ranks. The solution of this problem was given in [9] and

requires computing a singular value decomposition of Wk followed

by enumeration. For completeness, below we give its full solution.

Assuming Wk is ak × bk matrix (w.l.o.g. ak ≥ bk) let Wk =
UkSkV

T
k be the SVD of Wk, where Uk of ak × bk and Vk of

bk × bk are orthogonal matrices, and Sk = diag (s1, . . . , sbk ) with

s1 ≥ · · · ≥ sbk ≥ 0 is a matrix of sorted singular values. Then

C-step problem is equivalent to:

min
rk

λRk(rk) +
µ

2

Rk∑

i=rk+1

s
2
ki s.t. rk ∈ {0, 1, . . . , Rk} (5)

which can be solved by trying all Rk + 1 values of rk. Therefore,

the C step is solved exactly by 1) computing the full SVD of Wk 2)

finding the optimal rk minimizing eq. (5) using enumeration, and 3)

forming Θk = Uk(:, 1 : rk)Sk(1 : rk, 1 : rk)V(:, 1 : rk)
T based

on the top rk singular values and corresponding singular vectors.

Overall, the LC algorithm alternates between L and C steps

while driving µ → ∞. The L step finds (locally) optimal weights

W that are close to the current selection of the low-rank matrices

(Θ) with the rank configuration r. The C step finds the best config-

uration of the ranks and the optimal numeric values of the low-rank

matrices that approximate the current weights W. Once µ is suffi-

ciently large, neural network weights W and its compressed form

Θ will reach equality by satisfying Wk = Θk.

4. EXPERIMENTS

We demonstrate the effectiveness of our approach by compressing

batch normalized versions of AlexNet (trained on ImageNet) and

VGG16 (trained on CIFAR10) networks. We initialize the algo-

rithm from the reasonably well-trained reference models. Our ref-

erence AlexNet has 62.3M parameters, 1140 MFLOPs, and the top-

1/top-5 validation error of 40.43%/17.55%. We did not use group

convolutions in our reference version of AlexNet, therefore it has

a slightly larger FLOPs count of 1140 MFLOPs, whereas standard

(Caffe-version) has 727 MFLOPs [20, 21]. The reference CIFAR10



Low-rank compression of AlexNet (ImageNet)

60 80 100 120

39

39.5

40

40.5

41

inference time, ms

to
p
-1

v
al

id
at

io
n

er
ro

r,
%

our method

FLOPs-based [9]

R=378 ms

227 MFLOPs

290 MFLOPs

Low-rank compression of VGG16 (CIFAR10)

8 10 12 14 16 18

6.4

6.6

6.8

7

7.2

inference time, ms

our method

FLOPs-based [9]

te
st

er
ro

r,
%

55 MFLOPs

57 MFLOPs
R=54 ms

Fig. 2. Inference speed vs. error plot for our (blue) compressed

AlexNet (top) and VGG16 models (bottom); for both networks, we

additionally compare to the FLOPs based low-rank compression of

[9] (given with red). The test errors and inference times of the refer-

ence models are indicated by horizontal dashed line labeled as R.

VGG16 model has 15.3M parameters, 313.73 MFLOPs, and a test

error of 6.46%.

As our target device we use the ARM Cortex-A57 CPU of the

NVIDIA’s Jetson Nano; full specifications are available in Table 1.

Single image inference times on this CPU (using two threads) are

378.45 ms for AlexNet and 53.99 ms for VGG16. For each network

we build the runtime model as specified in sec. 2. The weights of the

convolutional layers are reshaped using the scheme 2 (sec. 1.2).

We run our LC algorithm for T steps with an exponential sched-

ule on µ with µt = a × bt at the tth step: for AlexNet we set

T = 30, a = 10−4 and b = 1.2; for VGG16: T = 60, a = 10−5

and b = 1.2. Each L step was trained with stochastic gradient de-

scent using the following settings: for AlexNet we used the learning

rate of 0.001 (decayed by 0.9 after each epoch) with the momentum

of 0.9 on minibatches of 256 images; for VGG16 we used the learn-

ing rate of 7×10−4 (decayed by 0.99 after each epoch) with the mo-

mentum of 0.9 on minibatches of size 128 images. Each L step used

a predetermined number of epochs (i.e., full passes over the dataset):

5 epochs for AlexNet and 20 epochs for VGG16. Once the algorithm

finished, we finetuned the decomposed weights for a small number

of epochs (AlexNet: 30 epochs, VGG16: 100 epochs). Overall, the

entire compression pipelines requires not more than 2.5× the time

required to train the reference networks in the first place.

Model MFLOPs Infr. time top-1 err top-5 err

reference (R) 1140 378.5 ms 40.43% 17.55%

Caffe-AlexNet [20, 21] 727 328.7 ms 42.90% 19.80%

λ = 5.0× 10−3 421 104.1 ms 38.88% 16.83%

λ = 1.0× 10−2 290 69.2 ms 39.12% 17.03%

o
u
rs

λ = 2.0× 10−2 186 42.0 ms 40.34% 17.64%

low-rank AlexNet [9] 227 83.6 ms 39.61% 17.40%

low-rank AlexNet [9] 166 50.2 ms 40.46% 17.71%

ENC-AlexNet [22] 272 93.3 ms 43.40% 19.93%

SqueezeNet 1.1 [23] 352 63.8 ms 42.90% 19.70%

Table 2. Details of selected low-rank AlexNets obtained with

our algorithm, and comparison to some of the available low-rank

AlexNets in the literature. We additionally include a comparison to

the SqueezeNet [23] that has similar accuracy to the AlexNet but

was manually designed to be small and fast. All reported runtime

measurements are performed on our testbed: CPU of Jetson Nano.

To explore the error-compression tradeoff, we run our compres-

sion with various values of λ. We report our results in Fig. 2 as

inference time vs. validation error over the range of the obtained

networks. To put our result in perspective, we additionally plot the

results of FLOPs guided low-rank compression of [9].

For both networks, we achieve lower test error for the same in-

ference speed when compared to the results of FLOPs guided low-

rank compression. Notably, with λ = 1×10−2 we obtain a low-rank

AlexNet model that has the validation error of 39.12% and requires

only 69.2 ms to complete its inference pass on our target device.

This results in a speed-up of 5.47× wrt reference model and 4.74×
wrt Caffe-AlexNet while having 1.5% improvement in the test error

wrt reference. The FLOPs count of this particular network is not

that small: it requires 290 MFLOPs of compute; and compressed

AlexNets with fewer FLOPs are available in the literature (see Ta-

ble 2). However, the architecture of our compressed network was di-

rectly optimized to run as fast as possible on the target device, there-

fore, even with 290 MFLOPs it runs faster than the 227 MFLOPs

low-rank AlexNet of [9] and the 272 MFLOPs low-rank AlexNet of

[22], while additionally having a better accuracy.

We see a similar pattern for VGG16 results. For instance, with

λ = 1.4×10−2 our algorithm achieves a network that requires only

12.26 ms of CPU time (4.40× faster) while having a test error of

6.38%. This network has a total of 57.3 MFLOPs, yet, it runs faster

than 55.3 MFLOPs low-rank VGG16 of [9]: 12.26ms vs. 12.33ms.

5. CONCLUSION

We have presented a method that allows targeting on-device infer-

ence time when compressing the neural networks with the low-rank

decomposition. The technique consists of two parts. First, it re-

lies on a simple yet accurate device runtime model that can be au-

tomatically obtained with a few measurements using the target de-

vice. Second, it formulates a well-defined optimization problem

and optimizes it using the Learning-Compression algorithm. We

experimentally validate that targeting the on-device inference time

yields faster networks than the methods that optimize the total count

of floating-point operations (FLOPs). We will release all neces-

sary code and scripts to replicate our experiments as part of the

Learning-Compression toolbox [24] at https://github.com/

UCMerced-ML/LC-model-compression.



6. REFERENCES

[1] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram,

Mark A. Horowitz, and William J. Dally, “EIE: Efficient in-

ference engine on compressed deep neural network,” in Proc.

43rd Int. Symposium on Computer Architecture (ISCA 2016),

Seoul, Korea, June 18–22 2016, pp. 243–254.

[2] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman,

“Speeding up convolutional neural networks with low rank ex-

pansions,” in Proc. of the 25th British Machine Vision Confer-

ence (BMVC 2014), Nottingham, UK, Sept. 1–5 2014.

[3] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann Le-

Cun, and Rob Fergus, “Exploiting linear structure within con-

volutional networks for efficient evaluation,” in Advances in

Neural Information Processing Systems (NIPS), 2014, vol. 27,

pp. 1269–1277, MIT Press, Cambridge, MA.

[4] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, and Weinan

E, “Convolutional neural networks with low-rank regulariza-

tion,” in Proc. of the 4th Int. Conf. Learning Representations

(ICLR 2016), San Juan, Puerto Rico, May 2–4 2016.

[5] Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran Chen,

and Hai Li, “Coordinating filters for faster deep neural net-

works,” in Proc. 16th Int. Conf. Computer Vision (ICCV’17),

Venice, Italy, Dec. 11–18 2017.

[6] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun, “Ac-

celerating very deep convolutional networks for classification

and detection,” IEEE Trans. Pattern Analysis and Machine In-

telligence, vol. 38, no. 10, pp. 1943–1955, Oct. 2016.

[7] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi,

Lu Yang, and Dongjun Shin, “Compression of deep convolu-

tional neural networks for fast and low power mobile applica-

tions,” in Proc. of the 4th Int. Conf. Learning Representations

(ICLR 2016), San Juan, Puerto Rico, May 2–4 2016.

[8] Jose M. Alvarez and Mathieu Salzmann, “Compression-aware

training of deep networks,” in Advances in Neural Information

Processing Systems (NIPS), 2017, vol. 30, pp. 856–867, MIT

Press, Cambridge, MA.

[9] Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán, “Low-

rank compression of neural nets: Learning the rank of each

layer,” in Proc. of the 2020 IEEE Computer Society Conf. Com-

puter Vision and Pattern Recognition (CVPR’20), Seattle, WA,

June 14–19 2020, pp. 8046–8056.

[10] Chong Li and C. J. Richard Shi, “Constrained optimization

based low-rank approximation of deep neural networks,” in

Proc. 15th European Conf. Computer Vision (ECCV’18), Mu-

nich, Germany, Sept. 8–14 2018, pp. 746–761.

[11] Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang,

Yingyong Qi, Yiran Chen, Weiyao Lin, and Hongkai Xiong,

“TRP: Trained rank pruning for efficient deep neural net-

works,” in Proc. of the 29th Int. Joint Conf. Artificial Intel-

ligence (IJCAI’20), Yokohama, Japan, Jan. 21–15 2020, pp.

977–983.

[12] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-

eledets, and Victor Lempitsky, “Speeding-up convolutional

neural networks using fine-tuned CP-decomposition,” in Proc.

of the 3rd Int. Conf. Learning Representations (ICLR 2015),

San Diego, CA, May 7–9 2015.

[13] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and

Dmitry P. Vetrov, “Tensorizing neural networks,” in Ad-

vances in Neural Information Processing Systems (NIPS),

2015, vol. 28, pp. 442–450, MIT Press, Cambridge, MA.

[14] Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán, “Neural

network compression via additive combination of reshaped,

low-rank matrices,” in Proc. Data Compression Conference

(DCC 2021), Mar. 23–26 2021, pp. 243–252.

[15] Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán, “Optimal

selection of matrix shape and decomposition scheme for neural

network compression,” in Proc. of the IEEE Int. Conf. Acous-

tics, Speech and Sig. Proc. (ICASSP’21), Toronto, Canada,

June 6–11 2021.

[16] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio

Ranzato, and Nando de Freitas, “Predicting parameters in deep

learning,” in Advances in Neural Information Processing Sys-

tems (NIPS), 2013, vol. 26, pp. 2148–2156, MIT Press, Cam-

bridge, MA.

[17] Miguel Á. Carreira-Perpiñán, “Model compression as con-

strained optimization, with application to neural nets. Part I:

General framework,” arXiv:1707.01209, July 5 2017.

[18] Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev,

““Learning-compression” algorithms for neural net prun-

ing,” in Proc. of the 2018 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition (CVPR’18), Salt

Lake City, UT, June 18–22 2018, pp. 8532–8541.

[19] Jorge Nocedal and Stephen J. Wright, Numerical Optimiza-

tion, Springer Series in Operations Research and Financial En-

gineering. Springer-Verlag, New York, second edition, 2006.

[20] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,

Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor

Darrell, “Caffe: Convolutional architecture for fast feature em-

bedding,” arXiv:1408.5093, June 20 2014.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, “Ima-

geNet classification with deep convolutional neural networks,”

in Advances in Neural Information Processing Systems (NIPS),

2012, vol. 25, pp. 1106–1114, MIT Press, Cambridge, MA.

[22] Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min

Kyung, “Efficient neural network compression,” in Proc. of

the 2019 IEEE Computer Society Conf. Computer Vision and

Pattern Recognition (CVPR’19), Long Beach, CA, June 16–20

2019, pp. 12569–12577.

[23] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid

Ashraf, William J. Dally, and Kurt Keutzer, “SqueezeNet:

AlexNet-level accuracy with 50times fewer parameters and

<0.5MB model size,” arXiv:1602.07360, Nov. 4 2016.

[24] Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán, “A flexible,

extensible software framework for model compression based

on the LC algorithm,” arXiv:2005.07786, May 15 2020.


