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Introduction

m Ensembles of decision trees (= forests) have found numerous
applications in image processing and computer vision [2].

m They posses multiple advantages, such as strong
generalization property, scalability to large data and fast
inference time.

m Some examples of forests:

m Random forests train each tree independently on a different
data sample and on a different subset of features.

m Boosted Trees sequentially train trees on reweighted versions of
the data.

We focus on boosted decision trees for multiclass classification
problems.



Overview

m Most of the papers on boosting and implementations of them
use trees that are:

m Axis-aligned (i.e. it uses a single feature at a decision node)
m Trained with greedy recursive partitioning
m However, axis-aligned trees are not very suitable for many
problems, especially for the ones with correlated features
(e.g. pixels of an image).
m Greedy top-down induction produces suboptimal trees [3].

m Because of these, boosting algorithms usually need to induce
K (= number of classes) such trees at each boosting step,
which adds an extra overhead.

m And, to find a suitable splitting criterion for specific objective

functions (as is the case with many boosting algorithms) is
not straightforward with these greedy algorithms.



Our idea

m We propose the following to address these issues:
m to use oblique decision trees (i.e. trees with hyperplane splits
at decision nodes)
m to use a non-greedy optimization algorithm to learn such trees
m We adapt the recently proposed algorithm for learning classifi-
cation/regression trees, Tree Alternating Optimization (TAO)
[1, 8], for a specific boosting framework and empirically evalu-
ate its performance on image classification datasets.

m By monotonically decreasing an objective function over a tree
with predetermined structure, TAO finds better approximate
optima, and is quite flexible for the choices of objective function
and the types of tree (axis-aligned, oblique, etc.).



Boosting algorithm: AdaBoost.MH

m In this work, we focus on AdaBoost.MH [6]:

m One of the extensions of the original AdaBoost for
multiclass/multilabel problems.

m Has been empirically observed to be more dominant extensions
of AdaBoost in terms of accuracy [9)].

m Previous implementations of AdaBoost.MH used K trees at
each boosting step similar to the one-vs-all strategy. In this
work, instead, we use a single oblique tree at each step trained
with TAO.

m The base learner in AdaBoost.MH must output a K dimen-
sional vector.



AdaBoost.MH pseudocode

Algorithm 1: AdaBoost.MH with TAO trees

input training set {(x,,yn)}2_;; number of trees T;
. . 1 1 N.K .
initial weights {wmk = oN> Wn,K\k = m}nzl,kzp

fort=1 toT do
T; < train a TAO tree;
obtain predictions: {,}_; + Ti({xn}2_1);
c%lculate the loss:
L= Zfzvzl Zszl W,k - eXp(_yn,k . @n,k)
exp(=Yn.k-In.k)
L

update the weights: wy, j < wy, i
forn=1,...,Nand k=1,... . K

end

return Final classifier: F(x) = Zle Ty (x)




Objective function of the base learner

A loss per point of the base learner’s objective function:

K

L(Wna Yn, T(xn)) = Z W,k exp(_yn,k : Tk(xn)) (1)
k=1

m T(-) is a base learner, in our case it is an oblique decision tree
with constant leaf vectors.

m {(xn,yn) Y, is a training set with weights {wmk}gi{k:l
maintained by the boosting algorithm.



Optimizing a single tree with TAO for AdaBoost.MH

Given a tree structure T (e.g. a complete tree of depth A),
TAO considers the following optimization problem over the tree

parameters:
N
E(©)=> L(Wn,yn. T(xn)) +a > i(6;)
n=1 ieN

m N is the set of all nodes
m O = {0;};cn is a set of parameters of all tree nodes

m ¢; is a regularization term (e.g. {1 norm), which penalizes the
parameters 8; of each node.



Optimizing a single tree with TAO: separability of nodes

Separability condition

Consider any pair of nodes ¢ and j. Assume the parameters of
all other nodes (®,est) are fixed. If nodes i and j are not
descendants of each other, then E(®) can be rewritten as:

E(©) = E;i(0;) + Ej(0,;) + Exest(Orest)

In other words, the separability condition states that any set of
non-descendant nodes of a tree can be optimized independently.



TAO tree for AdaBoost.MH: leaves

Optimization of a leaf

If 7 is a constant leaf vector, then there is a closed form solution
of E(-) over its constant output vector y* [6]:

+
wy €

yr, = 0.5 - log Jfor k=1,... K (2)

w, +€

where (considering points n that reach the leaf 7):
u w]j is the sum of the weights for which ¥, ; =1
m w,, is the sum of the weights for which y,, , = —1

m A small number ¢ is added for numerical stability.



TAO tree for AdaBoost.MH: decision nodes

Optimization of a decision node

If 7 is a decision node, the optimization of E(@®) over 6; reduces
to the following weighted binary classification problem:

Héin z Vnz(ynv fi(xn§ 0;, bl)) + a¢i (91) (3)
" neR;

m L is the 0/1 misclassification loss

m g, € {right,left} is a “pseudolabel” indicating the child which
gives a lower value of E for input x,, under the current tree

m f; € {right,left} is a linear thresholding function which sends
the instance x, to the corresponding child of ¢

u vy, = ‘L(Wny}’nu Tleft(xn)) - L(WnaYna Tright(xn))‘ is the
absolute difference of losses incurred of sending x,, to the
right or left child



Pseudocode for training a TAO tree

Algorithm 2: Learning a base classifier (tree) with TAO

input training set {(x,,yn)}2_1;
initial tree T'(-; ®) of depth A;
Boosting weights {wn,k}ﬁgf,k:l;
repeat
for depth d =0 to A do
for i € nodes at depth d do
if i is a leaf then
| yi < fit a constant classifier at a leaf eq. (2);
else
| 0; « fit a weighted binary classifier (eq. (3));
end
end

end
until convergence occurs or mazx iteration;
return trained tree T




Experiments: standard benchmarks and algorithms

MH-TAO: AdaBoost.MH with TAO trees
MH-CART: AdaBoost.MH with CART trees
See the paper for extended results, additional datasets, etc.

| Forest Fliest T A | Forest Fliest T A
SAMME 2.96+0.05 1k 30 XGBoost 4.30+0.00 2.6k 10
RF 2.84+0.06 1k 48 RF 3.77+0.06 100 34
sNDF [4] 2.80+0.12 &80 10 ADF [7] 3.52+0.12 100 25
MH-CART, 2.73£0.00 200 7 RF 3.444+0.09 1k 36
&| ADF [7] 2.71+0.10 100 25 g|XGBoost 3.35+£0.00 26k 6
L XGBoost 2.67+£0.00 1k 8 L|rRF[5) 2.984+0.15 100 25
é SAMME 2.2840.02 1k 16 S|sNDF [4] 2.924+0.17 70 10

rRF’I] 2.056+£0.02 100 25 SAMME 2.83£0.15 100 16
AO 1.96+0.06 20 8 SAMME 2.58+0.09 1k 16
XGBoost 1.94+0.03 10k 8 MH-CART | 2.53+£0.00 500 9
MH-TAO 1.92+0.07 30 8 MH-TAO l 2.00£0.06 30 11
MH-TAO 1.72£0.08 100 8 MH-TAO 1.65+£0.05 100 11

Boosted TAO trees are smaller (fewer and shallower trees) yet consis-
tently more accurate.



Comparison with other forests

Letter MNIST

Etest (%)

MH-TAO MH-TAO
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Figure: Comparison of different forest-based models on Letter and
MNIST datasets as a function of the number of boosting iterations.
MH-TAO and MH-CART refers to AdaBoost.MH with the
corresponding base learners.



Conclusion

m Directly and non-greedily optimizing the base learner’s objec-
tive function in AdaBoost.MH with TAO significantly improves
the performance of the ensemble.

m Boosted TAO trees outperform all competing algorithms we
tested in terms of accuracy.

m The TAO forests are small in terms of model size: number of
trees, total number of parameters, depth.

m The design in terms of hyperparameter tuning remains as sim-
ple as the original boosting: we choose the tree depth and
number of trees as large as computationally possible, but with-
out overfitting.

m This makes our TAO forests a model of immediate, widespread
practical applicability and impact



M. A. Carreira-Perpifid4n and P. Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems (NEURIPS), volume 31, pages 1211-1221. MIT Press, Cambridge, MA,
2018.

A. Criminisi and J. Shotton. Decision Forests for Computer Vision and Medical Image
Analysis. Advances in Computer Vision and Pattern Recognition. Springer-Verlag, 2013.

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning—Data Mining, Inference and Prediction. Springer Series in Statistics.
Springer-Verlag, second edition, 2009.

P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulé. Deep neural decision forests.
In Proc. 15th Int. Conf. Computer Vision (ICCV’15), pages 1467-1475, Santiago, Chile,
Dec. 11-18 2015.

S. Ren, X. Cao, Y. Wei, and J. Sun. Global refinement of random forest. In Proc. of the
2015 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’15),
pages 723-730, Boston, MA, June 7-12 2015.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated
predictions. Machine Learning, 37:297-336, Dec. 1999.

S. Schulter, P. Wohlhart, C. Leistner, A. Saffari, P. M. Roth, and H. Bischof. Alternating
decision forests. In Proc. of the 2013 IEEE Computer Society Conf. Computer Vision and
Pattern Recognition (CVPR’13), pages 508-515, Portland, OR, June 23-28 2013.

A. Zharmagambetov and M. A. Carreira-Perpifi4n. Smaller, more accurate regression
forests using tree alternating optimization. In H. Daumé III and A. Singh, editors, Proc. of
the 37th Int. Conf. Machine Learning (ICML 2020), pages 11398-11408, Online, July 13-18
2020.

J. Zhu, H. Zou, S. Rosset, and T. Hastie. Multi-class AdaBoost. Statistics and Its Interface,
2(3):349-360, 2009.



	References

