
Improved Multiclass AdaBoost for

Image Classification:

the Role of Tree Optimization

Arman Zharmagambetov, Magzhan Gabidolla and

Miguel Á. Carreira-Perpiñán

Dept. of Computer Science and Engineering
University of California, Merced

IEEE ICIP, September 2021

Introduction

Ensembles of decision trees (= forests) have found numerous
applications in image processing and computer vision [2].

They posses multiple advantages, such as strong
generalization property, scalability to large data and fast
inference time.

Some examples of forests:

Random forests train each tree independently on a different
data sample and on a different subset of features.
Boosted Trees sequentially train trees on reweighted versions of
the data.

We focus on boosted decision trees for multiclass classification
problems.

Overview

Most of the papers on boosting and implementations of them
use trees that are:

Axis-aligned (i.e. it uses a single feature at a decision node)
Trained with greedy recursive partitioning

However, axis-aligned trees are not very suitable for many
problems, especially for the ones with correlated features
(e.g. pixels of an image).

Greedy top-down induction produces suboptimal trees [3].

Because of these, boosting algorithms usually need to induce
K (= number of classes) such trees at each boosting step,
which adds an extra overhead.

And, to find a suitable splitting criterion for specific objective
functions (as is the case with many boosting algorithms) is
not straightforward with these greedy algorithms.

Our idea

We propose the following to address these issues:

to use oblique decision trees (i.e. trees with hyperplane splits
at decision nodes)
to use a non-greedy optimization algorithm to learn such trees

We adapt the recently proposed algorithm for learning classifi-
cation/regression trees, Tree Alternating Optimization (TAO)
[1, 8], for a specific boosting framework and empirically evalu-
ate its performance on image classification datasets.

By monotonically decreasing an objective function over a tree
with predetermined structure, TAO finds better approximate
optima, and is quite flexible for the choices of objective function
and the types of tree (axis-aligned, oblique, etc.).

Boosting algorithm: AdaBoost.MH

In this work, we focus on AdaBoost.MH [6]:

One of the extensions of the original AdaBoost for
multiclass/multilabel problems.
Has been empirically observed to be more dominant extensions
of AdaBoost in terms of accuracy [9].

Previous implementations of AdaBoost.MH used K trees at
each boosting step similar to the one-vs-all strategy. In this
work, instead, we use a single oblique tree at each step trained
with TAO.

The base learner in AdaBoost.MH must output a K dimen-
sional vector.

AdaBoost.MH pseudocode

Algorithm 1: AdaBoost.MH with TAO trees

input training set {(xn,yn)}
N
n=1; number of trees T ;

initial weights {wn,k = 1
2N , wn,K\k = 1

2N(K−1)}
N,K
n=1,k=1;

for t = 1 to T do
Tt ← train a TAO tree;
obtain predictions: {ŷn}

N
n=1 ← Tt({xn}

N
n=1);

calculate the loss:
L̂ =

∑N
n=1

∑K
k=1wn,k · exp(−yn,k · ŷn,k)

update the weights: wn,k ← wn,k
exp(−yn,k·ŷn,k)

L̂
for n = 1, . . . , N and k = 1, . . . ,K

end

return Final classifier: F(x) =
∑T

t=1 Tt(x)

Objective function of the base learner

A loss per point of the base learner’s objective function:

L(wn,yn,T(xn)) =

K∑

k=1

wn,k · exp(−yn,k ·Tk(xn)) (1)

T(·) is a base learner, in our case it is an oblique decision tree
with constant leaf vectors.

{(xn,yn)}
N
n=1 is a training set with weights {wn,k}

N,K
n=1,k=1

maintained by the boosting algorithm.

Optimizing a single tree with TAO for AdaBoost.MH

Given a tree structure T (e.g. a complete tree of depth ∆),
TAO considers the following optimization problem over the tree
parameters:

E(Θ) =

N∑

n=1

L(wn,yn,T(xn)) + α
∑

i∈N

φi(θi)

N is the set of all nodes

Θ = {θi}i∈N is a set of parameters of all tree nodes

φi is a regularization term (e.g. ℓ1 norm), which penalizes the
parameters θi of each node.

Optimizing a single tree with TAO: separability of nodes

Separability condition

Consider any pair of nodes i and j. Assume the parameters of
all other nodes (Θrest) are fixed. If nodes i and j are not
descendants of each other, then E(Θ) can be rewritten as:

E(Θ) = Ei(θi) + Ej(θj) + Erest(Θrest)

In other words, the separability condition states that any set of
non-descendant nodes of a tree can be optimized independently.

TAO tree for AdaBoost.MH: leaves

Optimization of a leaf

If i is a constant leaf vector, then there is a closed form solution
of E(·) over its constant output vector y∗ [6]:

y∗k = 0.5 · log
w+
k + ǫ

w−
k + ǫ

, for k = 1, . . . ,K (2)

where (considering points n that reach the leaf i):

w+
k is the sum of the weights for which yn,k = 1

w−
n is the sum of the weights for which yn,k = −1

A small number ǫ is added for numerical stability.

TAO tree for AdaBoost.MH: decision nodes

Optimization of a decision node

If i is a decision node, the optimization of E(Θ) over θi reduces
to the following weighted binary classification problem:

min
θi

∑

n∈Ri

νnL(yn, fi(xn;θi, bi)) + αφi(θi) (3)

L is the 0/1 misclassification loss

yn ∈ {right,left} is a “pseudolabel” indicating the child which
gives a lower value of E for input xn under the current tree

fi ∈ {right,left} is a linear thresholding function which sends
the instance xn to the corresponding child of i

νn = |L(wn,yn,Tleft(xn))− L(wn,yn,Tright(xn))| is the
absolute difference of losses incurred of sending xn to the
right or left child

Pseudocode for training a TAO tree

Algorithm 2: Learning a base classifier (tree) with TAO

input training set {(xn,yn)}
N
n=1

;
initial tree T(·;Θ) of depth ∆;

Boosting weights {wn,k}
N,K

n=1,k=1
;

repeat

for depth d = 0 to ∆ do

for i ∈ nodes at depth d do

if i is a leaf then

yi ← fit a constant classifier at a leaf eq. (2);
else

θi ← fit a weighted binary classifier (eq. (3));
end

end

end

until convergence occurs or max iteration;
return trained tree T

Experiments: standard benchmarks and algorithms

MH-TAO: AdaBoost.MH with TAO trees
MH-CART: AdaBoost.MH with CART trees
See the paper for extended results, additional datasets, etc.

Forest Etest T ∆

SAMME 2.96±0.05 1k 30
RF 2.84±0.06 1k 48
sNDF [4] 2.80±0.12 80 10
MH-CART 2.73±0.00 200 7
ADF [7] 2.71±0.10 100 25

M
N
IS
T

XGBoost 2.67±0.00 1k 8
SAMME 2.28±0.02 1k 16
rRF[5] 2.05±0.02 100 25
MH-TAO 1.96±0.06 20 8
XGBoost 1.94±0.03 10k 8
MH-TAO 1.92±0.07 30 8
MH-TAO 1.72±0.08 100 8

Forest Etest T ∆

XGBoost 4.30±0.00 2.6k 10
RF 3.77±0.06 100 34
ADF [7] 3.52±0.12 100 25
RF 3.44±0.09 1k 36
XGBoost 3.35±0.00 26k 6

L
et
te
r

rRF[5] 2.98±0.15 100 25
sNDF [4] 2.92±0.17 70 10
SAMME 2.83±0.15 100 16
SAMME 2.58±0.09 1k 16
MH-CART 2.53±0.00 500 9
MH-TAO 2.00±0.05 30 11
MH-TAO 1.65±0.05 100 11

Boosted TAO trees are smaller (fewer and shallower trees) yet consis-
tently more accurate.

Comparison with other forests

Letter MNIST

100 200 300 400 500
1

2

3

4

5

6

Boosting iterations

E
t
e
s
t
(%

)

50 100 150 200

2

3

4

5

Boosting iterations

Figure: Comparison of different forest-based models on Letter and
MNIST datasets as a function of the number of boosting iterations.
MH-TAO and MH-CART refers to AdaBoost.MH with the
corresponding base learners.

Conclusion

Directly and non-greedily optimizing the base learner’s objec-
tive function in AdaBoost.MH with TAO significantly improves
the performance of the ensemble.

Boosted TAO trees outperform all competing algorithms we
tested in terms of accuracy.
The TAO forests are small in terms of model size: number of
trees, total number of parameters, depth.

The design in terms of hyperparameter tuning remains as sim-
ple as the original boosting: we choose the tree depth and
number of trees as large as computationally possible, but with-
out overfitting.

This makes our TAO forests a model of immediate, widespread
practical applicability and impact

[1] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems (NEURIPS), volume 31, pages 1211–1221. MIT Press, Cambridge, MA,
2018.

[2] A. Criminisi and J. Shotton. Decision Forests for Computer Vision and Medical Image
Analysis. Advances in Computer Vision and Pattern Recognition. Springer-Verlag, 2013.

[3] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning—Data Mining, Inference and Prediction. Springer Series in Statistics.
Springer-Verlag, second edition, 2009.

[4] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Buló. Deep neural decision forests.
In Proc. 15th Int. Conf. Computer Vision (ICCV’15), pages 1467–1475, Santiago, Chile,
Dec. 11–18 2015.

[5] S. Ren, X. Cao, Y. Wei, and J. Sun. Global refinement of random forest. In Proc. of the
2015 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’15),
pages 723–730, Boston, MA, June 7–12 2015.

[6] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated
predictions. Machine Learning, 37:297–336, Dec. 1999.

[7] S. Schulter, P. Wohlhart, C. Leistner, A. Saffari, P. M. Roth, and H. Bischof. Alternating
decision forests. In Proc. of the 2013 IEEE Computer Society Conf. Computer Vision and
Pattern Recognition (CVPR’13), pages 508–515, Portland, OR, June 23–28 2013.

[8] A. Zharmagambetov and M. Á. Carreira-Perpiñán. Smaller, more accurate regression
forests using tree alternating optimization. In H. Daumé III and A. Singh, editors, Proc. of
the 37th Int. Conf. Machine Learning (ICML 2020), pages 11398–11408, Online, July 13–18
2020.

[9] J. Zhu, H. Zou, S. Rosset, and T. Hastie. Multi-class AdaBoost. Statistics and Its Interface,
2(3):349–360, 2009.

	References

