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1 Abstract
Decision tree boosting is considered as an important and widely

recognized method in image classification, despite dominance of

the deep learning based approaches in this area. Provided with

good image features, it can produce a powerful model with unique

properties, such as strong predictive power, scalability, interpretabil-

ity, etc. In this paper, we propose a novel tree boosting frame-

work which capitalizes on the idea of using shallow, sparse and

yet powerful oblique decision trees (trained with recently proposed

Tree Alternating Optimization algorithm) as the base learners. We

empirically show that the resulting model achieves better or com-

parable performance (both in terms of accuracy and model size)

against established boosting algorithms such as gradient boost-

ing or AdaBoost in number of benchmarks. Further, we show that

such trees can directly and efficiently handle multiclass problems

without using one-vs-all strategy employed by most of the practical

boosting implementations.
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2 AdaBoost and Decision Trees
Ensembles of decision trees have numerous applications in many

tasks in image processing and computer vision. Among others,

AdaBoost with decision tree base learners is often referred to as

the best off-the-shelf classifier for various problems.
• Many papers and current implementations of AdaBoost use

trees that are:
• Axis-aligned (i.e. it uses a single feature at a decision node)

• Trained with greedy top-down induction

• However, axis-aligned trees are not very suitable for many

problems, especially for the ones with correlated features

(e.g. pixels of an image).

• Greedy top-down induction produces suboptimal trees.

• Because of these, boosting algorithms usually need to induce

K (= number of classes) such trees at each boosting step,

which adds an extra overhead.

• And, to find a suitable splitting criterion for specific objective

functions (as is the case with many boosting algorithms) is not

straightforward with these greedy algorithms.

3 Optimizing trees in AdaBoost.MH with TAO

Our proposal:
• to use oblique decision trees (i.e. trees with hyperplane splits at

decision nodes)

• to use a non-greedy optimization algorithm to learn such trees

We adapt the recently proposed algorithm for learning decision trees,

Tree Alternating Optimization (TAO) for AdaBoost.MH and empirically

evaluate its performance on image classification datasets.

Given a tree structure T, a training set {(xn,yn)}
N
n=1, and AdaBoost.MH

weights {wn,k}
N,K
n=1,k=1, TAO directly optimizes the following base learner’s

objective function with a guarantee of monotonically decreasing it:

E(Θ) =

N∑

n=1

K∑

k=1

wn,k · exp(−yn,k · Tk(xn)) (1)

Previous implementations of AdaBoost.MH used K (= number of classes)

trees at each boosting step. In this work we only fit a single oblique de-

cision tree trained with TAO.

Algorithm 1: Learning a tree for AdaBoost.MH with TAO

input training set {(xn, yn)}
N
n=1;

initial tree T(·;Θ) of depth ∆;

AdaBoost.MH weights {wn,k}
N,K
n=1,k=1;

repeat
for depth d = 0 to ∆ do
for i ∈ nodes at depth d do
if i is a leaf then
yi ← find a constant vector to minimize eq. 1

(has a closed form solution);

else
θi ← fit a weighted binary classifier;

end

end

end

until convergence occurs or max iteration;

return trained tree T

4 Experiments
We experimentally evaluate AdaBoost.MH with TAO trees against es-

tablished forest-based methods. Boosted TAO trees are smaller (fewer

and shallower trees) yet consistently more accurate.
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Forest Etest (%) #pars. FLOPS T ∆
RF 3.05±0.06 1M (3 482) 100 46
SAMME 2.96±0.05 6M (29 489) 1 000 30
RF 2.84±0.06 10M (34 507) 1 000 48
sNDF 2.80±0.12 22M (22M) 80 10
XGBoost 2.73±0.00 390k (16 812) 1 000 30
MH-CART 2.73±0.00 307k (1 400) 200 7
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ADF 2.71±0.10 3.6M (2 500) 100 25
XGBoost 2.67±0.00 324k (8 000) 1 000 8
SAMME 2.28±0.02 13.3M (16 000) 1 000 16
XGBoost 2.17±0.00 540k (57 385) 10 000 30
rRF 2.05±0.02 (160k) (2 500) 100 25
MH TAO 1.96±0.06 837k 54 041 20 8
XGBoost 1.94±0.00 615k (51 873) 10000 8
MH-TAO 1.92±0.07 2.3M 93 523 30 8
MH-TAO 1.72±0.08 7.9M 312 904 100 8

MH-CART >8 days runtime 100 9
MH-CART 25.07 9400 (500) 100 5
RF 13.62±0.32 2.5M (23k) 100 220
RF 12.67±0.13 12.7M (109k) 500 218
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RF 12.51±0.11 25.4M (224k) 1000 220
XGBoost 12.51±0.00 596k (81k) 6400 50
XGBoost 11.01±0.00 782k (124k) 32000 50
XGBoost 10.78±0.00 973k (181k) 64000 50
MH-TAO 10.65±0.05 3.4M 105k 30 12
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