
LEARNING CIRCULANT SUPPORT VECTOR MACHINES FOR FAST IMAGE SEARCH

Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science
University of California, Merced, USA

ABSTRACT

Binary hashing is an established approach for fast, approximate im-

age search. It maps a query image to a binary vector so that Ham-

ming distances approximate image similarities. Applying the hash

function can be made fast by using a circulant matrix and the fast

Fourier transform, but this circulant hash function must be learned

optimally from training data. We show that a previously proposed

learning algorithm based on optimization in the frequency domain

is suboptimal. We show the problem can be solved exactly and ef-

ficiently by casting it as a convex maximum margin classification

problem on a modified dataset. We confirm experimentally that this

allows us to learn hash functions consisting of one or more circulant

filters that provide better retrieval performance for the same query

runtime as a linear hash function.

Index Terms— image retrieval, binary hashing

1. INTRODUCTION

As the dataset of images continues to grow, searching for similar

images becomes a more challenging problem. Binary hashing is a

fast and efficient way to solve the similarity search problems approx-

imately [1]. The main idea is to learn a hash function that maps

high-dimensional images into binary codes and search for the simi-

lar images in the binary space. If we represent each image by L-bits

binary codes, then we only need L bits of memory to store each im-

age. This makes it possible to store large datasets with millions of

images in the main memory of a single machine. To search for a

query, one can create a hash table, indexed by the binary codes of

the training images. Given the binary code of the query, the images

inside a small Hamming distance of the query can be returned using

the hash table in O(1) [1].

The main goal in binary hashing is to learn a good hash function

that can preserve the similarity between the points after mapping

them to the binary space. To achieve this, different objective func-

tions and optimization methods have been proposed [2, 3, 4, 5, 6, 7],

usually based on hash functions of the form h(x) = sgn (Wx) ∈
{−1,+1}L, where x ∈ R

D is a D-dimensional feature vector rep-

resenting the image. The time needed to generate a binary vector

for a query image is O(LD). As we increase the number of bits L,

we can preserve the similarity better and hence improve the retrieval

quality, but we need more time to generate the binary codes.

A recent method, circulant binary embedding (CBE) [8], pro-

posed to learn a hash function with a single circulant weight matrix,

which gives better time and space complexity. As we show in sec-

tion 2, using circulant weight matrices we need O(D logD) to com-

pute the binary codes and need O(D) to store the weight matrix. In

[8], a classification subproblem is solved by doing optimization in

the frequency domain. This has two important disadvantages: (1)

Work supported by NSF award IIS–1423515.

it relaxes the classification problem into a regression problem (ig-

noring the sign function) and (2) when L < D (which is the case of

interest) the optimization algorithm finds a suboptimal matrix, which

works worse in practice, as we will show later in our experiments.

In this paper, we provide an algorithm that does learn the hash

function’s circulant matrix optimally even for L < D bits. In sec-

tion 3, we formulate the problem as a convex maximum margin clas-

sification problem, which can be solved exactly by training a sin-

gle support vector machine on a suitably modified training set. In

section 4 we show experimentally that this results in better classi-

fication accuracy and generalization, and better retrieval results in

binary hashing.

1.1. Related work

Binary hashing can be divided into two groups of unsupervised hash-

ing and supervised hashing, based on how we define the similarity

between the points. In supervised hashing, two points are considered

similar if they are semantically similar (for example, if they have the

same label) [9, 10, 3, 4, 5, 7, 11, 12]. In unsupervised hashing, two

points are considered similar if they are close to each other in the

high-dimensional space (for example, if the Euclidean distance be-

tween them is smaller than a threshold) [13, 14, 15, 16, 17, 8, 6]. In

this paper, we focus on unsupervised hashing.

Locality sensitive hashing (LSH) [13] considers thresholded ran-

dom projections as the hash functions. LSH is an example of data-

independent methods. Data-dependent methods try to learn the hash

functions by optimizing an objective function that is defined based

on the similarity of the training points [14, 15, 16, 17, 8, 6]. Most

papers focus on introducing better objective functions, better opti-

mization methods, or more complicated hash functions to improve

the retrieval results. Usually, the space and time complexity of the

hash function at test time (i.e., to generate the codes for a given input

image) is at least O(LD), where L is the number of bits and D the

dimension of the original points. As L increases, they become less

useful.

To overcome this problem,[17] proposed to use a bilinear projec-

tion based coding to generate the binary codes. In the case of using

L = D bits, the time and space complexity of the method are O(D)
and O(D1.5), respectively. A more recent approach [8] proposed to

use a circulant weight matrix as the hash function and optimize the

objective in the frequency domain. Using the fast Fourier transform

to generate the binary codes, the computational complexity of this

method to generate the codes is O(D logD).

2. HASHING WITH A CIRCULANT WEIGHT MATRIX

We quickly review circulant matrices and explain their usefulness in

binary hashing. A D-dimensional vector w = (w0, w1, · · · , wD−1)
is the basis for the D × D circulant matrix W, which can also be



regarded as a filter operating on the input image:

W = circ (w) ≡





w0 wD−1 ··· w2 w1

w1 w0 wD−1 ··· w2

...
...

. . .
. . .

...
wD−1 wD−2 ··· w1 w0



. (1)

So the matrix W has only D (instead of D2) free parameters and

we only need O(D) to store it. Consider the hash function h(x) =
sgn (Wx) where W is circulant. We show here that h(x) can be

computed in O(D logD) instead of D2. Consider F(·) as the dis-

crete Fourier transform, and F−1(·) as the inverse discrete Fourier

transform. Since W is circulant, the output of the hash function can

be computed as [18]:

h(x) = sgn (Wx) = sgn
(

F−1(F(x) ◦ F(w))
)

(2)

where F(x)◦F(w) is the elementwise product of two vectors. Com-

puting the sign and elementwise product takes O(D) and computing

the discrete Fourier transform and the inverse Fourier transform (us-

ing the fast Fourier transform) takes O(D logD). So the total time

needed to generate the code for one input is O(D logD).
If the hash function needs to generate L < D bits, we only need

the first L rows of circ (w), which we denote as circ (w)
L

. If we

use the discrete Fourier transform, we first need to generate the D-

bits codes and then use L of them, so the complexity remains O(D)
space and O(D logD) time. This is faster than directly computing

Wx unless L is very small.

In this paper, we also propose to use multiple circulant matri-

ces (filters) to construct the hash function, unlike CBE, which uses

a single filter. Using f filters, we divide the L classification prob-

lems into f independent problems, each of them defined over L/f
bits, and solve each of them independently using one circulant ma-

trix. Using f filters, the number of free parameters increases from

D to fD. This leads to better hashing results, but also increases the

complexity to O(fD) space and O(fD logD) time.

3. CIRCULANT SUPPORT VECTOR MACHINES

Assume we have N training points X = (x1, . . . ,xN) ∈ R
D×N in

D-dimensional space. The goal is to learn a hash function h: RD →
{−1,+1}L that maps D-dimensional points into the L-dimensional

binary codes. We define h(x) = sgn (Wx+ b), where W ∈
R

L×D is the weight matrix and b ∈ R
L is the bias. So learning

the hash function corresponds to learning W and b.

We first show how learning the hash functions appears with the

form of a classification problem in several hashing methods. Then,

we describe our method to learn the optimal circulant weight matrix.

3.1. Learning the hash function by learning classifiers

In many hashing papers, learning the L-bits hash function involves

solving L independent classification problems [2, 3, 4, 5, 6, 7], pos-

sibly iteratively. The main idea is to define N L-dimensional binary

variables Z = (z1, . . . , zN ) ∈ {−1,+1}L×N , and define the ob-

jective over the binary codes Z instead of the hash function h. After

optimizing the objective over the codes Z, we need to learn the hash

function given the codes. In [2, 3, 4], the hash function is learned

a posteriori, as a final step. In [5, 6, 7], the algorithm iterates over

learning codes and hash functions, which achieves better optima.

To learn the hash function given the codes, we need to solve the

following problem:

min
W,b

L
∑

l=1

N
∑

n=1

(sgn
(

w
T
l xn + bl

)

− zln)
2

(3)

where wT
l is the lth row of W, sgn

(

wT
l xn + bl

)

gives the lth bit

of the hash function, and zln ∈ {−1,+1} is the lth bit of the nth

training point. Since the rows of W are independent from each other,

this problem can be solved by training L independent classifiers. For

the lth problem, the (input,label) pairs is determined by (X,Zl·).

3.2. Using a circulant SVM classifier as the hash function

We explain our proposed method in this section. We assume that we

have the binary codes Z ∈ {−1,+1}L×N and we try to learn the

circulant matrix W = circ (w)
L

and the bias b that minimize the

classification error of eq. (3). Since the weight matrix is circulant,

the L classification problems are not independent: they all share the

same weight values, but in different orders as shown in eq. (1).

To minimize the classification error, we consider the maximum

margin formulation of support vector machines (SVMs). Consider

wT
l as the lth row of the matrix W. The lth classification problem

has the following form:

min
wl

1

2
‖wl‖

2 +C

N
∑

n=1

ξln s.t.

{

zln(w
T
l xn + bl) ≥ 1− ξln

ξln ≥ 0, n = 1, . . . , N

where zln and ξln are the label and the slack variable of the nth

point in the lth classification problem, wl is the weight vector of the

lth classifier and bl is its bias. From eq. (1), each row of W is a

permutation of the vector w (first column of W). For this reason,

we can write row l of W as wT
l = wTPl, where Pl ∈ R

D×D is

a permutation matrix. Based on this formulation, we can rewrite the

SVM formulation of the lth classification problem as:

min
w

1

2
‖wT

Pl‖
2+C

N
∑

n=1

ξln s.t.

{

zln(w
TPlxn + bl) ≥ 1− ξln

ξln ≥ 0, n = 1, . . . , N.

Since PT
l Pl = I, ‖wTPl‖

2 = ‖w‖2, so all L classification prob-

lems have the same margin term. Let us define tln = Plxn ∈ R
D .

Since Pl is a permutation matrix, Plxn does not change the values

of xn, it only changes the order of the features. So tln has the same

dimension and values as xn, but permuted based on the Pl matrix.

Using the newly introduced vectors tln, we can write all L classifi-

cation problems in one formula as follows:

min
w

L

2
‖w‖2+C

L
∑

l=1

N
∑

n=1

ξln s.t.











zln(w
T tln + bl) ≥ 1− ξln,

ξln ≥ 0, n = 1, . . . , N,

l = 1, · · · , L.

(4)

This looks very similar to the SVM problem, where w ∈ R
D is the

weight vector that we try to learn and we have NL input points tln
with labels zln. The only difference is the bias of SVMs: in this for-

mulation we have to learn L different biases while in the traditional

SVM only one bias exists. We augment the weight vector w with the

bias vector b and write it as w = [w;b] ∈ R
D+L. We also augment

each of the inputs tln by el and write it as yln = [tln; el] ∈ R
D+L,

where el ∈ R
L has 1 in the lth element and zeros everywhere else.

Now we can rewrite eq. (4) as :

min
w,b

‖w‖2 +
2C

L

L
∑

l=1

N
∑

n=1

ξln s.t.











zln([w;b]Tyln) ≥ 1− ξln,

ξln ≥ 0, n = 1, . . . , N,

l = 1, · · · , L.

(5)

This is now an SVM problem, with NL inputs yln and labels

zln. To see the equivalence between eq. (4) and eq. (5), note that

[w;b]Tyln = wT tln + bl. The only difference between eq. (5) and



the more standard SVM formulation is that the first term (inverse of

the margin) is defined over the first D elements of the weight vector

w = [w;b], not over all the elements.

To summarize, we start with L classification problems as given

in eq. 3, each of them defined over N training points, but which are

coupled through the circulant weight matrix W = circ (w). We

convert this classification problem into one maximum margin classi-

fication problem over the vector w, with an enlarged dataset of NL
points and labels (eq. (5)). The new points are L different permuta-

tions of the original points X and the labels are the columns of the

code matrix Z.

Advantages of our circulant SVM over the optimization in the

frequency domain. CBE [8] minimizes the L classification prob-

lems of eq. (3) in the frequency domain. The main disadvantage of

the CBE is that it always needs a binary matrix of size N ×D: each

point has to have L = D labels. For L < D, CBE adds D − L la-

bels of zero to all the points to make the code vector D-dimensional.

This means that CBE returns suboptimal solutions for L < D. If

L ≪ D, the number of zeros in the labels becomes much more than

the original labels, and the results become much worse.

Our proposed method always returns the optimal solution, even

for the case of L < D. It formulates the classification problem

as a maximum margin classification, which is a convex quadratic

program. There are libraries available that solve SVM problems for

a large number of points in a few seconds. Our experiments confirm

that our circulant SVM always performs better than CBE.

3.3. Time and space complexity

In the circulant case, using f filters, we need to store f circulant

matrices, which gives a space complexity of O(fD), no matter how

many bits we use. In the linear case, the space complexity is O(DL)
to store a full D × L matrix, for L bits.

In the linear case (full matrix), the time complexity of gen-

erating the binary code of length L is c1LD, where c1 is a con-

stant. For circulant matrices, considering the general case of f
filters, we have to compute the Fourier transform of x (which takes

c2D logD), Fourier transform of the f filters (takes c2fD logD),

compute f elementwise products (takes c3fD) and f inverse

Fourier transform (takes c2fD logD). This gives a total runtime of

c2(2f + 1)D logD + c3fD. Note the runtime of generating the

binary codes is again independent of the number of bits L.

In the experiments, we fix the time needed to generate the binary

codes for linear methods (full matrix) and circulant hashing methods.

This means that we set the number of bits of the linear methods to

L = c2(2f + 1) logD. Following the experiments of [8], we set

the constant c2 = 1.66. Note that for practical values of D, c3fD is

much smaller than the other term and that is why we ignore it.

4. EXPERIMENTS

We use the following datasets in our experiments: (1) CIFAR-10 [19]

contains 60 000 images. We consider 58 000/2 000 images as the

training/test set. We extract D = 4096 VGG network [20] features,

which are the output of the last fully connected layer of the VGG

network. (2) ImageNet [21] dataset contains 1 000 000 images. We

randomly select 500 000 images as the training set and 2 000 images

as the test set. We represent each image by 4 096 dimensional VGG

features (the same as CIFAR10 dataset).

Following the experiments of [8], the ground-truth set for each

image consists of the first 10 nearest neighbors of the image in the

original high-dimensional space. The retrieved set for each image

consists of its k nearest neighbors in the Hamming space.

f = 1 filter, L ≥ 10 bits L = 500 bits, f ≥ 1 filters

ac
cu

ra
cy

,
C

IF
A

R

10 200 500 1000

60

70

80

90

100

 

 

circsvm

CBE

1 50 100 250 500

70

80

90

100

 

 

circsvm

CBE

ac
cu

ra
cy

,
Im

ag
eN

et

10 200 500 1000

60

70

80

90

100

 

 

circsvm

CBE

number of bits L
1 50 100 250 500

60

70

80

90

100

 

 

circsvm

CBE

number of filters f

Fig. 1. Average classification accuracy of circulant SVM (circsvm)

and CBE [8] on CIFAR and ImageNet datasets. First column: we fix

the number of circulant matrices f = 1 and change number of bits

L. Second column: we fix the number of bits L = 500 and increase

the number of circulant matrices f .

We make data points zero mean before learning the classifiers or

hash functions. We train the SVM classifier using the VLFeat [22]

library, which uses stochastic gradient descent in the optimization.

This gives us the opportunity to load a subset of data points in the

memory and update the model based on them. We set the parame-

ter λ of this library to 0.01 and the number of epochs to 10. Our

circulant SVM takes around 5 minutes to solve L = 500 classifica-

tion problems, each defined over N = 5000 points. Note that we

convert the problem to one SVM problem with 2.5 × 106 points.

4.1. Our circulant SVM improves the classification accuracy

We compare our proposed method (circsvm) and CBE [8] by report-

ing the average classification accuracy of L classification problems

in eq. (3). We select a random subset of 5 000 points from the CI-

FAR10 and ImageNet datasets as the input X. We give X as the

input to Iterative Quantization (ITQ) [16] and consider the output of

ITQ as the binary matrix Z. Then, given X and Z as the input and

the labels, we train a classifier with the circulant weights using our

proposed method and CBE [8]. The objective function of CBE has

an orthogonality term in addition to the classification term of eq. (3).

To make the objectives of circulant SVMs and CBE the same, we set

the weight of the orthogonality term (λ) to 0.

We show the results in fig. 1. In the first column of fig 1, we

use 1 filter and change the number of bits from 10 to 1 000 and re-

port the classification accuracy. We can see that circsvm performs

better than CBE, specially for smaller number of bits. The reason is

that circsvm finds the optimal solution (for any value of L), but CBE

finds suboptimal solutions for L < D. As we increase the number

of bits, the classification accuracy of methods decreases. The reason

is that for larger L, the classification problem becomes more diffi-

cult, and the classifier needs more free parameters to solve it, but the

number of free parameters of the methods is fixed to D.

In the second column of fig. 1, we fix the number of bits to 500,

change the number of filters of CBE and circsvm, and report the av-

erage classification accuracy. Increasing the number of filters means

that the classifier has more parameters and one would expect this to

translate into a better precision. In fact, this happens for circsvm

but not for CBE. The classification accuracy of circsvm improves



f = 1 filter, L ≥ 10 bits L = 500 bits, f ≥ 1 filters

re
ca

ll
,

C
IF

A
R

10 200 500 1000
0

20

40

60

80

 

 

circsvm

CBE

1 50 100 250 500
40

50

60

70

80

 

 

circsvm

CBE

re
ca

ll
,
Im

ag
eN

et

10 200 500 1000
0

20

40

60

80

 

 

circsvm

CBE

number of bits L
1 50 100 250 500

30

40

50

60

70

80

 

 

circsvm

CBE

number of filters f

Fig. 2. We compare circsvm with CBE [8] by reporting the recall

in the nearest neighbor search. First column: we fix the number

of circulant matrices to 1 and change the number of bits. Second

column: we fix the number of bits to 500 and increase the number of

circulant matrices. Retrieved set: k = 100 nearest neighbors of the

query.

significantly as we increase the number of filters. The classification

accuracy of CBE improves a little bit, and then stops improving. The

reason is that as we increase the number of filters, each circulant ma-

trix will be trained on a smaller set of bits (in the extreme case with

f = 500 filters, each circulant matrix is trained on 1 bit). Since CBE

always needs D bits, it adds a massive number of zeros to the bits,

which results in finding poor classifiers.

4.2. Better classification leads to better hashing results

In fig. 1, we trained the hash functions of circsvm and CBE and

reported the classification accuracy. Now, we use those functions in

the hashing setting to report the recall of the methods in fig. 2. In the

first column of fig. 2, we increase the number of bits and report the

recall. The recall of circsvm is always above the recall of CBE, for

different values of bits. This is consistent with what we have seen

in the classification results of fig. 1. Also note that even when the

classification accuracy goes down as we increase the number of bits

in fig. 1, the recall in fig. 2 increases. The reason is that increasing

the number of bits in unsupervised hashing leads to better hashing

results, as long as diversity between the hash functions exists.

The second column of fig. 2 shows the recall as we increase

the number of filters. The recall of the circsvm always increases in

this figure, because increasing the number of filters leads to a huge

improvement in the classification results of circsvm (see fig. 1). This

again shows that a better classification leads to better hashing results.

Note the improvement of circsvm in the classification setting is more

than in the hashing setting. The reason is that even using 1 filter,

circsvm learns a reasonably good hash function.

For CBE, the recall goes down massively as we increase the

number of filters. The reason is the same as the one explained in the

classification setting. Increasing the number of filters means learning

circulant functions on smaller number of bits. CBE adds a massive

number of zeros to the labels, which makes the inputs and labels of

different hash functions very similar to each other. In this case, the

L hash functions can end up being very similar to each other, which

leads to losing diversity among them. As investigated in [23], lack

of diversity in the set of hash functions leads to poor retrieval results.

We can see that this happens for CBE in fig. 2.

CIFAR10 ImageNet

re
ca

ll

10 100 250 500
0

20

40

60

80

100
L = 1 000

L = 200

L = 500

L = 60

10 100 250 500
0

20

40

60

80

100
L = 1 000

L = 200

L = 500

L = 60

p
re

ci
si

o
n

10 100 250 500
0

10

20

30

40

 

 

circsvm

CBE

BA

ITQ

PCAR

LSH

SH

SPH

L = 1 000

L = 200

L = 500

L = 60

number of retrieved points
10 100 250 500
0

10

20

30

 

 

circsvm

CBE

BA

ITQ

PCAR

LSH

SH

SPH

L = 1 000

L = 200

L = 500

L = 60

number of retrieved points

Fig. 3. Comparing circsvm with different hashing methods. We fix

the time needed to generate the binary codes for different methods,

which means the methods using linear hash functions use fewer bits

than CBE and circsvm. Specifically, for linear hash functions L =
60 bits and for CBE and circsvm L ∈ {200, 500, 1 000} bits.

4.3. Comparison with other hashing methods

We compare our proposed method circsvm with several unsuper-

vised hashing methods: Iterative Quantization (ITQ) [16], Spectral

Hashing (SH) [14], Circulant Binary Embedding (CBE) [8], Binary

Autoencoder (BA) [6], Spherical Hashing (SPH) [24], Locality Sen-

sitive Hashing (LSH) [13], and thresholded rotated PCA (PCAR).

Fig. 3 shows the results. We set the codes of circsvm and CBE to

the output of ITQ. In this figure, we fix the number of filters f = 1
for circulant hashing methods (circsvm and CBE). Following [8],

we use a random subset of 5 000 points for training different meth-

ods. We fix the computational time needed to generate the binary

codes for different methods. Based on the discussion of sec. 3.3, the

number of bits of methods using circulant hash functions can be any

number less than D, and the number of bits of methods using linear

hash functions should be L = 60. For circsvm and CBE, we report

results using 200, 500 and 1 000 bits.

In almost all cases, the methods using circulant hash functions

outperform those using linear ones. circsvm always beats CBE and

the other methods in both datasets. This is more clear when we use

smaller number of bits (e.g. L = 200). As we increase the number

of bits, CBE and circsvm become very similar, while circsvm is still

a little better. Note that achieving better results using smaller number

of bits is important in binary hashing because smaller number of bits

can lead to faster retrieval results.

5. CONCLUSION

Using a circulant matrix as the weight matrix of a hash function

makes the computation of the binary codes very fast, O(D logD)
for D-dimensional inputs. This is very helpful in binary hashing,

where the goal is fast image search. We showed that a previous

method that learns the circulant matrix by optimizing in the fre-

quency domain is suboptimal and its results become the more inaccu-

rate the smaller the number of desired bits L is in the hash function.

We also proposed to learn the circulant matrix in the original do-

main, by formulating the L classification problems using a circulant

matrix as one maximum margin classification problem. This leads

to a convex quadratic program whose optimal solution can be found

efficiently for any desired number of bits L. This in turn gives better

results in the retrieval task.



6. REFERENCES

[1] Kristen Grauman and Rob Fergus, “Learning binary hash

codes for large-scale image search,” in Machine Learning for

Computer Vision, R. Cipolla, S. Battiato, and G. Farinella, Eds.,

pp. 49–87. Springer-Verlag, 2013.

[2] Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu, “Self-taught

hashing for fast similarity search,” in Proc. of the 33rd ACM

Conf. Research and Development in Information Retrieval (SI-

GIR 2010), Geneva, Switzerland, July 19–23 2010, pp. 18–25.

[3] Guosheng Lin, Chunhua Shen, David Suter, and Anton van den

Hengel, “A general two-step approach to learning-based hash-

ing,” in Proc. 14th Int. Conf. Computer Vision (ICCV’13), Syd-

ney, Australia, Dec. 1–8 2013, pp. 2552–2559.

[4] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den

Hengel, and David Suter, “Fast supervised hashing with de-

cision trees for high-dimensional data,” in Proc. of the 2014

IEEE Computer Society Conf. Computer Vision and Pattern

Recognition (CVPR’14), Columbus, OH, June 23–28 2014, pp.

1971–1978.

[5] Tiezheng Ge, Kaiming He, and Jian Sun, “Graph cuts for super-

vised binary coding,” in Proc. 13th European Conf. Computer

Vision (ECCV’14), Zürich, Switzerland, Sept. 6–12 2014, pp.

250–264.

[6] Miguel Á. Carreira-Perpiñán and Ramin Raziperchikolaei,

“Hashing with binary autoencoders,” in Proc. of the 2015 IEEE

Computer Society Conf. Computer Vision and Pattern Recogni-

tion (CVPR’15), Boston, MA, June 7–12 2015, pp. 557–566.

[7] Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán,

“Optimizing affinity-based binary hashing using auxiliary co-

ordinates,” in Advances in Neural Information Processing Sys-

tems (NIPS), D. D. Lee, M. Sugiyama, Ulrike von Luxburg, Is-

abelle Guyon, and R. Garnett, Eds. 2016, vol. 29, pp. 640–648,

MIT Press, Cambridge, MA.

[8] Felix Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang,

“Circulant binary embedding,” in Proc. of the 31st Int. Conf.

Machine Learning (ICML 2014), Eric P. Xing and Tony Jebara,

Eds., Beijing, China, June 21–26 2014, pp. 946–954.

[9] Brian Kulis and Trevor Darrell, “Learning to hash with bi-

nary reconstructive embeddings,” in Advances in Neural In-

formation Processing Systems (NIPS), Y. Bengio, D. Schuur-

mans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. 2009,

vol. 22, pp. 1042–1050, MIT Press, Cambridge, MA.

[10] Mohammad Norouzi and David Fleet, “Minimal loss hashing

for compact binary codes,” in Proc. of the 28th Int. Conf. Ma-

chine Learning (ICML 2011), Lise Getoor and Tobias Scheffer,

Eds., Bellevue, WA, June 28 – July 2 2011.

[11] Miguel Á. Carreira-Perpiñán and Ramin Raziperchikolaei, “An

ensemble diversity approach to supervised binary hashing,” in

Advances in Neural Information Processing Systems (NIPS),

D. D. Lee, M. Sugiyama, Ulrike von Luxburg, Isabelle Guyon,

and R. Garnett, Eds. 2016, vol. 29, pp. 757–765, MIT Press,

Cambridge, MA.

[12] Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán,

“Learning independent, diverse binary hash functions: Prun-

ing and locality,” in Proc. of the 17th IEEE Int. Conf. Data

Mining (ICDM 2016), Barcelona, Spain, Dec. 12–15 2016, pp.

1173–1178.

[13] Alexandr Andoni and Piotr Indyk, “Near-optimal hashing algo-

rithms for approximate nearest neighbor in high dimensions,”

Comm. ACM, vol. 51, no. 1, pp. 117–122, Jan. 2008.

[14] Yair Weiss, Antonio Torralba, and Rob Fergus, “Spectral

hashing,” in Advances in Neural Information Processing Sys-

tems (NIPS), Daphne Koller, Yoshua Bengio, Dale Schuur-

mans, Leon Bottou, and Aron Culotta, Eds. 2009, vol. 21, pp.

1753–1760, MIT Press, Cambridge, MA.

[15] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang, “Hash-

ing with graphs,” in Proc. of the 28th Int. Conf. Machine Learn-

ing (ICML 2011), Lise Getoor and Tobias Scheffer, Eds., Belle-

vue, WA, June 28 – July 2 2011, pp. 1–8.

[16] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent

Perronnin, “Iterative quantization: A Procrustean approach to

learning binary codes for large-scale image retrieval,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 35, no.

12, pp. 2916–2929, Dec. 2013.

[17] Yunchao Gong, Sanjiv Kumar, Henry A. Rowley, and Svetlana

Lazebnik, “Learning binary codes for high-dimensional data

using bilinear projections,” in Proc. of the 2013 IEEE Com-

puter Society Conf. Computer Vision and Pattern Recognition

(CVPR’13), Portland, OR, June 23–28 2013, pp. 484–491.

[18] Alan V. Oppenheim and Alan S. Willsky, Signals and Systems,

Signal Processing Series. Prentice-Hall, second edition, 1996.

[19] Alex Krizhevsky, “Learning multiple layers of features from

tiny images,” M.S. thesis, Dept. of Computer Science, Univer-

sity of Toronto, Apr. 8 2009.

[20] Karen Simonyan and Andrew Zisserman, “Very deep convolu-

tional networks for large-scale image recognition,” in Proc. of

the 3rd Int. Conf. Learning Representations (ICLR 2015), San

Diego, CA, May 7–9 2015.

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei, “ImageNet: A large-scale hierarchical image

database,” in Proc. of the 2009 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition (CVPR’09), Miami,

FL, June 20–26 2009, pp. 248–255.

[22] Andrea Vedaldi and Brian Fulkerson, “VLFeat: An open and

portable library of computer vision algorithms,” 2008.

[23] Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán,

“Learning supervised binary hashing: Optimization vs diver-

sity,” in IEEE Int. Conf. Image Processing (ICIP 2017), Bei-

jing, China, Sept. 17–20 2017.

[24] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and

Sung-Eui Yoon, “Spherical hashing,” in Proc. of the 2012

IEEE Computer Society Conf. Computer Vision and Pattern

Recognition (CVPR’12), Providence, RI, June 16–21 2012, pp.

2957–2964.


	 Introduction
	 Related work

	 Hashing with a circulant weight Matrix
	 Circulant support vector machines
	 Learning the hash function by learning classifiers
	 Using a circulant SVM classifier as the hash function
	 Time and space complexity

	 Experiments
	 Our circulant SVM improves the classification accuracy
	 Better classification leads to better hashing results
	 Comparison with other hashing methods

	 Conclusion
	 References

