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We consider a semi-supervised regression setting where we havé®
temporal sequences of partially labeled data, under the assumption rig 1: Three sample images from the time of day problem.

that the labels should vary slowly along a sequence, but that nearby . ) . . ) )

points in input space may have drastically different labels. The set- Ve introduce a technique by which additional information about

ting is motivated by problems such as determining the time of the daif‘e data in the form of temporal priors is shown to be more effec-

or the level of air visibility given an image of a landscape, which istVe for seml-superwsed learning t.han techniques Wh!Ch e>§pI0|t the
hard because the time or visibility label is related in a complex wayfoPOl0gy of the input space. We first study the technique in a syn-
with the pixel values. We propose a regression framework regulat’€tic problem where we want to learn functions that depend on the
ized with a graph Laplacian prior, where the graph is given by thd"Put space in a complex way, but where the availability of tempo-

sequential information. We show this outperforms graphs learned i information provides crucial clues to predict the label. We then

an unsupervised way for detecting the rotation of MNIST digits andCONSider two problems: estimating time of the day, and estimating
estimating the time of day an image is captured, and provides mode4iPility. in both cases using static images of a scene over a period
improvement in the challenging visibility problem. of time, only a portion of which are labeled.

Index Terms— semi-supervised learning, scene estimation 2. REGULARIZATION WITH TEMPORAL PRIORS
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1. INTRODUCTION Assume we have a training set &f labeled pointy (X, ¥ ) }n=1,

. L _ ) ) wherex,, € R andy, € R”, andM additional unlabeled points
While specialized equipment is now available to measure the atten 'xm}%:l. All M + N inputs come as a collection of sequences

ation and scattering of light, using low cost commodity digital cam-g¢ the form(xi, x2, X3, . . . ), each of which is only partially labeled

eras to estimate atmospheric visibility holds great appeal. The chalgii, y-values. We want to estimate a regression mapirigat

lenge, of course, is to learn the likely non-linear mapping from théyregicts the labey for an inputx .We consider a least-squares re-

complex image space to an index of visibility. Even in a static Sceneyression setting with a graph Laplacian regularization’]:

increased or decreased visibility due to the attenuation and scatter-

ing of light is only one of many possible sources for image variation E(f) =N lyn — £ |1 + 4 lIf]1% +r HfHQG (1)

and usually results in subtle differences. While specialized imaging B

systems for visibility estimation have been proposgdi[], there  where the||f||% term refers to an RKHS norm (which encourages

has been little work on using general purpose cameras. ~ smoothness irrespectively of the training data distribution), and the
A similar example is estimating the time of the day from an im- £ ||, term refers to the graph Laplacian (which encourages smooth-

age from a given landscape. Intuitively, the overall illumination, ness off with respect to the distribution of both labeled and unla-

CO|0I’, the arrangement Of ShadOWS, etc. Change in a manner thgéied training points)_ The graph Lapiaciarﬁsz D - W' Where

is strongly correlated with the time of the day in a given scene, asy is a given affinity matrix of N + M) x (N -+ M) (such as the ad-

shown in B]. However, there exist many other changes in the image}acency matrix or a Gaussian affinity matrix), abd= diag (W1)

that are uncorrelated with it: moving objects (cars, clouds, planess the degree matrix (wherkis a column vector of ones). Ordinar-

etC.) which cause Changes in the scene but also in the overall |”l.."y, one might learn a neighborhood graph in an unsupervised way,

mination; lights and reflections from objects; etc. With so muchgch as thé-nearest-neighbor graph for a suitable valugdfut for

variability in the image space, and settings with little labeled dataihe reasons mentioned in the introduction, this might be a poor regu-

how can we learn a predictive mapping (regression or classificationjrizer (which encourages nearby poistso have similary-values,

that is able to detect the inputs that really matter? even though their trug-values may be very different). Here we pro-
The potential disconnect between image features and envirotpose to construct the graph as the collection of input sequences in

mental conditions presents a particularly difficult challenge for Semi'x_spaceunder the assumption thatvaries slowly as a function of

supervised learning techniques where not all of the training data igme but not necessarily as a functiorsofThus, if all A/ + N points

labeled. Semi-supervised learning techniques typically exploit thgre indexed in order by sequence, the corresponding adjacency ma-

topology of the input space to propagate the labels in the training sefix will contain ones in the sub- and super-diagonals (except at a

However, two images of a static scene could appear very similar—sequence end or start), and zeroes elsewhere. The sequential regu
that s, the distance between them in input space could be small—bgrization term is then quadratic on the label valfiés, ):

could correspond to very different environmental conditions. Take,
for example, the three images in figureThe two images which are £|I7,, = 7 Lf = Zsequen-zgi2 w1 IF(e3) = £ 1) 1% (2)
only 20 minutes apart are visually less similar than the two images cess

which are twelve hours apart. Propagating labels, here the time afhich is to be compared with the usual graph Laplacian term:
day, between the dawn and dusk images would most certainly result

in a less effective learning process. I£12 =£"LE =3
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o W 1 (%) = (o). (3)
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Fig. 3: The 30 sixes and 30 nines from the MNIST dataset used t(= % [T
derive the rotated sequences. g $
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Note this is not an additional graph prior term to thenearest- - .
neighbor Laplacian, but that it replaces it. Although it is possible =g —s—s s ot w2 S
to use higher-order temporal priors (i.e., more neighbors within eachig. 4: Left images corresponding to a rotated six (asterigkad a
sequence), in this paper we focus on linking consecutive points onlyotated nine (diamond#) sequence projected onto the first two PCA
Our regularization term has the obvious interpretation of the Squareébmponents_ Both sequences start at the bottom and go counter-
gradient off integrated along each sequence; thus, it cares aboockwise. The sequences are actually (parallel) spirals in the full
directional deriVatiVes along paths R]L I’ather than about the fU" three dimensional PCA Spacalght the rotated Sequences of sixes
gradient (which may be poorly constructed from the available sam¢red) and nines (blue) projected onto the first three PCA components.
ples in the problems we consider in this paper).

If the points along a sequence were also nearest neighbors, théabels differ drastically. Figuréa demonstrates this for a particular
the k-nearest-neighbor graph with a low value /o{perhaps even pair of six and nine sequences.

k = 1) would coincide or be very similar to our sequential graphs.  The every-degree dataset is subsampled at three and five degrees
However, in the problems we consider, the sequential structure is olgo create two additional datasets for investigating the effect of the re-
scured by other neighboring points that greatly differ in label value|ation of the within-to-between sequence distances. Training, cross-
This is clear in our experiments, where the best valuk with the  validation and evaluation sets are constructed from the 60 sequences
Laplacian prior is not very small. That s, for this type of problems, as follows. The elements of each sequence are assigned in an al-
no value ofk (or e if we use are-ball graph) will yield a graph sim-  ternating fashion to training, cross-validation and evaluation sets re-
ilar to the sequential graph. (In our experiments we have focusegulting in a training set containingl x 60 = 3660 images, and

on 1D output values, but method carries over to multidimensionagross-validation and evaluation sets containfiigx 60 = 3600
outputs in a straighforward way.) images each for the every-degree dataset. This is reduce2Rte-

The solution of this regularized least squares problem is analt 200-1 200 and 732-700-700 for the every three and every five
ogous to the original one but replacing the graph Laplacian madegree datasets, respectively. A percentage of the training set is la-
trix with L., the temporal graph Laplacian constructed from our sebeled (with the rotation angle) at approximately equal spacings with
quences. The solution is unique and is given by a basis functiofespect to angle. The 60 sequences of labeled and unlabeled images
expansion (depending on the RKHS) at each of the labeled and uh the training set form the “temporal” sequences for TLapRLSR.
labeled pointsf(x) = >, " @n K (xs,%), and the weightsy,, Comparisons are performed using both the native feature space,
of this expansion are given by the solution of a linear system of sizg, which the distance between images is the square-root of the sum
(M +N)x (M~ N). Inthis paper we use Gaussian kerngl§, ) of the squares of the pixel differences (Euclidean distance between
of width 0. As described, we fix the loss function to the squaredihe images treated as vectors), as well as in a reduced 3D space, in
regreSSIon error, Wh|Ch I’esults Ina Slmple algOI’Ithm. Othel’ formuWhich the images are projected onto the ﬁrst three principa| Compo_
lations are possible with our regularization, such as a hinge 10ss. nents computed over the training set and the difference between two

3. EXPERIMENTS images is the square-root of the sum of squares of the projection dif-
rences (Euclidean distance between the projected values). We re-
r to this reduced space as the principal component analysis (PCA)
bace. Figurda shows the distribution of the images corresponding
a particular pair of six and nine sequences in the two dimensional
space formed by the first two principal components. Note again how
samples from the different sequences can be closer to each other in
the feature space than they are to samples from the same sequence
3.1. Image data: rotated MNIST digits even though there is a 180 degree phase shift. This scenario becomes
This experiment investigates the challenging task of estimating theven more likely with the full 60 sequences. Figdkeplots all 60
orientations of handwritten digits that are very similar except for asequences in the 3D PCA space. Note how the sixes’ and nines’ se-
fixed rotation. For example, consider the digits in figRrét is diffi- guences interleave in a complex way, making it extremely hard to es-
cult even for a human observer to tell whether the digits are a six at timate the rotation angle. Although the angle along a sequence does
degrees or a nine at+ 180 degrees. Our dataset consists of rotatedvary smoothly, slight deviations outside the sequence can produce
versions of 30 sixes and 30 nines from the MNIST database showlarge angle deviations, and the smoothness assumptions built into a
in figure3. Each of the 30 nines are rotated counter-clockwise at ongsual graph Laplacian may not hold well here. Fighishows a 2D
degree intervals from 0 to 180 degrees (labels are 0 to 180 degreedpw of how the different approaches construct the graphs:ihe
and each of the 30 sixes are rotated counter-clockwise at one degreearest-neighbor graph links both sixes and nines (thus encouraging
intervals from 180 to 360 degrees (labels are 180 to 360 degrees) frem to have the same label, even though it differs by 180 degrees),
atotal of10 860 images. This results in a dataset in whickix might ~ while the temporal graph does not make that mistake.
appear very similar to a nine except for a 180 degree phase differ- We determined optimal parameter values using cross-validation.
ence Therefore, Euclidean distances in image space would considéor both the temporal aneknn approaches we sefi = 102 (this
an upright 9 and an upside-down 6 as neighbors even though theialue was shown to give reasonable results for both approaches). Fo

We performed three experiments using both synthetic and real worlfé
image datasets. Each experiment compares the results of the pr,
posed method, temporal Laplacian regularized least squares-regre
sion (TLapRLSR) of eq.23), with standard Laplacian regularized
least squares regression (LapRLSR) of &). Gaussian radial basis
function (RBF) kernels are used in all cases.
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Fig. 5: Examples of graphs constructed for the rotated digits problem 0
by the proposed approach using the sequence information (left) a
the standard approach with 6 nearest neighbors (right).
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r]‘—dlg. 7: True (Y-axis) vs predicted (X) angle on testimages for TLap-
RLSR (left) and LapRLSR (right) for the every-one-degree rotated

so00 digits problem. The nines are plotted from @ 180 and the sixes

4000 from 180 to 36C°. Perfect performance: diagonal red line.
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every-one-degree rotated digit problem in the native space. 002 i abeled i O ° 02 i abeled Soints O° 1

the k-nn approach we |n|t|a||y st = 6 for Constructing the adja_ F|g 8:.Dependence of the prediction etjrc.)l’ on the ratio of labeled
cency matrix following the approach of]f Optimal values for the ~POints in the every-one-degree rotated digit problem (PCA space).
remaining two parametersy ando, the width of the RBF kernel,

are determined using the training and cross-validation sets. Figu ; ; - ) . :
6 shows the prediction error for ranges of values of these paramé"-t one minute intervals from 4:40am to 7:15pm. l_:lgllﬂif\ows im-
ages from 5:49 am, 5:20 pm, and 5:49 pm. The images are approx-

ters for the temporal an&-nn approaches for the native space for - ) - o
P P p ately evenly divided into training, cross-validation, and evalua-

the rotated every one degree dataset. The plots for the PCA spat datasets. A imately 20% of the training i labeled
are similar. It is clear that the temporal information reduces the pre-Ion atasets. Approximately o o the fraining Images are labele

diction error, especially towards the right of the plots, where Iarger(Wlth the. time of day) at equal spaced time intervals. The images in
values ofy; mean the graph Laplacian is more heavily weighed. the tralnln_g set for_m the s!r_lgle temporal sequence for TLa_pRLSR.
Figure 7 compares the predicted versus true angles for the tes‘lEemporaI |nfc_)rmat|on is crltlca_l for |ncorpo_rat|ng unlabeled images
images for the every-one-degree rotated digits. Itis very remarkabl'é‘?0 the learning process for this prob_lem since (1) parts of the scene
that TLapRLSR yields almost perfect prediction except in two Smallmlght change rapidly over short time intervals due to clouds that ob-

areas where it makes some large errors, while LapRLSR makes qui?&ure the sun or enter the scene, other objects, etc., and (2) images

large errors almost everywhere. This results in TLapRLSR haV§,pa(:ed far apart in time, such as from the morning and afternoon,
n look similar.

ing always a smaller mean absolute error, even though sometim&& ) . ¢ . hth .
LapRLSR does achieve the better mean squared error. Figure Agfeun, comparisons are per ormed using bot t. e native and re-
ced image spaces. The images are resizétht@4 pixels. We set

lists the prediction errors achieved by the optimal parameter settingg“ 5 > ; .
and for different numbers of neighbdesor the LapRLSR approach. 14 = 107" andk = 6, and determine optimal values for the remain-

These results correspond to a training set in which 20% of the imag 49 two pa_rgmetersn e_mqla, through crpss-vahdatnon. _Flgum)

are labeled. Figur8 shows the dependence of the two approache sts the minimum predlcthn errors achieved by the optimal param-
on the percentage of labeled data for the every one degree rotatg&er settings. TLapRLSR is again shown to outperform LapRLSR,
digits problem. Also shown is the prediction error for the fully su- _Oth in mean squared error and mean absolute error, by a large mar-
pervised case, in which only the labeled training data is used (this &N (error two or three times smaller).

equivalent to setting; = 0, effectively dropping the graph Lapla- 3.3. Image data: estimating visibility

cian term from the objective function). Learning is performed tenye investigate the problem of estimating atmospheric visibility from
times for each ratio value using randomly perturbed training setymages of scenes with objects at a range of distances. Atmospheric
The error bars in the plot indicate the standard deviation of the preyisipility is typically measured using a transmissometer which com-
diction error. Note that our proposed TLapRLSR approach resultptes the extinction coefficiemty of the atmosphere based on the

in a significantly lower prediction error for a broad range of labeledattenuation of a laser beam transmitted from an emitter to a receiver
data ratios. The margin of improvement often increases as the ratighaced kilometers apattiex is defined as the fractional attenuation

of labeled data decreases which makes the proposed approach pgftight per unit distance and is reported in terms of inverse distance
ticularly attractive for the practically important problems were thereg,ch as inverse megameters (Mh). Transmissometers are expen-

is very little labeled data. The increase for TLapRLSR for high ra-sjve instruments that require accurate calibration and so the option
tios for the PCA space indicates that the valughat was found to ¢ using commodity digital cameras is appealing even if the mea-
be optimal for a ratio 0.2 starts to penalize the proposed approachsyrements are not as accurate. The challenge is to learn the highly
as the ratio of labeled points increases. nonlinear mapping from the complex image space tdthealues.

3.2. Image data: estimating time of day Our dataset consists of grayscale images of the Phoenix, Ari-
This experiment investigates the problem of estimating the time otona region taken every 15 minutes between 8am and 5pm for two
day at which an image is captured. The dataset consists of 8#@eeks. The images are captured at 0, 15, 30, and 45 minutes past

I%rayscale images of an outdoor scene acquired by a static camera



Rotated Digits : A
Every 1 Degree Every 3 Degrees Every 5 DegreeL Time of Day | Visibility

Native PCA Native PCA Native PCA [Nativd PCA |Nativg PCA

TLap |92.7 @.59|2703(35.6|301 (10.3|3670(47.9| 529 (15.9 [3880(45.9|0.111] 0.568 |116.7/159.2
Lap k=1] 189 (8.47)3330 (40.1)331 (13.0)4360 (50.9)2140 (33.3/4650 (53.5)0.346] 1.07 |120.8/161.6
Lap k=2|32.9 (2.88)3180 (38.5)240(10.9) 4150 (49.4)1082 (23.5)¢#590 (53.2)0.330] 1.02 |119.0/160.0
j i i Lap £=3|49.2 (4.26)3130 (38.0)258 (11.3)4080 (49.1) 716 (10.5)4540 (53.1)0.329 1.03 |119.5/159.8

i . . Lap k=4|27.3(2.87) 3090 (37.5)279 (11.6)4060 (49.0) 613 (18.6)4500 (53.0)0.332] 0.967 |120.4/159.9
Fig. 9: Images showing diff Lap k=5|42.7 (3.92)3080 (37.4)282 (11.7)4040 (49.0) 541 (17.7)4500 (53.0)0.345] 0.930 |119.6/159.9
els ((a) good, (b) moderate, (c) poor) accordingLap %=6]41.7 (3.82)3060 (37.2)295 (12.1)4030 (49.0) 494 (16.9)4500 (53.0)0.348] 0.930 |118.3/160.]]
to the coefficient of extinctiohe as measured (-2 k=7]52.0 (4.42)3040 (37.1)294 (12.1)4020 (49.0) 449(15.9)[4480 (53.0)0.349 0.995 [118.0/160.4

with a transmissometer. Fig. 10: Prediction errors with optimal parameter settings: mean square (rbsafute).
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the hour. We also have transmissometer measurementg o’er ~ Our approach is simpler and has a more efficient, closed-form solu-
the same period but only at the top of each hour. FiguskBows im-  tion. Another related work is that of] for manifold learning (rather
ages corresponding to different value$gf. Note the complexity of  than semi-supervised regression). They apply Isomap to sequential
the scene and that there are potentially lots of factors that can caudata by modifying the:-nearest-neighbor graph to reduce the dis-
changes in the scene besides atmospheric scattering and absorpti@mce between temporally adjacent points. Our approach does not
Or, equivalently, two images might look similar in some regions butmodify the k-nearest-neighbor graph but actually replaces it with
have differentey values. The temporal regularization method pro-the sequential one.

posed in this paper is motivated by the problem of how to include 5. CONCLUSION

the unlabeled images, those for which we do not have concurre% . . . . .
. ! . . e have considered a semi-supervised regression setting where the
transmissometer readings, in the learning process.

. . i .. sypervision information consists not only of the labels at a small
There are 457 images in our dataset (some images are missi

of which 123 are labeled. We set aside every other labeled image oportion of the input patterns, but of the neighborhood graph of

the test dataset. The remaining labeled and unlabeled images forgae inputs as a collection of disconnected sequences. Our algorithm
the 14 temporal sequences for TLapRLSR. Wesset= 10~° and apts Laplacian regularization for regression with this graph. We

. - al have shown it to improve consistently over using as regularizer the
k = 6, and determine optimal values for the remaining two param P y 9 9

e X ‘k-nearest-neighbor graph of the in in where this neigh-
eters,yr ando, through cross validation on the test set. Figlite k-nearest-neighbor graph of the inputs in cases where this neig

borhood information is not a good predictor of the label—for ex-

lists the minimum prediction errors achieved by the optimal parameémple, when nearby inputs may have very different labels. This is

ter settinr?s.ltr'll' he F;{i’ﬁ"i?d agpzoach ?gain ogtperforms the StanOli?figrticularly useful for problems with temporal structure and high-
approach affnough this ime by fess ol a margin. dimensional complex inputs, such as images, where it is very hard to
4. RELATED WORK tell which of the many things that change from image to image have

an effect on the label. We expect our approach would also be useful

Isgngg?:e?:lgrpspI?:;?ogiinsgfnﬁdsbgg:\igi dmlgg(rer!?r,‘nghzvr:svrferi&ebr)%r classification problems of this type; and to problems where the
; A “neighborhood information is not temporal f other :
hood graphs. Besides the output value or label of a pattern, di heighborhood information is not temporal but of other types
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