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ABSTRACT

We consider a semi-supervised regression setting where we have
temporal sequences of partially labeled data, under the assumption
that the labels should vary slowly along a sequence, but that nearby
points in input space may have drastically different labels. The set-
ting is motivated by problems such as determining the time of the day
or the level of air visibility given an image of a landscape, which is
hard because the time or visibility label is related in a complex way
with the pixel values. We propose a regression framework regular-
ized with a graph Laplacian prior, where the graph is given by the
sequential information. We show this outperforms graphs learned in
an unsupervised way for detecting the rotation of MNIST digits and
estimating the time of day an image is captured, and provides modest
improvement in the challenging visibility problem.

Index Terms— semi-supervised learning, scene estimation

1. INTRODUCTION
While specialized equipment is now available to measure the attenu-
ation and scattering of light, using low cost commodity digital cam-
eras to estimate atmospheric visibility holds great appeal. The chal-
lenge, of course, is to learn the likely non-linear mapping from the
complex image space to an index of visibility. Even in a static scene,
increased or decreased visibility due to the attenuation and scatter-
ing of light is only one of many possible sources for image variation
and usually results in subtle differences. While specialized imaging
systems for visibility estimation have been proposed [9, 10], there
has been little work on using general purpose cameras.

A similar example is estimating the time of the day from an im-
age from a given landscape. Intuitively, the overall illumination,
color, the arrangement of shadows, etc. change in a manner that
is strongly correlated with the time of the day in a given scene, as
shown in [8]. However, there exist many other changes in the image
that are uncorrelated with it: moving objects (cars, clouds, planes,
etc.) which cause changes in the scene but also in the overall illu-
mination; lights and reflections from objects; etc. With so much
variability in the image space, and settings with little labeled data,
how can we learn a predictive mapping (regression or classification)
that is able to detect the inputs that really matter?

The potential disconnect between image features and environ-
mental conditions presents a particularly difficult challenge for semi-
supervised learning techniques where not all of the training data is
labeled. Semi-supervised learning techniques typically exploit the
topology of the input space to propagate the labels in the training set.
However, two images of a static scene could appear very similar—
that is, the distance between them in input space could be small—but
could correspond to very different environmental conditions. Take,
for example, the three images in figure1. The two images which are
only 20 minutes apart are visually less similar than the two images
which are twelve hours apart. Propagating labels, here the time of
day, between the dawn and dusk images would most certainly result
in a less effective learning process.
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Fig. 1: Three sample images from the time of day problem.

We introduce a technique by which additional information about
the data in the form of temporal priors is shown to be more effec-
tive for semi-supervised learning than techniques which exploit the
topology of the input space. We first study the technique in a syn-
thetic problem where we want to learn functions that depend on the
input space in a complex way, but where the availability of tempo-
ral information provides crucial clues to predict the label. We then
consider two problems: estimating time of the day, and estimating
visibility, in both cases using static images of a scene over a period
of time, only a portion of which are labeled.

2. REGULARIZATION WITH TEMPORAL PRIORS
Assume we have a training set ofN labeled points{(xn,yn)}N

n=1,
wherexn ∈ R

L andyn ∈ R
D, andM additional unlabeled points

{xm}M
m=1. All M + N inputs come as a collection of sequences

of the form(x1,x2,x3, . . . ), each of which is only partially labeled
with y-values. We want to estimate a regression mappingf that
predicts the labely for an inputx .We consider a least-squares re-
gression setting with a graph Laplacian regularization [1, 2]:

E(f) =
PN

n=1
‖yn − f(xn)‖2 + γA ‖f‖2

K
+ γI ‖f‖

2

G
(1)

where the‖f‖2

K
term refers to an RKHS norm (which encourages

smoothness irrespectively of the training data distribution), and the
‖f‖2

G
term refers to the graph Laplacian (which encourages smooth-

ness off with respect to the distribution of both labeled and unla-
beled training points). The graph Laplacian isL = D − W, where
W is a given affinity matrix of(N +M)×(N +M) (such as the ad-
jacency matrix or a Gaussian affinity matrix), andD = diag (W1)
is the degree matrix (where1 is a column vector of ones). Ordinar-
ily, one might learn a neighborhood graph in an unsupervised way,
such as thek-nearest-neighbor graph for a suitable value ofk, but for
the reasons mentioned in the introduction, this might be a poor regu-
larizer (which encourages nearby pointsx to have similary-values,
even though their truey-values may be very different). Here we pro-
pose to construct the graph as the collection of input sequences in
x-space,under the assumption thaty varies slowly as a function of
time but not necessarily as a function ofx. Thus, if allM +N points
are indexed in order by sequence, the corresponding adjacency ma-
trix will contain ones in the sub- and super-diagonals (except at a
sequence end or start), and zeroes elsewhere. The sequential regu-
larization term is then quadratic on the label valuesf(xn):
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which is to be compared with the usual graph Laplacian term:
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wnm ‖f(xn) − f(xm)‖2

. (3)



Fig. 2: What are the angles of these digits? Are they sixes atx

degrees or nines atx + 180 degrees?

Fig. 3: The 30 sixes and 30 nines from the MNIST dataset used to
derive the rotated sequences.

Note this is not an additional graph prior term to thek-nearest-
neighbor Laplacian, but that it replaces it. Although it is possible
to use higher-order temporal priors (i.e., more neighbors within each
sequence), in this paper we focus on linking consecutive points only.
Our regularization term has the obvious interpretation of the squared
gradient off integrated along each sequence; thus, it cares about
directional derivatives along paths inRL rather than about the full
gradient (which may be poorly constructed from the available sam-
ples in the problems we consider in this paper).

If the points along a sequence were also nearest neighbors, then
the k-nearest-neighbor graph with a low value ofk (perhaps even
k = 1) would coincide or be very similar to our sequential graphs.
However, in the problems we consider, the sequential structure is ob-
scured by other neighboring points that greatly differ in label value.
This is clear in our experiments, where the best value ofk with the
Laplacian prior is not very small. That is, for this type of problems,
no value ofk (or ǫ if we use anǫ-ball graph) will yield a graph sim-
ilar to the sequential graph. (In our experiments we have focused
on 1D output values, but method carries over to multidimensional
outputs in a straighforward way.)

The solution of this regularized least squares problem is anal-
ogous to the original one but replacing the graph Laplacian ma-
trix with Lt, the temporal graph Laplacian constructed from our se-
quences. The solution is unique and is given by a basis function
expansion (depending on the RKHS) at each of the labeled and un-
labeled points,f(x) =

PN+M

n=1
αnK(xn,x), and the weightsαn

of this expansion are given by the solution of a linear system of size
(M +N)×(M +N). In this paper we use Gaussian kernelsK(·, ·)
of width σ. As described, we fix the loss function to the squared
regression error, which results in a simple algorithm. Other formu-
lations are possible with our regularization, such as a hinge loss.

3. EXPERIMENTS
We performed three experiments using both synthetic and real world
image datasets. Each experiment compares the results of the pro-
posed method, temporal Laplacian regularized least squares regres-
sion (TLapRLSR) of eq. (2), with standard Laplacian regularized
least squares regression (LapRLSR) of eq. (3). Gaussian radial basis
function (RBF) kernels are used in all cases.

3.1. Image data: rotated MNIST digits
This experiment investigates the challenging task of estimating the
orientations of handwritten digits that are very similar except for a
fixed rotation. For example, consider the digits in figure2. It is diffi-
cult even for a human observer to tell whether the digits are a six atx

degrees or a nine atx + 180 degrees. Our dataset consists of rotated
versions of 30 sixes and 30 nines from the MNIST database shown
in figure3. Each of the 30 nines are rotated counter-clockwise at one
degree intervals from 0 to 180 degrees (labels are 0 to 180 degrees)
and each of the 30 sixes are rotated counter-clockwise at one degree
intervals from 180 to 360 degrees (labels are 180 to 360 degrees) for
a total of10 860 images. This results in a dataset in whicha six might
appear very similar to a nine except for a 180 degree phase differ-
ence. Therefore, Euclidean distances in image space would consider
an upright 9 and an upside-down 6 as neighbors even though their
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Fig. 4: Left: images corresponding to a rotated six (asterisks∗) and a
rotated nine (diamonds�) sequence projected onto the first two PCA
components. Both sequences start at the bottom and go counter-
clockwise. The sequences are actually (parallel) spirals in the full
three dimensional PCA space.Right: the rotated sequences of sixes
(red) and nines (blue) projected onto the first three PCA components.

labels differ drastically. Figure4a demonstrates this for a particular
pair of six and nine sequences.

The every-degree dataset is subsampled at three and five degrees
to create two additional datasets for investigating the effect of the re-
lation of the within-to-between sequence distances. Training, cross-
validation and evaluation sets are constructed from the 60 sequences
as follows. The elements of each sequence are assigned in an al-
ternating fashion to training, cross-validation and evaluation sets re-
sulting in a training set containing61 × 60 = 3 660 images, and
cross-validation and evaluation sets containing60 × 60 = 3 600
images each for the every-degree dataset. This is reduced to1 220–
1 200–1 200 and 732–700–700 for the every three and every five
degree datasets, respectively. A percentage of the training set is la-
beled (with the rotation angle) at approximately equal spacings with
respect to angle. The 60 sequences of labeled and unlabeled images
in the training set form the “temporal” sequences for TLapRLSR.

Comparisons are performed using both the native feature space,
in which the distance between images is the square-root of the sum
of the squares of the pixel differences (Euclidean distance between
the images treated as vectors), as well as in a reduced 3D space, in
which the images are projected onto the first three principal compo-
nents computed over the training set and the difference between two
images is the square-root of the sum of squares of the projection dif-
ferences (Euclidean distance between the projected values). We re-
fer to this reduced space as the principal component analysis (PCA)
space. Figure4a shows the distribution of the images corresponding
to a particular pair of six and nine sequences in the two dimensional
space formed by the first two principal components. Note again how
samples from the different sequences can be closer to each other in
the feature space than they are to samples from the same sequence
even though there is a 180 degree phase shift. This scenario becomes
even more likely with the full 60 sequences. Figure4b plots all 60
sequences in the 3D PCA space. Note how the sixes’ and nines’ se-
quences interleave in a complex way, making it extremely hard to es-
timate the rotation angle. Although the angle along a sequence does
vary smoothly, slight deviations outside the sequence can produce
large angle deviations, and the smoothness assumptions built into a
usual graph Laplacian may not hold well here. Figure5 shows a 2D
view of how the different approaches construct the graphs: thek-
nearest-neighbor graph links both sixes and nines (thus encouraging
them to have the same label, even though it differs by 180 degrees),
while the temporal graph does not make that mistake.

We determined optimal parameter values using cross-validation.
For both the temporal andk-nn approaches we setγA = 10−3 (this
value was shown to give reasonable results for both approaches). For



Circles◦: sixes;
asterisks∗: nines;
edges in green

Fig. 5: Examples of graphs constructed for the rotated digits problem
by the proposed approach using the sequence information (left) and
the standard approach with 6 nearest neighbors (right).
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Fig. 6: Prediction errors in regions bracketing the optimal free pa-
rameter values for TLapRLSR (left) and LapRLSR (right) for the
every-one-degree rotated digit problem in the native space.

thek-nn approach we initially setk = 6 for constructing the adja-
cency matrix following the approach of [1]. Optimal values for the
remaining two parameters,γI andσ, the width of the RBF kernel,
are determined using the training and cross-validation sets. Figure
6 shows the prediction error for ranges of values of these parame-
ters for the temporal andk-nn approaches for the native space for
the rotated every one degree dataset. The plots for the PCA space
are similar. It is clear that the temporal information reduces the pre-
diction error, especially towards the right of the plots, where larger
values ofγI mean the graph Laplacian is more heavily weighed.

Figure7 compares the predicted versus true angles for the test
images for the every-one-degree rotated digits. It is very remarkable
that TLapRLSR yields almost perfect prediction except in two small
areas where it makes some large errors, while LapRLSR makes quite
large errors almost everywhere. This results in TLapRLSR hav-
ing always a smaller mean absolute error, even though sometimes
LapRLSR does achieve the better mean squared error. Figure10
lists the prediction errors achieved by the optimal parameter settings
and for different numbers of neighborsk for the LapRLSR approach.
These results correspond to a training set in which 20% of the images
are labeled. Figure8 shows the dependence of the two approaches
on the percentage of labeled data for the every one degree rotated
digits problem. Also shown is the prediction error for the fully su-
pervised case, in which only the labeled training data is used (this is
equivalent to settingγI = 0, effectively dropping the graph Lapla-
cian term from the objective function). Learning is performed ten
times for each ratio value using randomly perturbed training sets.
The error bars in the plot indicate the standard deviation of the pre-
diction error. Note that our proposed TLapRLSR approach results
in a significantly lower prediction error for a broad range of labeled
data ratios. The margin of improvement often increases as the ratio
of labeled data decreases which makes the proposed approach par-
ticularly attractive for the practically important problems were there
is very little labeled data. The increase for TLapRLSR for high ra-
tios for the PCA space indicates that the valueγI that was found to
be optimal for a ratio of0.2 starts to penalize the proposed approach
as the ratio of labeled points increases.

3.2. Image data: estimating time of day
This experiment investigates the problem of estimating the time of
day at which an image is captured. The dataset consists of 870
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Fig. 7: True (Y–axis) vs predicted (X) angle on test images for TLap-
RLSR (left) and LapRLSR (right) for the every-one-degree rotated
digits problem. The nines are plotted from 0◦ to 180◦ and the sixes
from 180◦ to 360◦. Perfect performance: diagonal red line.
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Fig. 8: Dependence of the prediction error on the ratio of labeled
points in the every-one-degree rotated digit problem (PCA space).

grayscale images of an outdoor scene acquired by a static camera
at one minute intervals from 4:40am to 7:15pm. Figure1 shows im-
ages from 5:49 am, 5:20 pm, and 5:49 pm. The images are approx-
imately evenly divided into training, cross-validation, and evalua-
tion datasets. Approximately 20% of the training images are labeled
(with the time of day) at equal spaced time intervals. The images in
the training set form the single temporal sequence for TLapRLSR.
Temporal information is critical for incorporating unlabeled images
into the learning process for this problem since (1) parts of the scene
might change rapidly over short time intervals due to clouds that ob-
scure the sun or enter the scene, other objects, etc., and (2) images
spaced far apart in time, such as from the morning and afternoon,
can look similar.

Again, comparisons are performed using both the native and re-
duced image spaces. The images are resized to64×64 pixels. We set
γA = 10−3 andk = 6, and determine optimal values for the remain-
ing two parameters,γI andσ, through cross-validation. Figure10
lists the minimum prediction errors achieved by the optimal param-
eter settings. TLapRLSR is again shown to outperform LapRLSR,
both in mean squared error and mean absolute error, by a large mar-
gin (error two or three times smaller).

3.3. Image data: estimating visibility
We investigate the problem of estimating atmospheric visibility from
images of scenes with objects at a range of distances. Atmospheric
visibility is typically measured using a transmissometer which com-
putes the extinction coefficientbext of the atmosphere based on the
attenuation of a laser beam transmitted from an emitter to a receiver
spaced kilometers apart.bext is defined as the fractional attenuation
of light per unit distance and is reported in terms of inverse distance
such as inverse megameters (Mm−1). Transmissometers are expen-
sive instruments that require accurate calibration and so the option
of using commodity digital cameras is appealing even if the mea-
surements are not as accurate. The challenge is to learn the highly
nonlinear mapping from the complex image space to thebext values.

Our dataset consists of grayscale images of the Phoenix, Ari-
zona region taken every 15 minutes between 8am and 5pm for two
weeks. The images are captured at 0, 15, 30, and 45 minutes past
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Fig. 9: Images showing different visibility lev-
els ((a) good, (b) moderate, (c) poor) according
to the coefficient of extinctionbext as measured
with a transmissometer.

Rotated Digits Time of Day VisibilityEvery 1 Degree Every 3 Degrees Every 5 Degrees
Native PCA Native PCA Native PCA Native PCA Native PCA

TLap 92.7 (2.59) 2703(35.6) 301 (10.3) 3670(47.9) 529 (15.3) 3880(45.9) 0.111 0.568 116.7 159.2
Lapk=1 189 (8.47) 3330 (40.1)331 (13.0)4360 (50.9)2140 (33.3)4650 (53.5)0.346 1.07 120.8 161.6
Lapk=2 32.9 (2.88)3180 (38.5)240(10.9) 4150 (49.4)1082 (23.5)4590 (53.2)0.330 1.02 119.0 160.0
Lapk=3 49.2 (4.26)3130 (38.0)258 (11.3)4080 (49.1)716 (10.5)4540 (53.1)0.329 1.03 119.5 159.8
Lapk=4 27.3(2.87) 3090 (37.5)279 (11.6)4060 (49.0)613 (18.6)4500 (53.0)0.332 0.967 120.4 159.9
Lapk=5 42.7 (3.92)3080 (37.4)282 (11.7)4040 (49.0)541 (17.7)4500 (53.0)0.345 0.930 119.6 159.9
Lapk=6 41.7 (3.82)3060 (37.2)295 (12.1)4030 (49.0)494 (16.9)4500 (53.0)0.348 0.930 118.3 160.1
Lapk=7 52.0 (4.42)3040 (37.1)294 (12.1)4020 (49.0)449(15.9) 4480 (53.0)0.349 0.995 118.0 160.4

Fig. 10: Prediction errors with optimal parameter settings: mean square (mean absolute).

the hour. We also have transmissometer measurements ofbext over
the same period but only at the top of each hour. Figure9 shows im-
ages corresponding to different values ofbext. Note the complexity of
the scene and that there are potentially lots of factors that can cause
changes in the scene besides atmospheric scattering and absorption.
Or, equivalently, two images might look similar in some regions but
have differentbext values. The temporal regularization method pro-
posed in this paper is motivated by the problem of how to include
the unlabeled images, those for which we do not have concurrent
transmissometer readings, in the learning process.

There are 457 images in our dataset (some images are missing)
of which 123 are labeled. We set aside every other labeled image as
the test dataset. The remaining labeled and unlabeled images form
the 14 temporal sequences for TLapRLSR. We setγA = 10−3 and
k = 6, and determine optimal values for the remaining two param-
eters,γI andσ, through cross validation on the test set. Figure10
lists the minimum prediction errors achieved by the optimal parame-
ter settings. The proposed approach again outperforms the standard
approach although this time by less of a margin.

4. RELATED WORK

Temporal priors have been used in many models, however we fo-
cus on their application to semi-supervised learning and neighbor-
hood graphs. Besides the output value or label of a pattern, dif-
ferent types of supervisory information have been proposed in the
semi-supervised literature. Constraints (must-link, cannot-link) in
clustering indicate more or less strongly whether a pair of patterns
should be in the same or in different clusters (e.g. [3]). Rank or-
der constraints [4] specify that the scalar output value of a pattern A
should be greater or equal than that of a pattern B. This information
may then be combined with a neighborhood graph that is learnt in
an unsupervised way (k-nearest-neighbor orǫ-ball) from the entire
input patterns (labeled or unlabeled). In contrast, our supervisory
information essentially consists of the neighborhood graph, in the
form of disconnected sequences of input patterns (derived from a
known temporal structure). While this information may not be use-
ful in all situations or may not always be available, we have shown
that it is very helpful when the unsupervised neighborhood infor-
mation conflicts strongly with the output values or labels. In this
case, using the unsupervised neighborhood information incorrectly
regularizes the problem, and not using it makes the problem too
unconstrained with sparse label information. Note that, as done in
[4], order preferences can be used to encode similarities of the form
a ≪ f(xn) − f(xm) ≪ b, and one could chain pairs of this form
along a sequence. However, this is limited to scalar outputs, and the
formulation using a sequential neighborhood graph is simpler.

Our work is also related to the tracking approach of [5]. They
consider the problem of mapping a given time series, such as a video
of a moving object, to a state space, such as the location of the ob-
ject. Unlike our objective function, theirs depends also on all the
unknown output values, which are taken as parameters, and a tem-
poral prior is applied to them rather than to the predictor function.

Our approach is simpler and has a more efficient, closed-form solu-
tion. Another related work is that of [6] for manifold learning (rather
than semi-supervised regression). They apply Isomap to sequential
data by modifying thek-nearest-neighbor graph to reduce the dis-
tance between temporally adjacent points. Our approach does not
modify the k-nearest-neighbor graph but actually replaces it with
the sequential one.

5. CONCLUSION
We have considered a semi-supervised regression setting where the
supervision information consists not only of the labels at a small
proportion of the input patterns, but of the neighborhood graph of
the inputs as a collection of disconnected sequences. Our algorithm
adapts Laplacian regularization for regression with this graph. We
have shown it to improve consistently over using as regularizer the
k-nearest-neighbor graph of the inputs in cases where this neigh-
borhood information is not a good predictor of the label—for ex-
ample, when nearby inputs may have very different labels. This is
particularly useful for problems with temporal structure and high-
dimensional complex inputs, such as images, where it is very hard to
tell which of the many things that change from image to image have
an effect on the label. We expect our approach would also be useful
for classification problems of this type; and to problems where the
neighborhood information is not temporal but of other types.
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