
Learning independent, diverse

binary hash functions:

pruning and locality

❦

Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science

University of California, Merced

http://eecs.ucmerced.edu

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu


Large scale image retrieval

Searching a large database for images that are closest to a query.

A nearest neighbours problem on N vectors in R
D with large N and D.

Query
Database

Top retrieved
image(s)

A fast, approximate approach: binary hashing.
p. 1



Large scale image retrieval: binary hash functions

A binary hash function h maps a high-dimensional vector x ∈ R
D to a

b-bit vector z = h(x) = (h1(x), . . . , hb(x)) ∈ {0, 1}b. It should:

❖ preserve neighbours: map (dis)similar images to (dis)similar codes
(in Hamming distance)

❖ be fast to compute.

111

1 111

111

000

0 0

000

image x ∈ R
D binary code

z = h(x) ∈ {0, 1}b

XOR

Hamming distance = 3
p. 2



Large scale image retrieval: binary hash functions

Scalability: dataset with millions or billions of high-dimensional images.

❖ Time complexity: O(Nb) instead of O(ND) with small constants.
Bit operations to compute Hamming distances instead of floating point operations to compute
Euclidean distances.

❖ Space complexity: O(Nb) instead of O(ND) with small constants.
We can fit the binary codes of the entire dataset in faster memory, further speeding up the search.

Ex: N = 106 points, D = 300 and b = 32:

space time

Original space 1.2 GB 20 ms

Hamming space 4 MB 30 µs

We need to learn the binary hash function h from a training set.
Ideally, we’d optimise precision/recall directly, but this is difficult.
Instead, one often optimises a proxy objective, usually derived from
dimensionality reduction.

p. 3



Supervised hashing: similarity-based objective functions

A similarity matrix W determines similar and dissimilar pairs of points
among the points in the training set X = (x1, . . . ,xN ), for example:

wnm =







+1 xn and xm are similar

−1 xn and xm are dissimilar

0 we do not know.

Then we learn the b-bit hash function h: RD → {−1,+1}b by minimising
an objective function based on W, e.g. the Laplacian loss:

L(h) =
N
∑

n,m=1

wnm ‖h(xn)− h(xm)‖
2

s.t. h(X)Th(X) = NIb.

The objective tries to preserve the point neighbourhoods and the
constraints make the single-bit functions differ from each other.
While we focus on Laplacian loss for simplicity, other loss functions can also be used (KSH, BRE, etc.).

The hash function is typically a thresholded linear function.

p. 4



Optimisation-based approaches

Much binary hashing work has studied how to optimise this problem.
❖ Relaxation (e.g. Liu et al., 2012): relax the step function or binary codes (ignoring the binary nature of

the problem), optimise the objective continuously and truncate the result.

❖ Two-step methods (Lin et.al., 2013, 2014): first, define the objective over the binary codes and
optimise it approximately; then, fit the hash function to these the codes.

❖ Method of auxiliary coordinates (R. & C.-P., NIPS 2016): this achieves the lowest objective value by
respecting the binary nature of the problem and optimising the codes and the hash function jointly.

Limitations: difficult, slow optimisation:

❖ Nonconvex, nonsmooth: the hash function outputs binary values.
Underlying problem of finding the binary codes is an NP-complete optimisation over Nb variables.

❖ The b single-bit hash functions are coupled.
To avoid trivial solutions where all codes are the same.

❖ Slow optimisation, doesn’t scale beyond a few thousand points.

❖ Optimising the objective very accurately helps, but doesn’t seem to
produce a much better precision/recall.

Is optimising all the b functions jointly crucial anyway? In fact, it isn’t.
p. 5



An ensemble diversity approach (Carreira-Perpiñán & Raziperchikolaei,
NIPS 2016)

It is possible to learn a very good hash function h: RD → {−1,+1}b by

simply optimising each of the b single-bit hash functions h1(x), . . . , hb(x)
independently of the others, and making them diverse by other means,
not optimisation-based.

Independent Laplacian Hashing (ILH): optimise the single-bit objective
b times independently to obtain h1(x), . . . , hb(x):

L(h) =
N
∑

n,m=1

wnm(h(xn)− h(xm))
2 h: RD → {−1,+1}.

An additional consequence: while in the b-bit case there exist many different objective functions, they all
become essentially identical in the b = 1 case, and have the form of a binary quadratic function (a Markov
random field) minz zTAz with z ∈ {−1,+1}N for a certain matrix AN×N :

Objective L(h) b-bit 1-bit

KSH (zTnzm − bwnm)2 −2wnmznzm+ constant

BRE
(

1

b
‖zn − zm‖2 − wnm

)

2
−4(2− wnm)znzm+ constant

Laplacian wnm ‖zn − zm‖2 −2wnmznzm+ constant
p. 6



An ensemble diversity approach (Carreira-Perpiñán & Raziperchikolaei,
NIPS 2016)

If we optimise the same objective function b times, we get b identical
hash functions and we gain nothing over a single hash function.

How to make sure that the b hash functions are different from each
other and their combination results in good retrieval?

ILH uses diversity techniques from the ensemble learning literature:

❖ Different training sets (ILHt):
Each hash function uses a training set different from the rest.
Sampled randomly from the available training data.

❖ Different initializations (ILHi):
Each hash function is initialised randomly.

❖ Different feature subsets (ILHf):
Each hash function is trained on a random subset of features.

Of these, ILHt works best in practice, and we focus on it.

p. 7



Advantages of Independent Laplacian Hashing (ILH)

Learning the b single-bit hash functions independently is simple and
works well:

❖ Most importantly, and perhaps surprisingly, ILH is better than or
comparable to the optimisation-based methods in retrieval tasks,
particularly as one increases the number of bits b.

❖ Much simpler and faster optimisation.
b independent problems each over N binary codes rather than 1 problem with Nb binary codes.

❖ Training the b hash functions is embarrassingly parallel.

❖ ILH can scale to larger training sets per bit, and overall use more
training data that optimisation-based approaches.
We can easily use millions of points in learning the hash functions.

❖ To get the solution for b+ 1 bits we just need to take a solution with
b bits and add one more bit, which is helpful for model selection.

In this paper, we propose two simple but effective improvements to ILH.
p. 8



1. Pruning a set of hash functions: ILH-prune

Given a set of b single-bit hash functions, we want to select a subset of
s < b hash functions which performs comparably well in a retrieval task,
but is therefore faster at run time.
This is possible because some hash functions may be redundant or ineffective.

We seek the subset of hash functions that maximises the precision on
a given test set of queries. A brute-force search is impractical because
there are

(

b

s

)

subsets. We solve this combinatorial problem
approximately with a greedy algorithm, sequential forward selection:

❖ Starting with an empty set, repeatedly add the hash function that,
when combined with the current set, gives highest precision.

❖ Stop when we reach a user-set value for:

✦ the number s of functions, or. . .

✦ the percentage of the precision of the entire set of b functions.

Pruning can be applied to post-process the hash functions of any
method, not just ILH, such as optimisation-based approaches.

p. 9



ILH-prune: precision as a function of the number of bits

CIFAR dataset, N = 58 000 training / 2 000 test images, D = 320 SIFT features.

p
re

c
is

io
n

0 40 80 120 160 200

10

20

30

40

50

 

 

ILH−prune
ILH
KSHcut
tPCA
LSH

number of bits b

ILH-prune achieves nearly the same precision as ILH but with a quite
smaller number of bits.

p. 10



ILH-prune compared with other hashing methods

Infinite MNIST dataset, N = 1000 000 training / 2 000 test images, D = 784 vector of raw pixels.
Ground-truth: points with the same label as the query.

b = 16 b = 32

p
re

c
is

io
n

6000 7000 8000 9000 10000
40

50

60

70

80

 

 

ILH−prune
ILH
KSHcut
KSH
STH
CCA−ITQ
SH
LSH
BRE

number of retrieved points
6000 7000 8000 9000 10000
40

50

60

70

80

number of retrieved points

ILH beats all methods as the number of bits b increases, but not always
if using a small b. With pruning, it is also the best method with small b.

p. 11



2. Learning the hash functions locally: ILH-local

ILH: the training subsets for the b single-bit
hash functions span the entire input space
and have high overlap spatially. This can
decrease the resulting diversity and make
some of the single-bit hash functions be very
similar to each other, hence resulting in a
lower precision.

ILH-local avoids this by selecting spatially local
subsets. It defines the training subset for a
given single-bit hash function as a training
point xn (picked at random) and its k nearest
neighbors. This improves the diversity and
neighbourhood preservation, hence resulting
in a higher precision.

p. 12



ILH-local: precision by changing size of the training set

Infinite MNIST dataset, N = 1000 000 training / 2 000 test images, D = 784 vector of raw pixels.
Ground-truth: points with the same label as the query. We use b = 200 bits.

p
re

c
is

io
n

0.1 0.5 1 3
74

78

82

86

 

 

ILH−local

ILH

number of training points k × 104

ILH-local performs better than ILH over the entire range of training set
sizes.

p. 13



ILH-local compared with other hashing methods

Infinite MNIST dataset, N = 1000 000 training / 2 000 test images, D = 784 vector of raw pixels.
Ground-truth: points with the same label as the query.

b = 128 b = 200

p
re

c
is

io
n

1000 3000 5000 7000 9000
40

50

60

70

80

90

 

 

ILH−local
ILH
KSHcut
KSH
STH
CCA−ITQ
SH
LSH

number of retrieved points
1000 3000 5000 7000 9000
40

50

60

70

80

90

number of retrieved points

ILH-local improves the results of ILH significantly and beats
state-of-the-art methods.

p. 14



Conclusion

❖ Most hashing papers use an optimisation-based approach to learn
hash functions, which couples all the single-bit functions. This
results in a very difficult, slow optimisation.

❖ A different approach that works as well or better in terms of
retrieval performance is to train the single-bit hash functions
independently but make them diverse by training them on different
data subsets, as done by independent Laplacian hashing (ILH).

❖ We improve the results of ILH by pruning and locality techniques:

✦ By using forward selection, we can prune a large set of
single-bit hash functions and achieve comparable results using
a small number of bits.

✦ By selecting the training points for each hash function of ILH
locally in input space, we learn more diverse hash functions that
achieve higher precision.

Code available at the authors’ web page. Partly supported by NSF award IIS–1423515.
p. 15


	Large scale image retrieval
	Large scale image retrieval: binary hash functions
	Large scale image retrieval: binary hash functions
	Supervised hashing: similarity-based objective functions
	Optimisation-based approaches
	An ensemble diversity approach {	iny caja [0.8]{c}{l}{(Carreira-Perpi~n'an & Raziperchikolaei, \ NIPS 2016)}}
	An ensemble diversity approach {	iny caja [0.8]{c}{l}{(Carreira-Perpi~n'an & Raziperchikolaei, \ NIPS 2016)}}
	Advantages of Independent Laplacian Hashing (ILH)
	1. Pruning a set of hash functions: ILH-prune
	ILH-prune: precision as a function of the number of bits
	ILH-prune compared with other hashing methods
	2. Learning the hash functions locally: ILH-local
	ILH-local: precision by changing size of the training set
	ILH-local compared with other hashing methods
	Conclusion

