
Manifold Learning and Missing Data Recovery through Unsupervised Regression

Miguel Á. Carreira-Perpiñán

EECS, University of California, Merced

http://eecs.ucmerced.edu

Zhengdong Lu

Microsoft Research Asia, Beijing

http://research.microsoft.com/en-us/people/zhengdol

Abstract—We propose an algorithm that, given a high-dimen-
sional dataset with missing values, achieves the distinct goals
of learning a nonlinear low-dimensional representation of the
data (the dimensionality reduction problem) and reconstructing
the missing high-dimensional data (the matrix completion, or
imputation, problem). The algorithm follows the Dimension-
ality Reduction by Unsupervised Regression approach, where
one alternately optimizes over the latent coordinates given the
reconstruction and projection mappings, and vice versa; but
here we also optimize over the missing data, using an efficient,
globally convergent Gauss-Newton scheme. We also show how
to project or reconstruct test data with missing values. We
achieve impressive reconstructions while learning good latent
representations in image restoration with 50% missing pixels.

Keywords-dimensionality reduction; manifold learning; miss-
ing data; matrix completion.

In manifold learning, we observe a high-dimensional

dataset YD×N = (y1, . . . ,yN) and want to learn a low-

dimensional, latent representation of it based on a small

number of degrees of freedom L ≪ D (the training

problem). Often we also want to project a new y to a

low-dimensional x = F(y), or to map a new x to a high-

dimensional y = f(x) (the testing problem). A large number

of manifold learning algorithms exist, but they typically

assume that the training dataset Y and the test vectors are

fully observed. Yet in many applications the data available

may contain missing values caused by excessive noise,

sensor malfunction, nonresponse to specific questions in

a survey, or other reasons. For training, sometimes it is

possible to extract a sizable, complete subset (where each yn

has no missing entries) and use a standard algorithm on it,

but this still loses useful information that the partially present

vectors contain. Given the effort sometimes invested in data

collection, discarding partial vectors is wasteful. In other

cases, keeping only the fully-observed vectors may not leave

sufficient data to train at all. It then becomes necessary to use

all the existing data and deal with the missing values. Even if

we manage to estimate mappings F, f , we cannot apply them

directly to a test vector with missing entries. This situation

occurs in applications such as collaborative filtering (e.g.

embedding a new user given some of their movie ratings in

a Netflix dataset, or given some of their opinions in Opinion

Space [1]) or image retrieval (restoring a new image with

missing pixels and projecting it to latent space). Our goal

in this paper is to propose a principled, effective nonlinear

manifold learning method that deals with missing data in

both training and test, and also reconstructs (imputes) it. We

first briefly review existing work in dimensionality reduction

and matrix completion, and introduce the Dimensionality

Reduction by Unsupervised Regression approach without

missing data (sec. II). We then explain our method mDRUR

(sec. III), its linear version (sec. IV), and its extension to test

data (sec. V), followed by experimental results (sec. VI).

I. RELATED WORK

Many algorithms have been proposed for dimensionality

reduction, but far less work exists on dimensionality re-

duction with missing data. Probabilistic methods provide

one principled way to deal with it. Latent variable mod-

els (LVMs) such as factor analysis [2] or the generative

topographic mapping [3] define a joint probability model of

high- and low-dimensional variables, and the latter ones are

considered as missing data during maximum-likelihood esti-

mation with the EM algorithm. In principle, this allows con-

sidering the unobserved high-dimensional values as missing

variables too and having EM deal with them. However,

integrating (even approximately) over the corresponding

posterior distribution for each data point is cumbersome

and computationally costly. In practice, this often limits

nonlinear LVMs to using Gaussian mixtures and a very

small latent dimensionality. One exception is the Laplacian

eigenmaps latent variable model [4], where training amounts

to a spectral problem that yields a kernel density estimate,

but it assumes no missing data. In our approach, instead of

expensive marginalization and conditioning operations we

have far more efficient optimizations that besides decouple

significantly, and using arbitrarily many latent dimensions or

nonlinear mappings poses no special problem; we demon-

strate this with RBF mappings in 9D latent spaces.

In unsupervised regression, which goes back to early work

in factor analysis, one takes the latent coordinates xn of

each data point yn as parameters to be estimated together

with the reconstruction mapping f that maps latent points

to data space. These methods extend trivially to missing

data, since their least-squares error function takes the form

minf ,X
∑N

n=1 ‖yn − f(xn)‖
2

=
∑N,D

n,d=1 (ydn − fd(xn))
2

so one can simply ignore the terms for which ydn is

missing. Linear functions f have been used in the ho-

mogeneity analysis literature [5], where this approach is

called “missing data deleted”. Nonlinear functions f have

been used recently (neural nets [6]; Gaussian processes for

collaborative filtering [7]). Although simple and faster if

there are many missing values, this returns only f (no F)

and XL×N = (x1, . . . ,xN), and reconstructs each y (or,

rather, its missing values) implicitly as f(x). This has several
disadvantages (see fig. 3): (1) since x has only L degrees of

freedom, for complex data (e.g. images) the reconstruction

y = f(x) can have low quality; (2) it treats the vector

output of f(x) inconsistently at training and testing, as some

components are used (for the missing yds) and the rest

discarded; (3) lacking entirely the missing terms in the error

function ignores useful information, as having estimates of

the missing ydn provides feedback about the goodness of f—

specially if domain knowledge provides a good initial Y. A

final drawback even if all yn are observed [8] is that lacking

F in the objective function often distorts the latent space:

two nearby y points can have distant xs. These problems

are caused by having f both represent the manifold and

reconstruct the data. Our proposed approach addresses this

in a new, principled way, by separating these two different

roles: we consider the missing ys as parameters with the

same status as X, f or F, and optimize over them (note

that, without F, optimizing over y makes no difference);

and this carries over naturally to missing values in a test y.

Until recently, traditional dimensionality reduction with

missing data has been unrelated with the problem of matrix

completion, which arises commonly in data mining, machine

learning and computer vision. Much recent work on matrix

completion stems from compressed sensing, whose success

assumes the signal is sparse on a certain basis, i.e., a low-

rank assumption of the matrix, so that its rows (or columns)

lie on a low-dimensional subspace. Our work generalizes

this linear assumption and instead assumes the data live on a

smooth, nonlinear manifold with low intrinsic dimensional-

ity. Research on compressed sensing on manifolds is limited.

Baraniuk and Wakin [9] point out that when the curvature

of the manifold is small enough, a random projection from

the data space is likely to keep the metric of the manifold

with small distortion, but do not give an algorithm to recover

the manifold structure; Chen et al. [10] do give a practical

algorithm that assumes the manifold to be predetermined,

and cannot be applied to partially observed data. Singu-

lar value projection (SVP) [11] is a scalable optimization

scheme recently proposed for rank minimization with affine

constraints, of which low-rank matrix completion is a special

case. It iterates between a SVD step (to ensure the low-

rank structure) and a data-feeding step (to incorporate the

information of observed entries). SVP has theoretical bounds

for the exact completion case, and empirically is effective

on real-world problems, such as MovieLens data. Wang et

al. [12] propose a denoising approach that generalizes matrix

completion to local low-rank manifolds, but does not recover

the nonlinear manifold explicitly.

II. DIMENSIONALITY REDUCTION BY UNSUPERVISED

REGRESSION (DRUR)

Given fully observed data points YD×N , Dimensionality

Reduction by Unsupervised Regression [8], [13] minimizes

the following objective function alternately over mappings

f , F and latent coordinates XL×N (where Rf (f), RF(F)
are quadratic regularizers):

min
X,f ,F

E(X, f ,F) = Ef (X, f) + EF(X,F) (1)

Ef (X, f) =
∑N

n=1 ‖yn − f(xn)‖
2
+ λfRf (f) (2)

EF(X,F) =
∑N

n=1 ‖xn − F(yn)‖
2
+ λFRF(F). (3)

E can be seen as unfolding the reconstruction error of an

autoencoder
∑N

n=1 ‖yn − f(F(yn))‖
2
by introducing aux-

iliary variables X. This has several advantages: the opti-

mization for fixed X results in two separate regressions

over f and F, which are shallower architectures than the

autoencoder f ◦F and thus easier to optimize; and the search

space enlarged with X allows to use a good initialization

from a spectral method and facilitates escaping local optima.

DRUR learns very good embeddings in practice, thanks to

the bidirectional constraints imposed by f (that does not like

to map close inputs x to faraway outputs y) and F (that does

not like to map close inputs y to faraway outputs x); the

value of using both mappings F, f as opposed to just one

was extensively demonstrated in [8]. The mappings may be

taken nonparametric or parametric. In the latter case, the

optimization over X decouples over each point, so we have

N optimizations over L parameters each (instead of one over

NL), which besides are amenable to a form of the Gauss-

Newton method that avoids ill-conditioning; this gives an

orders-of-magnitude speedup [13]. Scalability is paramount

when reconstructing missing data in a high-dimensional y-

space, so we focus on the parametric version (pDRUR), but

our approach applies to the nonparametric one too.

III. MISSING DATA WITH DRUR (MDRUR)

Consider now the dimensionality reduction problem

where the data matrix YD×N has missing values: each

column vector yn can have from 0 to D−1 missing compo-

nents (for now, ignore the case where all D components are

missing, which means we do not have a vector yn at all). We

represent the pattern of missing values in Y with a binary

matrix MD×N , where mdn = 1 if ydn is observed and 0
otherwise. Since our algorithm will need initial estimates of

the missing Y values, mdn = 0 will indicate that ydn is the

initial value. In the equations below, we write Y0 to mean

the missing entries of Y (so Y contains Y0 and the present

values), and likewise yn,0 for column n of Y.

Our approach to extend pDRUR to missing data consists

of optimizing its objective function over the missing Y0

values too (we use Frobenius norms for matrices throughout,

input MD×N : binary indicator matrix (0 = missing)

input YD×N : observed values & initial missing values

input XL×N : initialized by a spectral method

Fit parametric mappings f : (X,Y), F: (Y,X)
repeat

Project-reconstruct: for n = 1, . . . , N
(yn,0,xn) = approx. Gauss-Newton min. of (7)

Adapt: approximately fit f : (X,Y), F: (Y,X)
until convergence

return Y0,X,F, f

Figure 1. Missing-data DRUR algorithm.

and f(X) means f applied vectorwise to each column x):

E(Y0,X, f ,F) = Ef (Y0,X, f) + EF(Y0,X,F) (4)

Ef (Y0,X, f) = ‖Y − f(X)‖
2
+ λf ‖f‖

2
(5)

EF(Y0,X,F) = ‖X− F(Y)‖
2
+ λF ‖F‖

2
. (6)

The role of F is fundamental: without it (using Ef alone),

optimizing over Y0 yields a trivial solution Y0 = (f(X))0
corresponding to the “missing data deleted” method dis-

cussed earlier. We apply alternating optimization to this

mDRUR objective function cyclically over (X,Y0) →
(f ,F) (see fig. 1). Empirically we find that other orders,

such as X → Y0 → (f ,F) or Y0 → X → (f ,F), are
consistently slower (all converge though). We deal with each

of the two optimization problems separately. At each step

we globally rescale X (and the RBF width of f and weights

of F) so the errors Ef and EF are always comparable.

A. Projection-Reconstruction Step: wrt (X,Y0)

If optimizing over (X,Y0) (also over X or Y0 sep-

arately), eq. (4) decouples so there are N independent

optimizations each over at most D+L variables (xn,yn,0).
This is crucial with some of our applications, e.g. where yn

is a high-dimensional image with missing entries. Consider

one such term (omitting the subindex n for simplicity):

E(x,y0) = ‖y − f(x)‖
2
+ ‖x− F(y)‖

2
(7)

where x ∈ R
L, y ∈ R

D, L < D, and we partition y

as y = (y0

y1
) (possibly reordering indices) so that y1 is

constant (the present components), and y0 is a variable to

be optimized over (the missing components). We can then

obtain the gradient and Hessian of E wrt (x,y0) as follows:

∂E
∂x

= 2
(
−JT

f (y − f(x)) + x− F(y)
)

(8)

∂E
∂y0

= 2
(
−JT

F,0(x− F(y)) + y0 − (f(x))0
)

(9)

∂2E
∂x2 = 2

(
I+ JT

f Jf −HT
f (y − f(x))

)
(10)

∂2E
∂y2

0

= 2
(
I+ JT

F,0JF,0 −HT
F,0(x− F(y))

)
(11)

∂2E
∂x∂y0

= −2
(
JT
f ,0 + JF,0

)
(12)

where we partition the matrices (Jacobians of f wrt x, and

of F wrt y) as Jf = (JT
f ,0 JT

f ,1)
T and JF = (JF,0 JF,1),

and other D × 1 vectors are partitioned like y. The least-

squares form of the problem suggests using a Gauss-Newton

method (far more effective than gradient descent) if the

dimensionality of y0 is not too large. We capitalize on the

positive definite Hessian approximation

H̃ = 2
(
I+

(
JT
f
Jf −JT

f,0−JF,0

−Jf,0−JT
F,0 JT

F,0JF,0

))
(13)

so the search direction p for optimizing over (x,y0) is the
solution of the non-sparse linear system H̃p = −g (where

g is the gradient). In a nonlinear least squares problem of

the typical form minx ‖y − f(x)‖2 (i.e., using Ef alone,

no F), the Gauss-Newton method has the disadvantage

that the approximate Hessian of f has the form 2JT
f Jf ,

and thus can become singular or ill-conditioned, leading

to unstable directions and steps. One then needs to correct

for this, e.g. by adding an adaptive bias to its diagonal, as

in the Levenberg-Marquardt method [14]; searching for a

good bias involves solving multiple linear systems at each

iteration. In our case, the F-term ‖x− F(y)‖2, quadratic on
x, introduces an additive Jacobian 2I that acts as an in-built

regularizer. The same applies to the Jacobian wrt y0. This

means our Gauss-Newton direction is robust without the

need of any modifications; with usual line search conditions

and a bounded Jacobian, global convergence is assured [14,

p. 40]. See section III-C for the computational cost.

B. Adaptation Step: wrt (f ,F)

This is as with DRUR, i.e., solving two separate regres-

sions for f and F, resp. Take the one for f . We have used

two parametric forms: linear mappings f(x) = Ax+a, and

radial basis function (RBF) networks f(x) = WΦ(x) with

M ≪ N Gaussian RBFs φm(x) = exp(− 1
2‖(x− µm)/σ‖2).

For both, our regularizer is a quadratic penalty on the weights:

‖f‖2 = ‖A‖2 (linear), ‖W‖2 (RBF). In RBFs we update the

centers µm by k-means, and σ by cross-validation (training

the RBF on a subset of the data and testing it on the rest).

The weights and biases have a unique solution given by a

linear system, with a computational cost O(NM(M +D))
in training time and O(MD) in memory for the RBF. The

gradient of f wrt x (Jacobian J), needed in the optimization

over (Y0,X), is J(x) = 1
σ2

∑M

m=1 wmφm(x)(µm − x)T .

C. Practical Considerations

mDRUR’s user parameters are those parameters for the

mappings (e.g. number of basis functions M and regulariza-

tion λ ≥ 0) that would be needed in a standard regression.

Initialization: As with any nonlinear method, local

optima exist, but they are a fair price to pay for the higher

quality achievable. When no domain knowledge is available,

we have obtained best results by initializing Y0 with SVP

[11] with a large rank (or with regularized linear mDRUR;

both achieve very similar results); this beats using zero- or

mean-imputation. Given Y0, we initialize X using a spectral

method applied to Y. Experimentally, we note mDRUR is

very good at improving an initial solution, and that even if

(f ,F) get stuck in a poor local optimum, the reconstructed

Y0 can still be quite good.

Very high dimension of the missing values: Call Dn =
dimyn,0 the number of missing variables in yn for each

n = 1, . . . , N . In some applications, such as image re-

construction, matrix completion or recommender systems,

Dn can be large. While mDRUR’s formulation is very

efficient—each yn decouples from all others—solving (or

even storing the relevant matrices of) the linear system

in each linear mDRUR or Gauss-Newton step becomes

expensive, with a cost O((L+Dn)
3). We can then use the

following strategies. A simple but slow option is (stochas-

tic) gradient descent. More complicated options are Gauss-

Newton-CG (which solves the linear systems approximately

with the conjugate gradient method) and limited-memory

BFGS (which approximates the Hessian using a relatively

small number of column vectors). A much simpler strategy

that we have found useful is to use an approximate, fast

step where we ignore the F-term in the error and thus set

yn,0 = (f(xn))0. If this decreases the DRUR error, we

accept the step and optimize the error over xn; otherwise,

we reject it and do the usual optimization over (yn0,xn).
This guarantees we decrease the error at each iteration, and

is much faster with large Dn. Finally, in matrix completion

problems where there may be no a priori preference over Y

or YT , we should choose the alternative with fewer rows,

so the cost of each step is the smaller of the two.

D. Relation with Low-Rank Factorization

If the mappings f , F can be written as a linear combi-

nation of basis functions, as is the case for linear mappings

and RBF networks, then (absorbing the respective biases into

Y and X) the terms ‖Y − f(X)‖2 = ‖Y −WfΦf (X)‖2

and ‖X− F(Y)‖2 = ‖X−WFΦF(Y)‖2 are SVD-like. At
convergence we obtain two approximate low-rank factoriza-

tions Y ≈ WfΦf (X) = f(X) and X ≈ WFΦF(Y) =
F(Y) with Wf of D ×Mf and Φf (X) of Mf × N , WF

of L × MF and ΦF(Y) of MF × N , and the ranks are

given by (strictly, smaller or equal than) the numbers of

basis functions Mf and MF, respectively (Mf ,MF ≪ N).

IV. LINEAR MDRUR

With linear mappings f(x) = Ax+ a, F(y) = By + b,

the mDRUR objective function is

E(Y0,X,A,a,B,b) = ‖Y −AX− a1T ‖
2
+ λf ‖A‖

2

+ ‖X−BY − b1T ‖
2
+ λF ‖B‖

2
(14)

where 1 is a column vector of N ones. If we partition

matrices as A =
(
A0

A1

)
and B = (B0 B1), and vector a

like y, the gradient wrt x and y0 (for a given n) is:

∂E
∂x

= 2
(
−AT (y −Ax− a) + x−By − b

)
(15)

∂E
∂y0

= 2
(
−BT

0 (x−By − b) + y0 −A0x− a0
)

(16)

so equating it to zero yields a linear system for the optimum

(or other stationary points):

(
I+

(
ATA −AT

0
−B0

−A0−BT
0

BT
0
B0

))
(x
y0

) = −
(

AT a−b−(AT
1
+B1)y1

BT
0
B1y1+BT

0
b−a0

)

which is analogous to the Gauss-Newton linear system, and

non-sparse as well. This yields the projection-reconstruction

step. As for the adaptation step, the linear regressions for f

and F yield

A = (Y − a1T)XT (XXT + λf I)
−1, a = y −Ax

B = (X− b1T)YT (YYT + λFI)
−1, b = x−By

where x = X1/N and y = Y1/N . Both steps define a

globally convergent fixed-point iteration. With no missing

data and no regularization, the global minimum of E is PCA:

A = BT = UL (leading eigenvectors of the covariance

matrix of Y), a = y, b = x, and X = UT
LY − x1T .

With missing data, E has local optima; adding regularization

seems to reduce their effect.

V. PROJECTING AND RECONSTRUCTING TEST DATA

WITH MISSING VALUES

Given a test point y ∈ R
D with missing values, we

propose to reconstruct y and project it as F(y) as follows.
We consider an mDRUR training problem with augmented

matrices (Y y) and (X x), minimizing over x and y0 and

keeping everything else fixed (Y, y1, X, f , F). This way,

the trained model does not change, but we do constrain x

and y0 to conform to it. This results in minimizing the error

function (7) (and we do not needY andX, just the mappings

f and F), and is thus formally identical to the project-

reconstruct step over the nth point (xn,yn,0). Hence, we can
use the same algorithm: Gauss-Newton for RBFs, or a single

linear system for linear mappings (with the computational

cost described earlier). We initialize (x,y0) to the pair

(xn,yn) for which yn is closest to y in the present variables

(in some applications the user may provide better initial

values based on prior information). After minimizing (7), we

discard x and return y as the reconstructed input, and F(y)
as its low-dimensional projection. If there are many missing

values, then (7) may have multiple minima corresponding to

genuinely correct reconstructions of y; which one is found

depends on the initial pair. The approach carries over to

the case where we are given a latent point x with missing

values, but this is practically less useful. This approach is

consistent with the existing mDRUR model in that, if the

test point coincides with one of the training points (and has

the same missing values) then its reconstruction, projection

and x value coincide with those found during training (as

follows from the fact that the error function was the same in

both cases). Our approach seamlessly accomodates arbitrary

patterns of missing values.

−4

−2

0

2

4

−4

−2

0

2

4

−3

−2

−1

0

1

2

3

−4

−2

0

2

4

−4

−2

0

2

4

−3

−2

−1

0

1

2

3

Figure 2. 100D trefoil data: recovered Y mapped back to 3D (original:
black +, SVP: red ◦, mDRUR: blue ◦).

VI. EXPERIMENTS

We apply mDRUR on missing data tasks with different

scale, dimensionality, and characteristics. We assume the

observed entries are uniformly distributed across Y. While

this may not represent well certain matrix completion tasks

with other distributions (e.g. power-law [15]), it serves as a

fair test bed for the various manifold learning algorithms we

try. These are: the low-rank matrix completion model SVP,

as linear baseline; the nonlinear PCA (nlPCA) of [6] (using

their code), which is an unsupervised regression method

using only f (a neural net); and mDRUR (with Y initialized

from SVP). The results for linear mDRUR (not shown) were

very similar to those of SVP, and consistently worse than

mDRUR’s over different proportions of missing data. We

always report the result with best parameter choices for

competing models (SVP: rank; nlPCA: number of latent

variables and hidden nodes). We report the reconstruction

error wrt the ground truth ‖Yrec −Y‖, where Yrec is the Y

reconstructed from partial observations.

A. Synthetic Example: 100D Trefoil Data

The original trefoil dataset has 377 points in 3D. We

first embed them in a 100D space through a random linear

mapping and obtain Y100×377, then we randomly select 7%

entries from Y as observed (93% missing). For mDRUR,

we use the first L = 3 principal components of the

SVP reconstruction as initial X, Mf = 50, MF = 10,
λf = λF = 0.02. Fig. 2 shows each method’s resulting Y

mapped back to the original 3D space. Besides learning the

nonlinear manifold (X not shown), mDRUR’s reconstruction

drastically denoises the wandering points produced by SVP

back to the 1D trefoil manifold. This is consistent with the

reconstruction error: SVP 15.25, mDRUR 6.60.

B. MNIST Digit ‘7’

We consider all the 6 265 ‘7’s in the MNIST dataset,

and declare as missing 50% pixels selected uniformly. We

rearrange each 28×28 image into a 784D vector (destroying

their 2D structure), yielding high-dimensional dataY784×5000

for training and 1 265 testing images; each ydn value is

a grayscale in [0, 256]. Methods: SVP: rank 18; nlPCA:

neural net, 12 × 10 × 784 units (i.e., L = 12); mDRUR:

L = 9, Mf = 1000, λf = 0.01, MF = 50, λF = 0.1,
initial Y from SVP, initial X from Laplacian eigenmaps

on Y. Unlike the trefoil data, where we know beforehand

that the manifold is 1D and closed, the MNIST data might

have several disconnected manifolds with different intrin-

sic dimensionality. Still, as shown in fig. 3, we achieve a

fairly good image restoration by exploiting only the manifold

structure of the data (since we removed the 2D image struc-

ture). Visually SVP and nlPCA do a decent job, but mDRUR

is the clear winner, consistent with the error: SVP 51 000,
nlPCA 97 000, mDRUR 45 000. Restoring a test image with

mDRUR takes 0.48 s in a modern PC (of which 25% is spent

in finding the initial (xn,yn)), with an average pixel error

of 21 ± 56 grayscales (over 256). Again, the fact that the

reconstructed images look like well-formed 7s (note in the

bottom panel of fig. 3, second row, that some unusual strokes

that were missing have been removed in the reconstruction)

suggests that mDRUR has captured fundamental aspects of

the manifold. This experiment also demonstrates the power

of reconstructing y0 by making it a free parameter separate

from f and F in mDRUR, rather than being the output of f

(without F) as in nlPCA: the latter reconstructions are vis-

ibly blurred and display artifacts. After all, it is impossible

to reconstruct very accurately an arbitrary 784D ‘7’ image

from only 9 or 12 degrees of freedom. The role of f is to

smooth, not interpolate, the (noisy) data.

In a similar experiment with a more obvious low-dimen-

sional manifold structure, we created rotated versions of an

MNIST digit ’3’ every 4 degrees (a closed 1D nonlinear

manifold in 784D) and made 40% pixels randomly missing.

The errors for SVP (rank 6), nlPCA (L = 2) and mDRUR

(L = 2) were 29.1, 34.9 and 20.8, respectively.

VII. CONCLUSION

We have shown how to learn a Dimensionality Reduction

by Unsupervised Regression model for high-dimensional

data with missing values, where knowledge about the high-

dimensional data constrains the low-dimensional represen-

tation, and vice versa. By introducing parameters (f ,F) and
Y0, we separate two distinct roles that previous algorithms

conflated into one: learning a nonlinear, low-dimensional

representation of the data, and recovering the missing data.

This idea applies in a unified way to training and testing, and

to arbitrary patterns of missing data. Our work also provides

a new approach to the problem of matrix completion, by

reconstructing the data subject to implicit, local low-rank

and smoothness constraints. mDRUR improves over other

dimensionality reduction and matrix completion methods,

and performs well with large proportions of missing data,

even if few (or any) vectors are complete. Nonlinear mani-

fold learning with missing data is a difficult and overlooked

problem. Our improved results make a case for going beyond

linear and spectral methods.

ACKNOWLEDGMENTS

Work supported by NSF CAREER award IIS–0754089.

original masked SVP nlPCA
y = f(x)

nlPCA
y0 = (f(x))0

mDRUR
y = f(x)

mDRUR
y0

original masked mDRUR original masked mDRUR original masked mDRUR original masked mDRUR

Figure 3. Restoring MNIST digits ‘7’. Upper panel: 3 training images for all methods. Lower panel: 8 test images with mDRUR. “Masked” shows
the 50% missing pixels in red (you may need to zoom in). Grayscales clipped to [0, 256]. “y = f(x)” means reconstructing all pixels (missing or not)
with the output of f . “y0 = (f(x))0” means reconstructing with the output of f only the missing pixels and leaving the rest to their present values. For
mDRUR, “y0” means reconstructing only the missing pixels with the free y0 parameters.

REFERENCES

[1] S. Faridani, E. Bitton, K. Ryokai, and K. Goldberg, “Opinion
space: A scalable tool for browsing online comments,” in
CHI, 2010, pp. 1175–1184.

[2] B. S. Everitt, An Introduction to Latent Variable Models,
Chapman & Hall, 1984.

[3] C. M. Bishop, M. Svensén, and C. K. I. Williams, “GTM:
The generative topographic mapping,” Neural Computation,
vol. 10, no. 1, pp. 215–234, Jan. 1998.

[4] M. Á. Carreira-Perpiñán and Z. Lu, “The Laplacian Eigen-
maps Latent Variable Model,” in AISTATS, 2007, pp. 59–66.

[5] A. Gifi, Nonlinear Multivariate Analysis. Wiley, 1990.

[6] M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig,
“Non-linear PCA: A missing data approach,” Bioinformatics,
vol. 21, no. 20, pp. 3887–3895, Oct. 15 2005.

[7] N. D. Lawrence and R. Urtasun, “Non-linear matrix factor-
ization with Gaussian processes,” in ICML, 2009.

[8] M. Á. Carreira-Perpiñán and Z. Lu, “Dimensionality reduc-
tion by unsupervised regression,” in CVPR, 2008.

[9] R. G. Baraniuk and M. B. Wakin, “Random projections of
smooth manifolds,” Foundations of Computational Mathemat-
ics, vol. 9, no. 1, pp. 51–77, Feb. 2009.

[10] M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and
L. Carin, “Compressive sensing on manifolds using a non-
parametric mixture of factor analyzers: Algorithm and per-
formance bounds,” IEEE Trans. Sig. Proc., vol. 58, 2010.

[11] P. Jain, R. Meka, and I. S. Dhillon, “Guaranteed rank mini-
mization via singular value projection,” in NIPS, 2010.

[12] W. Wang, M. Á. Carreira-Perpiñán, and Z. Lu, “A denoising
view of matrix completion,” in NIPS, 2011.

[13] M. Á. Carreira-Perpiñán and Z. Lu, “Parametric dimension-
ality reduction by unsupervised regression,” in CVPR, 2010.

[14] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.,
Springer-Verlag, 2006.

[15] R. Meka, P. Jain, and I. Dhillon, “Matrix completion from
power-law distributed samples,” in NIPS, 2009.

