
Interpretable Image Classification
Using Sparse Oblique Decision Trees

Suryabhan Singh Hada and Miguel Á. Carreira-Perpiñán,

Dept. CSE, UC Merced

#4975

1 Motivation and summary

• Interpreting the image datasets is a difficult task, as each

image contains a lot of irrelevant data.This makes it hard

to understand what part of the image is important or

what common concept defines a particular category of

the class.

• We address these issues by using sparse oblique trees

as a tool to understand the given image dataset.Unlike

axis-aligned trees that operate only on a single feature at

each node, the sparse oblique tree operates on a small,

learnable subset of features.

• Sparse oblique trees are not only accurate but also very

interpretable.We can learn accurate enough sparse oblique

trees with the tree alternating optimization (TAO) algo-

rithm.
Fashion-MNIST dataset

1

-1 0 1

2

4

8

16(3) 17(4)

9(2)

5

10

20(7) 21(8)

11(0)

3

6

12

24(7) 25(5)

13

26(2) 27(1)

7

14

28(4) 29(6)

15(9)

Decision

node # 8

dress class

leaf # 16

coat class

leaf # 17

2 Interpret dataset using
sparse oblique tree

• Train a sparse oblique tree using TAO and pick the sparsity pa-

rameter such that the resultant tree is as sparse as possible but

remains accurate enough. Next, inspect the weights (w) of the

decision nodes to extract relevant features from the dataset.

• Write weight vector w and input x as w = (w0 w− w+) and

x = (x0 x− x+), where w0 = 0, w− < 0 and w+ > 0 contain

the zero, negative and positive weights in w, and x is arranged

accordingly. Call S0, S− and S+ the corresponding sets of indices

in w.

⋄ If x goes right, we represent the feature selected as a binary

vector μ+ ∈ {0,1}
d , containing ones only at S+.

⋄ If x goes right, we represent the feature selected as a binary

vector μ− ∈ {0,1}
d , containing ones only at S−.

• We call μ+ and μ− the NODE-FEATURES, where location of one

represents features selected by w. We use NODE-FEATURES, to

interpret the dataset as follows:

⋄ For each decision node NODE-FEATURES represents the fea-

tures related to left and right subtree. By using NODE-FEATURES,

we can understand what set of features separate a group of

classes.

⋄ Features associated with a class k: for each node in the path

from the root to leaf for class k collect NODE-FEATURES, and

at the end take logical OR of all NODE-FEATURES. If there is

more than one leaf for class k, take the union of all the features

selected.

⋄ For features specific to a given an input x: Repeat the process

as above, but only for the leaf containing the input x. Next,

keep only those features that are active in the x.

• We can plot these features to visualize what concept is captured

by these features.

Difference among group of classes

left subtree right subtree

Decision

node # 7

coat class

leaf # 28

shirt class

leaf # 29

ankle boot

leaf # 15

left subtree right subtree

Decision

node # 6

sneaker class

leaf # 24

sandal class

leaf # 25

pullover

leaf # 26

trouser

leaf # 27

Feature selection for a given instance

Decision node

weight

weights along

path

image part

selected

node # 1, left child

