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1 Abstract

The LC Toolkit is an open-source library written in Python and PyTorch

that allows to compress any neural network using several compressions

including quantization, pruning, and low-rank. In this paper, we utilize

the LC toolkit’s common algorithmic base to take a deeper look into

ℓ0-constrained pruning problems defined as follows: given a budget of κ
non-zero weights, which weights should be pruned in the final network?

We observe that ℓ0-pruned networks have a different connectivity

structure compared to pruning results using ℓ1 norm. We propose a

change to the formulation of the problem involving a small amount of ℓ2

weight decay which has a favorable effect on connectivity structure.

https://github.com/UCMerced-ML/LC-model-compression

2 Introduction: Setup of the pruning problem

Given a network with weights w and task loss L, most of the NN

pruning problems are formulated using a sparsifying penalty P(w) and

solve a regularized or constrained formulation given as

min
w

L(w) + λP(w) or min
w

L(w) s.t. P(w) ≤ λ (1)

In particular, we are interested in ℓ0 formulation of the pruning where

min
w

L(w) s.t. ‖w‖0 ≤ κ, (2)

where we can precisely set the number of non-zero (unpruned) weights

via parameter κ: the total budget of the remaining parameters.

In principle, for a given level of sparsity the formulation (1) with

P(w) = ‖w‖1 should yield more or less the same networks as the ℓ0

formulation (2). However, we empirically observe that this is not the

case.

3 Modifed formulation

We propose modifying the problem (2) by adding a small amount of ℓ2

weight decay as follows:

min
w

L(w) + λ ‖w‖2
2 s.t. ‖w‖0 ≤ κ, (3)

with the motivation that ℓ2 penalty will nudge the small valued weights

towards zero and allow more neurons to be pruned. We study our

modified formulation using the framework of the LC algorithm and

demonstrate that: the pruning formulation (3) has a similar effect on the

structure of the model weights as the ℓ1 penalized formulation,

however, unlike the ℓ1-version the number of non-zero weights is

controlled precisely;

To make it amenable to standard optimization software we proceed by

turning the problem into the learning-compression (LC) formulation [1].

We introduce a duplicate variable θ with an equality constraint of w = θ

and then apply alternating optimization. Depending on how we

introduce the duplicates, we end up with two different versions of the

optimization. However, for the purposes of this poster, we only discuss

4 Optimization. LC algorithm, version 1

When introducing the variable θ, let us leave L(w) as is, and replace all

other w occurrences with θ and jointly optimize the following:

min
w,θ

L(w) + λ ‖θ‖2
2 s.t. ‖θ‖0 ≤ κ, w = θ (4)

Now, to derive an efficient algorithm we apply the Quadratic Penalty [2,

ch. 17] and optimize an equivalent problem while driving µ → ∞:

min
w,θ

L(w) + λ ‖θ‖2
2 +

µ

2
‖w − θ‖2

s.t. ‖θ‖0 ≤ κ

This reformulation is advantageous as it allows to apply alternating

optimization over w and θ where steps are given in the forms that can

be efficiently solved:

• L step of min
w

L(w) +
µ

2
‖w − θ‖2

.

This step has the form of the neural network training, but with an

additional ℓ2 penalty. Such training can be handled by any deep

learning framework, and does not require any special treatment.

Following the LC paper [1] we call this step a learning (L) step.

• C step of min
θ

µ

2
‖w − θ‖2 + λ ‖θ‖2

2 s.t. ‖θ‖0 ≤ κ

This step has the form of finding the optimal constrained θ (with at

most κ non zeros) minimizing a convex objective function, and can

be solved exactly. This step was called a compression (C) step in

[1].

Then, our optimization procedure is as follows: while slowly driving

µ → ∞ we alternate two simple steps: the step of neural network

training, and the step of optimal pruning (compression) of its weights

(w) into the duplicating θ. This duplicating variables should be

considered as pruned copy of the weights: indeed, at the limit of

µ → ∞ they both agree by satisfying w = θ.

5 Solution of the C step

We rewrite the ℓ0-norm using the index set Ω of size κ: we say θi = 0 if

and only if i /∈ Ω, and collectively refer to non-zero weights as θΩ. Then,

the C-step problem for µ > 0 can be written as

min
θ,Ω

µ

2

∑

i∈Ω

(

(wi − θi)
2 +

2λ

µ
θ2

i

)

+
µ

2

∑

i /∈Ω

w2
i (5)

We note that for a fixed index set Ω, the minimization of (5) wrt θ is a

convex problem with the solution of

θ
∗
Ω =

µ

µ + 2λ
wΩ, (6)

In turn, in the paper, we show that the optimal Ω∗ can be found by:

Ω∗ = {i : wi ∈ Top-κ largest in magnitude items of w}. (7)

6 Pruning properties

The pruning properties of this C step is quite interesting: we prune all

but top-κ weights of w, and the remaining values will get shrunk

proportionally to their magnitude. This is in contrast to the regular ℓ0

formulation of the pruning where all unpruned weights remain as is;

and rather reminiscent of the shrinking properties of the ℓ1 pruning (see

illustration). Additionally, our ℓ0 + ℓ2 formulation has the advantages of

both methods: we can specify the amount of pruning precisely (unlike

ℓ1 formulation), while experiencing a shrinkage effect (unlike ℓ0

formulation).
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7 Experiments

Method Test err Remaining weights Remaining neurons

reference 2.01% 100% 784-300-100-10

ℓ0 2.33% 2.0% 344-210-100-10

ℓ1 2.44% 2.4% 476-37-84-10

ℓ0 + ℓ2 (ours) 1.76% 2.0% 420-70-82-10

ℓ 0
ℓ 1

o
u

r

ℓ 0
+
ℓ 2

Pruning of LeNet300 with ℓ0- and ℓ1-constrained formulation, and with a

proposed scheme of ℓ0 + ℓ2. We set κ = 2% for ℓ0 methods, and for ℓ1

we chose the parameters to yield approximately 2%-sparse net.
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