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ABSTRACT

When applying the low-rank decomposition to neural networks,

tensor-shaped weights need to be reshaped into a matrix first. While

many matrix reshapes are possible, some of them induce a low-rank

decomposition scheme that can be more efficiently implemented

as a sequence of layers. This poses the following problem: how

should one select both the matrix reshape and associated low-rank

decomposition scheme in order to compress a neural network so

that its implementation is as efficient as possible? We formulate this

problem as a mixed-integer optimization over the weights, ranks,

and decompositions schemes; and we provide an efficient alter-

nating optimization algorithm involving two simple steps: a step

over the weights of the neural network (solved by SGD), and a step

over the ranks and decomposition schemes (solved by an SVD).

Our algorithm automatically selects the most suitable ranks and de-

composition schemes to efficiently reduce compression costs (e.g.,

FLOPs) of various networks.

Index Terms— low-rank compression, rank selection, neural

network compression, decomposition schemes

1. INTRODUCTION

With the enormous success of neural networks and their ever-

increasing number of practical use cases, the problem of compress-

ing deep nets has become an active and important area of research.

Out of many compression forms, recently, the low-rank compression

re-emerged as an efficient way to achieve both compressed in size

and reduced in FLOPs neural networks [1, 2]. An ingredient that

made low-rank more attractive for deep network compression is the

research on an automatic way of setting the ranks of the decom-

positions [1–3], whereas previously, the ranks were fixed by hand

[4, 5] or heuristically estimated [6–8]. To further improve the per-

formance of the low-rank compression, we address one overlooked

ingredient — the choice of the weight reshaping when applying the

decomposition.

When applying the low-rank methods, we decompose the weight

matrix as a product UV
T of lower rank matrices. For fully con-

nected layers, where weights are naturally in a matrix form, this

parametrization is straightforward to apply. However, the weights

of the convolutional layers come as tensors; therefore, to apply a

low-rank, we should first reshape its weights into a matrix. For-

mally, a matrix reshape1 is a reordering of the items in a tensor A
into a matrix A so that matrix A contains the same set of items as

A. There are many possible matrix reshapes of a tensor, and each

reshape gives a rise to a different low-rank decomposition scheme.

1This operation is commonly known as matricization or matrix folding.

A few of the decomposition schemes can be implemented as a se-

quence of convolutional layers, allowing to harness the compressive

and speeding-up properties of low rank; we give a detailed overview

of these schemes in sec. 2.

In previous low-rank compression works, the decomposition

scheme (e.g., scheme 1) was fixed and applied throughout the net-

work. This is suboptimal in practice, as each scheme has its own

advantages and should be selected accordingly, per layer. To address

this, we want to select the best decomposition scheme for every

layer of a given neural network. One simple but not an efficient

solution to this selection problem is to try all possible combinations

of decompositions using an off-the-shelf low-rank compression

algorithm. For a K layer neural network with M different decom-

position schemes to try, the total number of combinations is MK :

this number of trials is unmanageable with the average depth of

modern neural networks having dozens of layers (e.g., ResNet-152

has K = 152 layers).

The problem exacerbates when we include the rank selection

problem: clearly, the performance of the compressed network is a

function of the rank as well as the decomposition scheme. How

can we select the ranks and the decompositions schemes for every

layer of the neural network to fit into our constraints yet avoiding

the associated combinatorial explosion? We approach this problem

by formulating a model selection problem that captures both rank

and shape selection as part of the objective. We then show that our

formulation is amenable to the alternating optimization and give an

efficient algorithm to learn ranks, shapes, and weights of the neural

network.

2. EFFICIENT LOW-RANK DECOMPOSITION SCHEMES

OF CONVOLUTIONAL LAYERS INDUCED BY SPECIFIC

MATRIX RESHAPES

A convolutional layer with weight tensorW of size n × c × d × d

has n filters of size d × d and operates on an input with c chan-

nels. The output of the layer is an image with n channels, where

each channel is a result of convolving the input with an individual

filter (see Fig. 1). To apply a low-rank compression, we should re-

shape (matricize) a weight tensor W into an a × b shaped matrix

having the same number of parameters, i.e., ab = ncd2 = P . The

complete list of possible (a, b)-sized reshapes can be enumerated by

performing the prime number decomposition on P . However, only a

few of such reshapes allow an efficient implementation of a low-rank

convolutional layer in terms of a sequence of convolutions.

Two efficient low-rank decomposition schemes were proposed

and used in the literature. The scheme 1 [3, 5, 7–9] applies low-rank

to an n×cd2 sized reshape of the weight tensorW . The scheme 2 [1,
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Fig. 1. Illustration of a regular convolution operation (top left) and its rank-r decompositions according to schemes 1, 2, and 3. The input to

a layer has the shape of c× w × h and is depicted as a cube with the appropriately marked dimensions. When the input is convolved with n

filters of dimension c× d× d (filters are not shown) it generates an output tensor of shape n×w′ × h′. Each arrow represents a convolution

of a portion of the input with a single filter, and points to the result of this convolution, a cube of size 1 × 1 × 1. Low-rank decomposition

schemes replace the convolutional layer with a sequence of two convolutions.

4, 6, 9] applies low-rank to an nd× cd reshape ofW . Both schemes

can be efficiently implemented as a sequence of convolutional layers

(Fig. 1). Another efficient scheme is possible if we apply the low-

rank decomposition to an nd2×c sized reshape of the weight tensor,

which we call scheme 3. To the best of our knowledge, scheme 3 has

not been used in the literature yet.

3. PROBLEM FORMULATION AND AN OPTIMIZATION

ALGORITHM

Assume we are given a K-layer neural network trained to min-

imize a task loss L (e.g., cross-entropy) over its weights W =
{W1, . . . ,WK} where the Wk is the weight tensor of the layer

k. Let as denote the matrix reshape of the tensor Wk that induces

the low-rank decomposition scheme s as R(Wk, s), and the actual

reshaped matrix as Θk = R(Wk, s). We want to select the best

scheme and rank for each layer to optimize the tradeoff between the

model loss and a compression cost C(Θ, r). To achieve this goal,

we impose the low-rank structure on the reshaped weights of each

layer via explicit rank constraints on the corresponding Θk-terms,

and form the following model selection problem over the ranks

r = {r1, . . . , rK}, decomposition schemes s = {s1, . . . , sK}, and

weights W:

min
W,Θ,r,s

L(W) + λ C(Θ, r)

s.t. Θk = R(Wk, sk),

rank (Θk) = rk, ∀k = 1 . . .K

(1)

We control the amount of the compression (and subsequent tradeoff)

via a parameter λ > 0; and the compression cost function C(Θ, r)
will encourage having smaller models. It is up to the user to de-

termine the optimal operating point wrt λ: usually multiple values

are considered to select among a family of compressed models (see

Fig. 2). We define the C(Θ, r) to be layerwise separable function of:

C(Θ, r) = C(Θ1, r1) + · · ·+ C(ΘK , rK). (2)

Such cost function can handle multiple targets of interest:

• It can target the storage and FLOPs of the compressed model,

as both of these are the functions of the rank and can be writ-

ten as C(Θk, rk) = α× rk for some constant α (see Fig. 1).

• It can target the nuclear norm [10] of weight matrices instead:

C(Θk, rk) = ‖Θk‖
∗
. Such penalty has been well studied

in the compressed sensing field and known to have low-rank

inducing properties.

3.1. Optimization algorithm

The problem (1) is discrete over the ranks, schemes, and reshapes,

but continuous over the weights, which makes it a challenging opti-

mization problem. Fortunately, the formulation of (1) is in learning-

compression form [11] which admits alternating optimization solu-

tion [2, 11–16]. To obtain the algorithm, we equivalently reformu-

late the problem (1) using the quadratic penalty [17]. (Here we use

quadratic penalty for brevity of presentation. In practice we use aug-

mented Lagrangian version which has an additional step over the

Lagrange multipliers.) We apply the penalties only to the reshaping



Algorithm 1 Pseudocode to jointly learn weights, ranks, and low-

rank decomposition schemes to compress a network

input K-layer neural net with weights W = {W1, . . . ,WK},
hyperparameter λ, cost function C,

set of reshaping schemes {S1, . . . ,Sm}

W = (W1, . . . ,WK)← argmin
W

L(W) reference net

s = (s1, . . . , sK)← (S1, . . . ,S1) decomposition schemes
r = (r1, . . . , rK)← 0 ranks
Θ = (Θ1, . . . ,ΘK)← 0 reshaped weights
for µ = µ1 < µ2 < · · · < µT

W← argmin
W

L(W) +
µ

2

K
∑

k=1

‖Θk −R(Wk, sk)‖
2

L step

for k = 1, . . . ,K C step
for s′k = S1, . . . ,Sm

Θ
′

k, r
′

k ← argmin
Θk,rk

λ Ck(rk) +
µ

2

∥

∥Θk −R(Wk, s
′

k)
∥

∥

2

if (Θ′

k, r
′

k, s
′

k) has a lower C-step objective then

(Θk, rk, sk)← (Θ′

k, r
′

k, s
′

k)
return W,Θ, r

constraints of Θk = R(Wk, sk) and optimize the following while

driving µ→∞:

min
W,Θ,r,s

L(W) + λ C(Θ, r) +
µ

2

K
∑

k=1

‖Θk −R(Wk, sk)‖
2

F

s.t. rank (Θk) = rk, ∀k = 1 . . .K.
(3)

The reformulation (3) allows to efficiently optimize the problem by

alternating over W and {Θ, r, s}. This results into learning (L) and

compression (C) steps:

• L step: min
W

L(W) +
µ

2

K
∑

k=1

‖Θk −R(Wk, sk)‖
2

F

The step over W is fully differentiable, and has a simple ℓ2-

regularized form of the neural network training. We will use

SGD to solve this step.

• C step: min
Θ,r,s

λ C(Θ, r) +
µ

2

K
∑

k=1

‖Θk −R(Wk, sk)‖
2

F

The step over Θ, r and s is still a mixed-integer optimization

problem, however, it admits an efficient solution depending

on the form of compression cost C.

The alternation of L and C steps guarantee a monotonic decrease of

the objective function. More importantly, it confines the combinato-

rial search over the ranks and decomposition schemes to a subprob-

lem that does not involve the network loss (which typically requires

iteration over a large dataset).

3.2. Solution of the C step

The layerwise separable cost function (2) splits the C-step problem

into subproblems over each layer k:

min
Θk,rk,sk

λ C(Θk, rk) +
µ

2
‖Θk −R(Wk, sk)‖

2

F

s.t. rank (Θk) = rk.

(4)

For a fixed decomposition scheme sk the solution of this optimiza-

tion problem over Θk, rk is known in closed form for multiple costs

C. For the storage and FLOPs costs, the solution involves SVD and

enumeration over the ranks [2]. For the nuclear-norm cost, the so-

lution involves singular value shrinkage [18]. Therefore, to find the

solution of (4) we iterate over possible schemes, and select the triplet

(Θk, rk, sk) attaining the minimum loss of (4). See Alg. 1 for the

full pseudocode.

4. EXPERIMENTAL EVALUATION AND DISCUSSION

We demonstrate the power of jointly training weights, ranks, and

decompositions schemes by compressing various models on differ-

ent datasets. We compress the Caffe version of LeNet5 on MNIST

dataset, batch normalized VGG16 on CIFAR10, and AlexNet on Im-

ageNet. While our algorithm can handle different compression costs
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Fig. 2. Compression of LeNet5 and VGG16 networks trained on

MNIST and CIFAR10 datasets using automatic rank selection with

fixed decomposition schemes 1, 2, 3 and comparison to our approach

where schemes and ranks are learned jointly. For each scheme (and

our method) we run multiple compression and generate a family of

model which we plot as a curve. We additionally plot some of the

available compression results in the literature using square markers.

Horizontal dashed lines marked with R indicate the test-error of ref-

erence (uncompressed) networks.



test error FLOPs parameters
The selected scheme and rank over layers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

λ = 2.0× 10−5 5.90% 156M 4.8M
S1 S2 S2 S2 S3 S2 S2 S3 S2 S2 S2 S2 S2

31 11 9
16 32 71 97 116 238 263 254 292 172 122 99 105

λ = 7.5× 10−5 5.97% 78M 2.5M
S1 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

23 10 9
15 20 43 53 113 110 116 239 124 79 72 74 89

Table 1. The final selected ranks and reshaping schemes (across layers) for some of the compressed VGG16 models on CIFAR10 using our

algorithm. The VGG16 network has 16 layers: layers 1–13 are convolutional, for which we selected both schemes and ranks, and layers

14–16 are fully connected, for which we select only the ranks. We denote schemes as: S1 (scheme 1), S2 (scheme 2), S3 (scheme 3). Notice

how selected scheme and ranks change when we use a higher value of λ, e.g., the selected scheme for layer 5 changed from S3 to S2 The

reference VGG16 has the test error of 6.45% with 317 MFLOPs and 15.2M parameters.

C, we run our experiments with C targeting the resulting MFLOPs

reduction of the models. Our algorithm is initialized from reason-

ably well pre-trained reference models and run with different values

of λ to explore the entire error-FLOPS tradeoff space. We allow the

algorithm to select over schemes 1, 2, and 3 of sec 2. Overall, the

total runtime of compression does not take more than 3× the time

spend on training the reference model in the first place. We run L

and C steps in a total of T times with the µ value of µinit × bt at step

t, and perform finetuning for 10–20 epochs afterwards. All L steps

are optimized using SGD with a momentum of 0.9 and the initial

learning rate is decayed by 0.99 after each epoch. The exact values

are as follows:

• LeNet5: T = 30, µinit = 0.001, b = 1.1. Each L step runs

for 30 epochs with a learning rate of 0.02.

• VGG16: T = 60, µinit = 0.0002, b = 1.2. Each L step runs

for 15 epochs with a learning rate 0.0001.

• AlexNet: T = 30, µinit = 0.001 and b = 1.1. Each L step is

run for 15 epochs with a learning rate 0.0005.

We plot our rank-and-scheme-optimized LeNet5 and VGG16

models on Fig 2. To give a perspective on whether the scheme

selection improves the overall compression, we additionally run our

algorithm with a fixed reshape (using schemes 1, 2, or 3) throughout

the net, effectively disabling the scheme selection. As expected,

low-rank networks trained with only a fixed scheme do not achieve

competitive error-FLOPs tradeoff when compared to the scheme

optimized counterparts. For instance, our scheme optimized low-

rank LeNet5-s have no accuracy loss up to 0.6 MFLOPs, which

corresponds to ×4.25 speed-up; and our compressed VGG16 nets

do not experience accuracy drop until reaching models with 61

MFLOPs (×5.1 speed-up). In fact, for VGG16 we see a substantial

improvement in test error for moderately compressed models: our

78 MFLOPs network has a test error of 5.97%, which is a 0.54%

improvement wrt reference model. We also plot recent results from

the structured pruning literature (as square markers) that reduce the

FLOPs count of VGG16 [19–24]. Our results achieve significantly

better error-FLOPs tradeoff compared to low-rank compression us-

ing individual reshaping schemes and when compared to structured

pruning results as well.

To illustrate the differences in selected ranks and schemes of

our compressed models, we report some of the final architectures

for VGG16 in Table 1. We notice non-trivial changes in both ranks

and schemes of the final architectures: while a network with 156

MFLOPs has a mix of schemes 1, 2, and 3, the 78 MFLOPs network

only uses schemes 1 and 2.

MFLOPs top-1 top-5

Caffe-AlexNet 724 42.70 19.80

Tai et al. [6], scheme 2 185 — 20.34
Wen et al. [7], scheme 1 269 — 20.14
Kim et al. [1], scheme 2 272 43.40 20.10
Idelbayev & Carreira-Perpiñán [2], scheme 1 240 42.83 19.93
Idelbayev & Carreira-Perpiñán [2], scheme 2 151 42.69 19.83

ours, with λ = 1.5× 10−5 179 41.64 19.22

ours, with λ = 2.0× 10−5 156 42.44 19.65

Table 2. Our low-rank AlexNet models (with rank and scheme se-

lection) and comparison to other low-rank results in the literature.

We report top-1 and top-5 validation accuracy on ImageNet dataset

and the FLOPs count of the final model.

For the AlexNet experiments, we report the achieved FLOPs

count and top-1/top-5 validation errors in Table 2. Our rank-and-

scheme-optimized AlexNet models achieve better error-FLOPs

tradeoff than most of the low-rank compression results existing in

the literature and comparable to rank-optimized AlexNets of [2]

which use scheme 2 throughout the network. Interestingly, our al-

gorithm selects the scheme-2 decomposition for all convolutional

layers of AlexNet as well, suggesting that scheme 2 might be a good

default option for a high-compression regime.

5. CONCLUSION

Traditionally, low-rank has been applied with a specific choice of the

matrix reshape, essential fixing the decomposition scheme. Instead,

we formulated the problem of jointly optimizing weights, ranks,

and decomposition schemes to optimally compress the neural net-

work, and gave an optimization algorithm that manages to address

the exponentially large search space over the ranks and schemes.

We experimentally validated that optimizing over decomposition

schemes significantly improves the error-compression tradeoff when

compared to any single fixed scheme. At the same time, we found

that some schemes tend to perform better than others, and can be

used as a good default option for low-rank compression.
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general and effective model compression via an additive com-

bination of compressions,” Submitted, 2020.

[16] Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán, “Neural
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