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ABSTRACT

Existing large-scale articulatory databases describe the tongue
shape through the 2D positions of 3–4 fixed landmarks on the tongue
surface. The ability to reconstruct the full tongue contour from these
landmarks would increase the utility of these databases in speech
research. We give an algorithm to adapt a predictive model of the
tongue contour, that has been learned using ultrasound data for a
given speaker, to a new speaker for which only landmark coordi-
nates are given. We show realistic reconstructions of the full tongue
contour in the MOCHA and XRMB databases.

Index Terms— Tongue reconstruction, model adaptation, artic-
ulatory databases.

1. INTRODUCTION
Existing large-scale articulatory databases, such as MOCHA (using
electromagnetic articulography, EMA) [1] and Wisconsin XRMB
(using X-ray microbeam) [2], provide the vocal tract shape during
continuous speech, and have been very useful for research in articu-
latory inversion and synthesis, vocal tract visualization, and speech
production and therapy (e.g. [3, 4]). However, their representationof
the vocal tract is limited. For example, the tongue is represented by
the 2D locations of 3–4 pellets attached to its tip, body and dorsum.
Reconstructing the tongue shape with a spline (linear [3] or cubic
[4, 5]) produces shapes that are often unrealistic and penetrate the
palate, velum or teeth. Previous work [6, 7] has shown that (1) the
tongue contour can be reconstructed very accurately from a few land-
marks for a given speaker by training a nonlinear predictive model
using tongue shapes recorded (e.g. with ultrasound) from that same
speaker; and that (2) such a model can be quickly and accurately
adapted to a new speaker given a few full contours for the latter.
Here, we go one step beyond and propose an algorithm to recon-
struct realistically the tongue shapes from articulatory databases that
provide 2D coordinates for only 3–4 landmarksbut no full contours.
The method applies also to 3D shapes or full vocal tract shapes.

Reconstructing the tongue contour from landmarks using data
for a single speaker has been done using linear [8, 9] and nonlinear
models [6]. Nonlinear reconstruction yields lower errors and is more
amenable to our proposed adaptation algorithm (see sec. 2.3). Ex-
cept for [7], there seems to be little work on automatic, data-driven
adaptation of such models to new speakers, although some papers
have used manual adaptation of articulatory models [5]. Our work
is also related to recent efforts in fusing information from different
articulatory modalities such as EMA, ultrasound and MRI [10].

2. THE RECONSTRUCTION ALGORITHM
We consider three problems (fig. 1).P1 is to learn a predictive model
of the full tongue contour for a given speaker given many full con-
tours from it. P2 is to adapt the predictive model to a new speaker
given a few full contours from the latter.P3 is like P2 but given

partial contours containing only the 2D coordinates for the land-
marks, and corresponds to reconstructing the tongue contours for
the MOCHA and XRMB databases.

2.1. Data-driven predictive model of the tongue contour (P1)

Given a sufficiently large training set containingN ′ full tongue con-
toursy = (yT

1 , . . . , yT
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(a subset of theP points), we fit a predictive mappingf by minimiz-
ing the predictive square errorE(f) =

PN′

n=1
‖yn − f(xn)‖2. The

mappingf can be linear (f(x) = Wx+w) or a radial basis function
(RBF) network (f(x) = WΦ(x) +w with M Gaussian basis func-
tions φm(x) = exp (− 1

2
‖(x − µm)/σ‖2)). In [6], we obtained

errors below0.3 mm using contoursyn extracted from ultrasound
images. Note that what this essentially achieves is a realistic, data-
driven model of the tongue midsaggital contour with2K dof.

2.2. Adaptation of the model given full contours (P2)

We are now given a small numberN of full contoursyn from a new
speaker. That is, each adaptation data item is a pair(xn,yn) where
yn is theP–point contour andxn the K–point input (a subset of
yn). We adapt the existing predictive mappingf by estimating a
2D-wise alignment transformationmappingg : R

2 → R
2 that

maps new data to old data, whereg(x) = Ax + b is linear to
ensure it is invertible and has few parameters. The key aspect of this
feature normalizationapproach is to apply the same transformation
to each 2D point of anx– ory–contour. Consequently, the inputsx

and outputsy undergoinvertible linear transformationsgx, gy:

x̃ = gx(x) =
“

Ax1+b
...

AxK+b

”

ỹ = gy(y) =
“

Ay1+b
...

AyP +b

”

. (1)

The adapted predictive mapping is given byg−1
y ◦f ◦gx. Then, adap-

tation requires estimating only the 6 parametersA2×2 andb2×1. To
estimate{A,b} we define the error function between the full con-
tours (given and predicted):

minA,b F (A,b) =
PN

n=1
‖gy(yn) − f(gx(xn))‖2 (2)

which, in the RBF case, is efficiently optimized by the BFGS algo-
rithm, initialized from the identity mapping. (See [7] for details.)
Using onlyN = 10–20 adaptation contours and in less than1 sec-
ond CPU time, in [7] we achieved errors only slightly larger than if
training with abundant data from the new speaker (i.e., as inP1); see
also fig. 2a.

2.3. Adaptation without full contours (P3)

We are now given as adaptation data for a new speaker not the full
contours withP points (as inP2) but only the much sparserK–
landmark contours (N of them). Thus, we have no training data or
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Fig. 1. Three problems involving landmark-to-contour reconstruction (hereK = 3 landmarks andP = 24 points). This paper focuses on
P3, while papers [6] and [7] focused onP1andP2, respectively.

ground truth for the remainingP −K points at all. This is the prob-
lem with e.g. the MOCHA database, which contains the 2D loca-
tions ofK = 3 pellets over time during speech for several unknown
speakers, but not a single full contour. Given this information alone,
how can we reconstruct the full tongue contour from theK points?
We propose an extension of our adaptation method by considering
as inputx and also as outputy = x the pellet coordinates in these
databases. We define the new problem (minimized with BFGS):

minA,b Fx(A,b) =
PN

n=1
‖gx(xn) − fx(gx(xn))‖2 (3)

wherefx is the components extracted fromf corresponding to the
K landmarks. This is equivalent to seeking{A,b} such that the
adapted modelg−1

x ◦ fx ◦gx best approximates the identity mapping
and interpolates the landmarks. We then apply{A,b} to reconstruct
the entire contour asg−1

y ◦ f ◦ gx.
Note this approach does not work iff is linear, because thenfx

became the identity when minimizingE(f) =
PN′

n=1
‖yn − f(xn)‖2

during training, andFx(A,b) = 0 in (3) for any{A,b}. In con-
strast, a Gaussian RBF with a finite number of basis functions ap-
proximates the identity to high but not perfect accuracy, and only
within a finite domain of the inputx, thus (3) has a well-defined min-
imum that implicitly aligns the new speaker’s input with the domain
of the old speaker’s one. Also note thatwe do not need correspon-
dences, i.e., pairs of inputs of the old and new speakers correspond-
ing to the same sound; achieving such correspondences is not only
time-consuming but also ill defined, as it is not clear what sounds
from both speakers should be considered the “same”.

We have found an additional problem when applying the method
proposed to our ultrasound data. Essentially, our models (trained and
adapted) are as good as the data used to train the predictive map-
ping f . When tracking the tongue contour in ultrasound images, it
is very difficult to detect compression or stretching of the tongue be-
cause the air-tongue interface is featureless (and the tip or back of
the tongue can partially disappear)—a situation similar to the aper-
ture problem in computer vision. Thus, our training contours show
mostly equidistant contour points, and we observe that a (small) pro-
portion of the MOCHA frames show distances between pellets dif-
fering by up to 30%. If the adaptation data contains such frames,
the adapted model can be far from the best one (fig. 3a). Note
this problem is caused not by our adaptation algorithm but by our
contour data, and the ultimate solution would be to collect tongue
contours that show compression and stretching as naturally occur-
ring during speech (perhaps attaching metal pellets to the subject’s
tongue with ultrasound imaging). It is possible to use only MOCHA
frames with roughly equidistant pellets (fig. 3b), but this discards
useful adaptation data and is unreliable. However, we have found
one way of achieving very good overall adaptation with our existing

data: to regularize problem (3) to encourageA to have a low condi-
tion number. This works because much of the misalignment between
speakers can be explained by a scaling and rigid motion (which has
cond (A) = 1), and we do observe that poorly adapted models ob-
tained when using all sorts of MOCHA frames indeed yield a poorly
conditionedA. We then solve

minA,b Fx(A,b) + λC(A), λ ≥ 0. (4)

Directly minimizingC(A) = cond (A) = ‖A‖
2
‖A−1‖

2
is diffi-

cult, so we use instead the much simpler

C(A) = tr (AT
A) − D det (AT

A)
1/D

for AD×D, (5)

which satisfiesC(A) ≥ 0 andC(A) = 0 iff cond (A) = 1 (so it is
minimal whencond (A) is minimal), and is piecewise quadratic for
D = 2. In our experiments we find that, for a wide range ofλ, this
method reliably obtains the best results of all options and realistically
reconstructs the full tongue contour (within and beyond the MOCHA
pellets) for most frames. Frames with significantly non-equidistant
pellets do show distortions, but this is unavoidable with our data.

Before training the predictive model and running the adaptation
algorithm, we need to determine which of theP contour points are
theK landmarks so that this matches as closely as possible the land-
mark locations in the new dataset. MOCHA and XRMB give ap-
proximate information as to how the pellets were attached to the
tongue (e.g. “2 mm from the tongue tip”) that can be used for this
purpose. The location of the reconstructed tongue relative to the
velum/teeth/palate can also be used to refine this estimate.

The computational complexity of the adaptation algorithm per
BFGS iteration isO(NMK) with N adaptation contours,M radial
basis functions andK landmarks. Convergence occurs in around10
iterations. UsingN = 1 000 takes around2 seconds in a PC.

3. EXPERIMENTAL RESULTS
We used the database of [7] of contours extracted from ultrasound
from a Scottish speaker (maaw0): 2 236 full contours (P = 24 points
andK = 3 landmarks) of datasetS1were used to train an RBF pre-
dictive modelf with M = 500 basis functions, widthσ = 55 mm
and regularization parameter10−4, all obtained by cross-validation.

3.1. Reconstruction error with known ground truth

Here, we use additional contours (different from the training ones)
from the same speaker of [7] to adapt and test the model. We trans-
formed them usingA =

`

1.1 −0.05
−0.1 1.2

´

andb =
`

10
−10

´

and then
split them into991 contours for testing, and the rest (up to500) for
use in adaptation. Fig. 2a shows the reconstruction error (at each
contour point) of our baseline models: applying the known{A,b}
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Fig. 2. Reconstruction error (RMSE at each contour point in mm) as a functionof the number of adaptation contoursN for two landmark
placements (matched[4 9 14], mismatched[4.2 9.2 14.2]). a: adaptation using full contours (problemP2) and training using many full
contours (problemP1), given as baselines.b: adaptation using partial contours (problemP3) and no regularization.c: adaptation using
partial contours (problemP3) and regularization (λ = 2). Errorbars over10 random choices of theN adaptation contours.

to f (black line), and using different numbersN of full contours to
adaptf (red line). These correspond to problemsP1 andP2, resp.
Fig. 2b andc use different numbersN of partial contours to adapt
f (red line), with and without regularization, respectively. We also
consider two choices of landmarks’ placement: the one used when
training (“matched”, points[4 9 14] of the 24–point contour) and one
with landmarks displaced by20% (“mismatched”,[4.2 9.2 14.2]).

The advantage of regularizing the condition number ofA (both
in reducing the error and its variance) is obvious, particularly with
mismatched landmarks, which gives some robustness to landmark
misspecification. With large enoughN , the results with the correct
landmark choice are almost as good as when adapting using the full
contours;N = 100 contours suffice to reduce the error to1 mm,
while largerN can reduce it to0.7 mm (note the measurement error
in ultrasound and MOCHA/XRMB is around0.5 mm).

3.2. Reconstruction of MOCHA/XRMB tongue contours

Figures 3–4 show results for MOCHA (speakerfsew0), which has
K = 3 tongue pellets. We estimated their locations in our predictive
model as[4 9 14], as this gave visually the best results.
Effect of regularization and data selection. Fig. 3 shows results
usingN = 3600 partial contours for adaptation. In fig. 3a theN
contours were randomly selected from the MOCHA database and
no regularization was used (λ = 0). The reconstructed contour os-
cillates wildly, its ends are too long and it can even appear upside-
down; note the diagonal ofA has very different values of opposite
sign. In fig. 3b we first eliminated all MOCHA contours having in-
terpellet distance below a certain threshold (see section 2.3) and ran-
domly selectedN partial contours from these for adaptation without
regularization (λ = 0). The reconstructed contours are now bet-
ter, but the result is sensitive to the threshold used and we lose use-
ful adaptation data. In fig. 3c we used contours without selecting
them (as in 3a), and regularization withλ = 104 (for this dataset,
λ ∈ [102, 104] gave similar results). The reconstructed contours
are the best. The resulting{A,b} are essentially a translation and
uniform scaling, as one might expect. These conclusions hold over
different choices of theN contours and the value ofN , and demon-
strate the need for regularization. The experiments below use a pre-
dictive model adapted withN = 104 contours and regularization.
Realistic tongue contour reconstruction. Fig. 4 shows represen-
tative reconstructed tongue contours for MOCHA. Although, by the
very nature of our goal, we do not have ground truth full contours
from the MOCHA speaker to compare with, we do have strong in-
direct evidence that our reconstructions are quite realistic: (1) The
reconstructed contours interpolate well the3 input pellets, and they

a: λ = 0, no selection b: λ = 0, selection c: λ = 10
4, no select.
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Fig. 3. Effect of regularization and data selection in adaptation in
MOCHA. a: no regularization, randomly selected adaptation set.
b: no regularization, carefully selected adaptation set.c: adapta-
tion with regularizationλ = 104, randomly selected adaptation set.
Color scheme as in fig. 4;A, b andcond (A) over each plot.

respect physical constraints (even though we did not impose this in
any way when estimating the model): the tongue very rarely goes
through the palate, velum or lower incisor (6% of all 10 000 frames
of 460 utterances we tested, and then by less than1 mm); see also
fig. 6. (2) Comparing visually our contours with those from the ultra-
sound database (fig. 5) shows similar shapes, in particular in the back
of the tongue (beyond the innermost pellet): “pick” (fig. 4) and frame
177/maaw0 177 (fig. 5); “overall” (fig. 4) and frame 300/maaw0 054
(fig. 5). (3) The contours correlate well with the phoneme articula-
tion. Note how precisely reconstructed is the posterior tongue-palate
contact in “pick” and the narrow alveolar constriction in “overall”
and “thieves”; see also fig. 6. This information, which is crucial for
speech production and possibly for articulatory synthesis and inver-
sion, is not readily visible from the pellet locations alone (cf. [3]).

We do obtain less realistic reconstructions for a small propor-
tion of frames, usually those having a small interpellet distance, or
that are not well represented in our ultrasound dataset. We think
this could be improved by collecting a more comprehensive contour
dataset, without the need for changes in the algorithm.
Comparison with an interpolating spline. Fig. 3–4 (MOCHA)
and 6 (XRMB) also show the reconstruction using a cubic interpo-
lating spline (green curve). (For XRMB speakerjw11, which uses
K = 4 tongue pellets, we chose landmarks[3 7 11 15]; other pa-
rameters as for MOCHA.) Although the spline can often give a
reasonable contour between the pellets, beyond them it generally
looks completely unrealistic (e.g. see “overall” or “caused” in fig. 4).
The spline can also oscillate wildly between the pellets, as in fig 6.
Constraining the spline a priori not to go through the palate, velum
or teeth seems very difficult, while such constraints are implicitly
learned in the data-driven approach we propose.
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Fig. 4. Tongue reconstruction for MOCHA;λ = 104, A =
`

−1.13 −0.07
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´

, b = ( 121
48

), cond (A) = 1.07. Black curve: estimate of the
palate computed as the convex hull of all the tongue pellets in the entire MOCHAdata for speakerfsew0. Red curve: reconstructed tongue
contour. Green curve: contour reconstructed by a cubic spline. The markers show the EMA pellets (tongue: open blue; lips: cyan; lower
incisor: brown; velum: magenta). Lips to the left. See utterance animations, and Matlab packages MOCHAtools/XRMBtools that implement
the tongue reconstruction algorithm for the MOCHA/XRMB databases, athttp://faculty.ucmerced.edu/mcarreira-perpinan.
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Fig. 5. Typical tongue shapes during normal speech production in
the ultrasound database (lips to the right).
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Fig. 6. XRMB results;λ = 104, A =
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cond (A) = 1.75. Color scheme as in fig. 4, but the palate was
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4. CONCLUSION
We propose an efficient algorithm that recovers realistic tongue con-
tours for articulatory databases, based only on the 2D coordinates
for the tongue pellets provided in the latter (without the need for
correspondences, full contours or any other information). The recon-
structed tongue satisfies physical constraints (e.g. not going through
the palate, teeth or velum) without having to apply the latter explic-
itly, and provides detailed information not readily available in the
database such as the precise location of tongue-palate constrictions.
This could be very useful for research in speech production and ar-
ticulatory synthesis and inversion. The algorithm is applicable to any
2D or 3D shapes and thus opens the door for reconstructing the entire
vocal tract shape of an unknown speaker from a few landmarks on it,
provided one can train a predictive model for a reference speaker us-
ing data for the full vocal tract of the latter (recorded with e.g. MRI
or X-ray). Training, adaptation and visualization Matlab software

is available from the authors.Acknowledgments. Work funded
by NSF awards IIS–0754089 (CAREER) and IIS–0711186. XRDB
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