RECONSTRUCTING THE FULL TONGUE CONTOUR FROM EMA/X-RAY MICROBEAM
Chao Qin MigueIA. Carreira-Perpian

EECS, School of Engineering, University of California, Matc&lerced, CA, USA

Email: {cqi n, ncarrei r a- per pi nan}@cner ced. edu

ABSTRACT partial contours containing only the 2D coordinates for the land-

- . ) marks and corresponds to reconstructing the tongue contours for
Existing large-scale articulatory databases describe the tongyge MoCHA and XRMB databases.

shape through the 2D positions of 3—4 fixed landmarks on the tongue
surface. The ability to reconstruct the full tongue contour from thes@.1. Data-driven predictive model of the tongue contour (P1)

landmarks would increase the utility of these databases in speech

research. We give an algorithm to adapt a predictive model of th&Ven a sufﬁgiently Iajfgg train2igg set containing full2t0ngue con-
tongue contour, that has been learned using ultrasound data for@rsy = (¥1,.--,yp)" € R™ of P pointsy; < R” and the po-

T T\T 2K _ 2
given speaker, to a new speaker for which only landmark coordiSitionsx = (1 ,..., k)" € R™® of K' < P landmarksz; € R

nates are given. We show realistic reconstructions of the full tonguf? Subset of thé” points), we fit a predictive mappirfgoy minimiz-
contour in the MOCHA and XRMB databases. ing the predictive square errdéf(f) =3, _, [ly» — f(x»)[". The
mappingf can be linearf{((x) = Wx+w) or a radial basis function

Index Terms— Tongue reconstruction, model adaptation, artic-(RBF) network {(x) = W®(x) + w with M Gaussian basis func-
ulatory databases. tions ¢m (x) = exp (—31 [|(x — p,,)/a[|?)). In [6], we obtained
errors below0.3 mm using contoursy,, extracted from ultrasound
1. INTRODUCTION images. Note that what this essentially achieves is a realistic, data-

Existing large-scale articulatory databases, such as MOCHA (usingrjyen model of the tongue midsaggital contour viti dof.
electromagnetic articulography, EMA) [1] and Wisconsin XRMB

(using X-ray microbeam) [2], provide the vocal tract shape during2.2. Adaptation of the model given full contours (P2)
continuous speech, and have been very useful for research urartic .
latory inversion and synthesis, vocal tract visualization, and speec € aré now given a small numpe/f of fuII.cont.ourSy,,,. from a new
production and therapy (e.g. [3, 4]). However, their representafion spe_aker. That IS, each adaptation data 'te”? |s_a(|xa|;yn) where

the vocal tract is limited. For example, the tongue is represented by is the P—point contour andcy, t_he_ K—pomt_ Input (a_sub_set of

the 2D locations of 3—4 pellets attached to its tip, body and dorsu n)- _We a_dapt the existing prgdlctlve_mapplﬁg))é estlmaQtlng a
Reconstructing the tongue shape with a spline (linear [3] or cubi D-wise alignment transformatiomappingg : R = R that

[4, 5]) produces shapes that are often unrealistic and penetrate tH&#PS NEW Qata to old data, wheger) = Az + b is linear to .
palate, velum or teeth. Previous work [6, 7] has shown that (1) th nsure itis |nv¢_ert|b_le and has f‘?W parameters. The key aspect O.f this
tongue contour can be reconstructed very accurately from a few lan ol norma_llzatlorapproach is to apply the same transf_ormatlon
marks for a given speaker by training a nonlinear predictive model° each 2D point of aR-— ory—cqntour. Conseque.ntly, the |r.1puts
using tongue shapes recorded (e.g. with ultrasound) from that san"flé]d outputy undergadnvertible linear transformationg., gy

speaker; and that (2) such a model can be quickly and accurately ( Az ib ) Ay, +b

adapted to a new speaker given a few full contours for the latter. X = gx(x) = Ay p4b

Here, we go one step beyond and propose an algorithm to recon- r

struct realistically the tongue shapes from articulatory databases th@the adapted predictive mapping is givendyy' of og.. Then, adap-

provide 2D coordinates for only 3—4 landmatkst no full contours  tation requires estimating only the 6 paramet&gs. > andba 1. To

The method applies also to 3D shapes or full vocal tract shapes.  estimate{ A, b} we define the error function between the full con-
Reconstructing the tongue contour from landmarks using datgurs (given and predicted):

for a single speaker has been done using linear [8, 9] and nonlinear

models [6]. Nonlinear reconstruction yields lower errors and is more mina b F(A,b) = Zi’:l gy (yn) — f(gx(xn))||2 )

amenable to our proposed adaptation algorithm (see sec. 2.3). Ex-

cept for [7], there seems to be little work on automatic, data-driverwhich, in the RBF case, is efficiently optimized by the BFGS algo-

adaptation of such models to new speakers, although some papeithm, initialized from the identity mapping. (See [7] for details.)

have used manual adaptation of articulatory models [5]. Our workJsing only N = 10-20 adaptation contours and in less thiarec-

is also related to recent efforts in fusing information from differentond CPU time, in [7] we achieved errors only slightly larger than if

articulatory modalities such as EMA, ultrasound and MRI [10]. training with abundant data from the new speaker (i.e., &jnsee

also fig. A

v=e=(pn) @

Az +b

2. THE RECONSTRUCTION ALGORITHM
We consider three problems (fig. Blis to learn a predictive model
of the full tongue contour for a given speaker given many full con-We are now given as adaptation data for a new speaker not the full
tours from it. P2 is to adapt the predictive model to a new speakercontours withP points (as inP2) but only the much sparsek—
given a few full contours from the latte3 is like P2 but given  landmark contours{ of them). Thus, we have no training data or

2.3. Adaptation without full contours (P3)



P1: Training a predictive modd, for spea- P2 Adaptingf; to speaker 2 given a few fullP3: Adaptingf; to speaker 2 given partial con-

ker 1 with many full contours contours tours containing only the landmark positions
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Fig. 1. Three problems involving landmark-to-contour reconstruction (#ére: 3 landmarks and® = 24 points). This paper focuses on
P3, while papers [6] and [7] focused d?il andP2, respectively.

ground truth for the remaining — K points at all. This is the prob- data: to regularize problem (3) to encouray¢o have a low condi-

lem with e.g. the MOCHA database, which contains the 2D location number. This works because much of the misalignment between
tions of K = 3 pellets over time during speech for several unknownspeakers can be explained by a scaling and rigid motion (which has
speakers, but not a single full contour. Given this information alonegond (A) = 1), and we do observe that poorly adapted models ob-
how can we reconstruct the full tongue contour from figoints?  tained when using all sorts of MOCHA frames indeed yield a poorly
We propose an extension of our adaptation method by consideringpnditionedA. We then solve

as inputx and also as outpyt = x the pellet coordinates in these

databases. We define the new problem (minimized with BFGS): mina b Fx(A,b) + A\C(A), X2>0. 4)

mina b Fx(A,b) = szi1 llex(xn) — fx(gx ()2 3) Directly minimi;ingC(A) = cond (_A) = |A|l, |A7Y, is diffi-
n= cult, so we use instead the much simpler
wherefy is the components extracted frafrcorresponding to the ” o /D
K landmarks. This is equivalent to seekifidh, b} such that the C(A)=tr(A"A) — Ddet (A" A) for Apxp, (5)
adapted modeg; ' o fx o g« best approximates the identity mapping
and interpolates the landmarks. We then adply b} to reconstruct I ) i 1o _ :
the entire contour ag;l of o gy minimal whencond (A) is mlnlmgl), and is piecewise quadratlf: for
Note this approach does not workfifs linear, because thefiy D=2.1n our exper!ments we find that, for a W!de range)\othls.

became the identity when minimizirig(£) — ZN/ lyn — £(xn)|2 method reliably obtains the best results of all options and realistically
during training, andFx (A, b) = 0 in (3) for ar?yz{lA g} In cgn- reconstructs the full tongue contour (within and beyond the MOCHA

strast, a Gaussian RBF with a finite number of basis functions arpellets) for most framgs. Frames.vv.ith signifjcantly npn-equidistant
proximates the identity to high but not perfect accuracy, and Onhpellets do show distortions, but this is unavoidable with our data.

within a finite domain of the input, thus (3) has a well-defined min- Before training the predictive model and running the adaptation
imum that implicitly aligns the new speaker’s input with the domain@lgorithm, we need to detgrmlne which of tRecontour pqlnts are
of the old speaker's one. Also note thae do not need correspon- the K landmarks so that this matches as closely as possible the land-

dencesi.e., pairs of inputs of the old and new speakers correspondpark Iocati_ons in the new dataset. MOCHA and XRMB give ap-
ing to the same sound:; achieving such correspondences is not orfljoXimate information as to how the pellets were attached to the
time-consuming but also ill defined, as it is not clear what soundé®ngueé (e.g. “2 mm from the tongue tip”) that can be used for this
from both speakers should be considered the “same”. purpose. The location of the reconstruct.ed tongue relative to the
We have found an additional problem when applying the method elu1r]:]/teeth/ palfltg car; also ble u_sed ft?hrenr:je tf:ls;_estm:ate_.th
proposed to our ultrasound data. Essentially, our models (trained a%L e computational complexity of the adaptation algorithm per
i

which satisfies”(A) > 0andC(A) = 0iff cond (A) =1 (soitis

adapted) are as good as the data used to train the predictive m EGS iteration iO(V M K) with N adaptation contoursy radial

: . . : asis functions an& landmarks. Convergence occurs in aroufd
ing f. When tracking the tongue contour in ultrasound images, . . :
ping 9 d 9 iterations. UsingV = 1000 takes aroun@ seconds in a PC.

is very difficult to detect compression or stretching of the tongue be-
cause the air-tongue interface is featureless (and the tip or back of
the tongue can partially disappear)—a situation similar to the aper- 3. EXPERIMENTAL RESULTS

ture problem in computer vision. Thus, our training contours show/Ve used the database of [7] of contours extracted from ultrasound
mostly equidistant contour points, and we observe that a (small) prdfom a Scottish speakemgaw0): 2 236 full contours (° = 24 points
portion of the MOCHA frames show distances between pellets difahd K = 3 landmarks) of datas&1were used to train an RBF pre-
fering by up to 30%. If the adaptation data contains such framedlictive modelf with A/ = 500 basis functions, widtly = 55 mm

the adapted model can be far from the best one (f&g). Note and regularization paramet&d—*, all obtained by cross-validation.
this problem is caused not by our adaptation algorithm but by oup
contour data, and the ultimate solution would be to collect tongue”
contours that show compression and stretching as naturally occuHere, we use additional contours (different from the training ones)
ring during speech (perhaps attaching metal pellets to the subjectsom the same speaker of [7] to adapt and test the model. We trans-
tongue with ultrasound imaging). It is possible to use only MOCHAformed them usingA = (')}, 779°) andb = ({;) and then
frames with roughly equidistant pellets (figh)3 but this discards split them into991 contours for testing, and the rest (up5@o) for
useful adaptation data and is unreliable. However, we have foundse in adaptation. Fig.e2shows the reconstruction error (at each
one way of achieving very good overall adaptation with our existingcontour point) of our baseline models: applying the kndwx, b}

1. Reconstruction error with known ground truth
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Fig. 2. Reconstruction error (RMSE at each contour point in mm) as a funofitimee number of adaptation contouns for two landmark
placements (matcheld 9 14], mismatched4.2 9.2 14.2]). a: adaptation using full contours (probleR®) and training using many full
contours (probleniPl), given as baselinesh: adaptation using partial contours (problé&8) and no regularizationc: adaptation using
partial contours (problerR3) and regularizationX = 2). Errorbars ovei 0 random choices of th&/ adaptation contours.

to f (black line), and using different numbed& of full contours to & A = 0, noselection  b: X = 0, selection ¢ X = 10, no select.
. —1.1-0.3 116 —1.1-0.1 120 —1.1-0.1 119

adaptf (red line). These correspond to probleRtandP2 resp.  (“o2 02 ) (%65) 50 (Zoi0 —0:3)  (58) 40 (013! Z91) - (Ud) . vo

F|g 2:) andC use diﬂ:erent numberBf Of partial COI’ItOUI’S '[O adapt 20 Time: 2.380s hone: fou/ Time: 2.380s Phone: /ou/ 2 Time: 2.380s Phone: /ou/

f (red line), with and without regularization, respectively. We alsog o /-‘1\ o, o .

consider two choices of landmarks’ placement: the one used wheE ,, N}f‘@\f 20 (,,@.f 20 ‘@/”

training (“matched”, point$t 9 14] of the 24—point contour) and one > g

with landmarks displaced 80% (“mismatched”[4.2 9.2 14.2]). e T S N

The advantage of regularizing the condition numbeAofboth X (mm) X (mm) X (mm)

in reducing the error and its variance) is obvious, particularly withFig. 3. Effect of regularization and data selection in adaptation in

mismatched landmarks, which gives some robustness to landmaffOCHA. a: no regularization, randomly selected adaptation set.

misspecification. With large enoug¥, the results with the correct b: no regularization, carefully selected adaptation setadapta-

landmark choice are almost as good as when adapting using the fulbn with regularizatiom\ = 10*, randomly selected adaptation set.

contours;N = 100 contours suffice to reduce the errortanm,  Color scheme as in fig. 4, b andcond (A) over each plot.

while largerN can reduce it t®.7 mm (note the measurement error

in ultrasound and MOCHA/XRMB is arour@5 mm).

respect physical constraints (even though we did not impose this in
any way when estimating the model): the tongue very rarely goes
Figures 3—4 show results for MOCHA (speakerewo), which has  through the palate, velum or lower incis@% of all 10 000 frames

K = 3tongue pellets. We estimated their locations in our predictiveof 460 utterances we tested, and then by less thamm); see also
model ag4 9 14], as this gave visually the best results. fig. 6. (2) Comparing visually our contours with those from the ultra-
Effect of regularization and data selection. Fig. 3 shows results sound database (fig. 5) shows similar shapes, in particular in the back
using N = 3600 partial contours for adaptation. In figa3he N ofthe tongue (beyond the innermost pellet): “gi¢fig. 4) and frame
contours were randomly selected from the MOCHA database andi7 7frmaw0-177 (fig. 5); “overall’ (fig. 4) and frame 300faaw0-054

no regularization was used (= 0). The reconstructed contour os- (fig. 5). (3) The contours correlate well with the phoneme articula-
cillates wildly, its ends are too long and it can even appear upsideion. Note how precisely reconstructed is the posterior tongue-palate
down; note the diagonal oA has very different values of opposite contact in “pick and the narrow alveolar constriction in “overall
sign. In fig. 3 we first eliminated all MOCHA contours having in- and “thieves”; see also fig. 6. This information, which is crucial for
terpellet distance below a certain threshold (see section 2.3) and ragiPeech production and possibly for articulatory synthesis and inver-
domly selectedV partial contours from these for adaptation without Sion, is not readily visible from the pellet locations alone (cf. [3]).
regularization & = 0). The reconstructed contours are now bet-  We do obtain less realistic reconstructions for a small propor-
ter, but the result is sensitive to the threshold used and we lose usien of frames, usually those having a small interpellet distance, or
ful adaptation data. In fig.c3we used contours without selecting that are not well represented in our ultrasound dataset. We think
them (as in &), and regularization witt = 10* (for this dataset, this could be improved by collecting a more comprehensive contour
A € [10%,10%) gave similar results). The reconstructed contoursdataset, without the need for changes in the algorithm.

are the best. The resultifgA, b} are essentially a translation and Comparison with an interpolating spline. Fig. 3—4 (MOCHA)
uniform scaling, as one might expect. These conclusions hold oveind 6 (XRMB) also show the reconstruction using a cubic interpo-
different choices of thév contours and the value @7, and demon-  lating spline (green curve). (For XRMB speakevl1, which uses
strate the need for regularization. The experiments below use a pré¢ = 4 tongue pellets, we chose landmaifks7 11 15]; other pa-
dictive model adapted withV = 10* contours and regularization. ~ rameters as for MOCHA.) Although the spline can often give a
Realistic tongue contour reconstruction. Fig. 4 shows represen- reasonable contour between the pellets, beyond them it generally
tative reconstructed tongue contours for MOCHA. Although, by thelooks completely unrealistic (e.g. see “ovetalt “caused” in fig. 4).

very nature of our goal, we do not have ground truth full contoursThe spline can also oscillate wildly between the pellets, as in fig 6.
from the MOCHA speaker to compare with, we do have strong in-Constraining the spline a priori not to go through the palate, velum
direct evidence that our reconstructions are quite realistic: (1) Ther teeth seems very difficult, while such constraints are implicitly
reconstructed contours interpolate well haput pellets, and they learned in the data-driven approach we propose.

3.2. Reconstruction of MOCHA/XRMB tongue contours
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Fig. 4. Tongue reconstruction for MOCHAY = 10*, A = ( 'ot* 2005 ), b = ('2!), cond (A) = 1.07. Black curve: estimate of the
palate computed as the convex hull of all the tongue pellets in the entire MOdaité¥or speakersew0. Red curve: reconstructed tongue
contour. Green curve: contour reconstructed by a cubic spline. Hnkens show the EMA pellets (tongue: open blue; lips: cyan; lower
incisor: brown; velum: magenta). Lips to the left. See utterance animataddMatlab packages MOCHAtools/XRMBtools that implement
the tongue reconstruction algorithm for the MOCHA/XRMB databases,tat // f acul ty. ucmer ced. edu/ ntarr ei r a- per pi nan.
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